Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Heart Rhythm O2 ; 5(2): 131-136, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38545321

RESUMO

Background: Respiratory motion management strategies are used to minimize the effects of breathing on the precision of stereotactic ablative radiotherapy for ventricular tachycardia, but the extent of cardiac contractile motion of the human heart has not been systematically explored. Objective: We aim to assess the magnitude of cardiac contractile motion between different directions and locations in the heart. Methods: Patients with intracardiac leads or valves who underwent 4-dimensional cardiac computed tomography (CT) prior to a catheter ablation procedure for atrial or ventricular arrhythmias at 2 medical centers were studied retrospectively. The displacement of transvenous right atrial appendage, right ventricular (RV) implantable cardioverter-defibrillator, coronary sinus lead tips, and prosthetic cardiac devices across the cardiac cycle were measured in orthogonal 3-dimensional views on a maximal-intensity projection CT reconstruction. Results: A total of 31 preablation cardiac 4-dimensional cardiac CT scans were analyzed. The LV lead tip had significantly greater motion compared with the RV lead in the anterior-posterior direction (6.0 ± 2.2 mm vs 3.8 ± 1.7 mm; P = .01) and superior-inferior direction (4.4 ± 2.9 mm vs 3.5 ± 2.0 mm; P = .049). The prosthetic aortic valves had the least movement of all fiducials, specifically compared with the RV lead tip in the left-right direction (3.2 ± 1.2 mm vs 6.1 ± 3.8 mm, P = .04) and the LV lead tip in the anterior-posterior direction (3.8 ± 1.7 mm vs 6.0 ± 2.2 mm, P = .03). Conclusion: The degree of cardiac contractile motion varies significantly (1 mm to 15.2 mm) across different locations in the heart. The effect of contractile motion on the precision of radiotherapy should be assessed on a patient-specific basis.

3.
Radiol Cardiothorac Imaging ; 5(4): e220221, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37693197

RESUMO

Purpose: To assess if a novel automated method to spatially delineate and quantify the extent of hypoperfusion on multienergy CT angiograms can aid the evaluation of chronic thromboembolic pulmonary hypertension (CTEPH) disease severity. Materials and Methods: Multienergy CT angiograms obtained between January 2018 and December 2020 in 51 patients with CTEPH (mean age, 47 years ± 17 [SD]; 27 women) were retrospectively compared with those in 110 controls with no imaging findings suggestive of pulmonary vascular abnormalities (mean age, 51 years ± 16; 81 women). Parenchymal iodine values were automatically isolated using deep learning lobar lung segmentations. Low iodine concentration was used to delineate areas of hypoperfusion and calculate hypoperfused lung volume (HLV). Receiver operating characteristic curves, correlations with preoperative and postoperative changes in invasive hemodynamics, and comparison with visual assessment of lobar hypoperfusion by two expert readers were evaluated. Results: Global HLV correctly separated patients with CTEPH from controls (area under the receiver operating characteristic curve = 0.84; 10% HLV cutoff: 90% sensitivity, 72% accuracy, and 64% specificity) and correlated moderately with hemodynamic severity at time of imaging (pulmonary vascular resistance [PVR], ρ = 0.67; P < .001) and change after surgical treatment (∆PVR, ρ = -0.61; P < .001). In patients surgically classified as having segmental disease, global HLV correlated with preoperative PVR (ρ = 0.81) and postoperative ∆PVR (ρ = -0.70). Lobar HLV correlated moderately with expert reader lobar assessment (ρHLV = 0.71 for reader 1; ρHLV = 0.67 for reader 2). Conclusion: Automated quantification of hypoperfused areas in patients with CTEPH can be performed from clinical multienergy CT examinations and may aid clinical evaluation, particularly in patients with segmental-level disease.Keywords: CT-Spectral Imaging (Multienergy), Pulmonary, Pulmonary Arteries, Embolism/Thrombosis, Chronic Thromboembolic Pulmonary Hypertension, Multienergy CT, Hypoperfusion© RSNA, 2023.

4.
Radiol Cardiothorac Imaging ; 5(3): e220202, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37404797

RESUMO

Purpose: To assess the feasibility of a newly developed algorithm, called deep learning synthetic strain (DLSS), to infer myocardial velocity from cine steady-state free precession (SSFP) images and detect wall motion abnormalities in patients with ischemic heart disease. Materials and Methods: In this retrospective study, DLSS was developed by using a data set of 223 cardiac MRI examinations including cine SSFP images and four-dimensional flow velocity data (November 2017 to May 2021). To establish normal ranges, segmental strain was measured in 40 individuals (mean age, 41 years ± 17 [SD]; 30 men) without cardiac disease. Then, DLSS performance in the detection of wall motion abnormalities was assessed in a separate group of patients with coronary artery disease, and these findings were compared with consensus results of four independent cardiothoracic radiologists (ground truth). Algorithm performance was evaluated by using receiver operating characteristic curve analysis. Results: Median peak segmental radial strain in individuals with normal cardiac MRI findings was 38% (IQR: 30%-48%). Among patients with ischemic heart disease (846 segments in 53 patients; mean age, 61 years ± 12; 41 men), the Cohen κ among four cardiothoracic readers for detecting wall motion abnormalities was 0.60-0.78. DLSS achieved an area under the receiver operating characteristic curve of 0.90. Using a fixed 30% threshold for abnormal peak radial strain, the algorithm achieved a sensitivity, specificity, and accuracy of 86%, 85%, and 86%, respectively. Conclusion: The deep learning algorithm had comparable performance with subspecialty radiologists in inferring myocardial velocity from cine SSFP images and identifying myocardial wall motion abnormalities at rest in patients with ischemic heart disease.Keywords: Neural Networks, Cardiac, MR Imaging, Ischemia/Infarction Supplemental material is available for this article. © RSNA, 2023.

5.
J Cardiovasc Magn Reson ; 25(1): 40, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474977

RESUMO

Hemodynamic assessment is an integral part of the diagnosis and management of cardiovascular disease. Four-dimensional cardiovascular magnetic resonance flow imaging (4D Flow CMR) allows comprehensive and accurate assessment of flow in a single acquisition. This consensus paper is an update from the 2015 '4D Flow CMR Consensus Statement'. We elaborate on 4D Flow CMR sequence options and imaging considerations. The document aims to assist centers starting out with 4D Flow CMR of the heart and great vessels with advice on acquisition parameters, post-processing workflows and integration into clinical practice. Furthermore, we define minimum quality assurance and validation standards for clinical centers. We also address the challenges faced in quality assurance and validation in the research setting. We also include a checklist for recommended publication standards, specifically for 4D Flow CMR. Finally, we discuss the current limitations and the future of 4D Flow CMR. This updated consensus paper will further facilitate widespread adoption of 4D Flow CMR in the clinical workflow across the globe and aid consistently high-quality publication standards.


Assuntos
Sistema Cardiovascular , Humanos , Velocidade do Fluxo Sanguíneo , Valor Preditivo dos Testes , Coração , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
6.
AJR Am J Roentgenol ; 221(5): 620-631, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37466189

RESUMO

BACKGROUND. The confounder-corrected chemical shift-encoded MRI (CSE-MRI) sequence used to determine proton density fat fraction (PDFF) for hepatic fat quantification is not widely available. As an alternative, hepatic fat can be assessed by a two-point Dixon method to calculate signal fat fraction (FF) from conventional T1-weighted in- and opposed-phase (IOP) images, although signal FF is prone to biases, leading to inaccurate quantification. OBJECTIVE. The purpose of this study was to compare hepatic fat quantification by use of PDFF inferred from conventional T1-weighted IOP images and deep-learning convolutional neural networks (CNNs) with quantification by use of two-point Dixon signal FF with CSE-MRI PDFF as the reference standard. METHODS. This study entailed retrospective analysis of data from 292 participants (203 women, 89 men; mean age, 53.7 ± 12.0 [SD] years) enrolled at two sites from September 1, 2017, to December 18, 2019, in the Strong Heart Family Study (a prospective population-based study of American Indian communities). Participants underwent liver MRI (site A, 3 T; site B, 1.5 T) including T1-weighted IOP MRI and CSE-MRI (used to reconstruct CSE PDFF and CSE R2* maps). With CSE PDFF as reference, a CNN was trained in a random sample of 218 (75%) participants to infer voxel-by-voxel PDFF maps from T1-weighted IOP images; testing was performed in the other 74 (25%) participants. Parametric values from the entire liver were automatically extracted. Per-participant median CNN-inferred PDFF and median two-point Dixon signal FF were compared with reference median CSE-MRI PDFF by means of linear regression analysis, intraclass correlation coefficient (ICC), and Bland-Altman analysis. The code is publicly available at github.com/kang927/CNN-inference-of-PDFF-from-T1w-IOP-MR. RESULTS. In the 74 test-set participants, reference CSE PDFF ranged from 1% to 32% (mean, 11.3% ± 8.3% [SD]); reference CSE R2* ranged from 31 to 457 seconds-1 (mean, 62.4 ± 67.3 seconds-1 [SD]). Agreement metrics with reference to CSE PDFF for CNN-inferred PDFF were ICC = 0.99, bias = -0.19%, 95% limits of agreement (LoA) = (-2.80%, 2.71%) and for two-point Dixon signal FF were ICC = 0.93, bias = -1.11%, LoA = (-7.54%, 5.33%). CONCLUSION. Agreement with reference CSE PDFF was better for CNN-inferred PDFF from conventional T1-weighted IOP images than for two-point Dixon signal FF. Further investigation is needed in individuals with moderate-to-severe iron overload. CLINICAL IMPACT. Measurement of CNN-inferred PDFF from widely available T1-weighted IOP images may facilitate adoption of hepatic PDFF as a quantitative bio-marker for liver fat assessment, expanding opportunities to screen for hepatic steatosis and nonalcoholic fatty liver disease.


Assuntos
Aprendizado Profundo , Hepatopatia Gordurosa não Alcoólica , Masculino , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Prótons , Estudos Retrospectivos , Estudos Prospectivos , Fígado/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
7.
Sci Rep ; 13(1): 9095, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277401

RESUMO

Background phase errors in 4D Flow MRI may negatively impact blood flow quantification. In this study, we assessed their impact on cerebrovascular flow volume measurements, evaluated the benefit of manual image-based correction, and assessed the potential of a convolutional neural network (CNN), a form of deep learning, to directly infer the correction vector field. With IRB waiver of informed consent, we retrospectively identified 96 MRI exams from 48 patients who underwent cerebrovascular 4D Flow MRI from October 2015 to 2020. Flow measurements of the anterior, posterior, and venous circulation were performed to assess inflow-outflow error and the benefit of manual image-based phase error correction. A CNN was then trained to directly infer the phase-error correction field, without segmentation, from 4D Flow volumes to automate correction, reserving from 23 exams for testing. Statistical analyses included Spearman correlation, Bland-Altman, Wilcoxon-signed rank (WSR) and F-tests. Prior to correction, there was strong correlation between inflow and outflow (ρ = 0.833-0.947) measurements with the largest discrepancy in the venous circulation. Manual phase error correction improved inflow-outflow correlation (ρ = 0.945-0.981) and decreased variance (p < 0.001, F-test). Fully automated CNN correction was non-inferior to manual correction with no significant differences in correlation (ρ = 0.971 vs ρ = 0.982) or bias (p = 0.82, Wilcoxon-Signed Rank test) of inflow and outflow measurements. Residual background phase error can impair inflow-outflow consistency of cerebrovascular flow volume measurements. A CNN can be used to directly infer the phase-error vector field to fully automate phase error correction.


Assuntos
Aprendizado Profundo , Imageamento Tridimensional , Humanos , Estudos Retrospectivos , Imageamento por Ressonância Magnética , Hemodinâmica , Reprodutibilidade dos Testes
8.
J Cardiovasc Magn Reson ; 25(1): 15, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849960

RESUMO

BACKGROUND: Cardiac shape modeling is a useful computational tool that has provided quantitative insights into the mechanisms underlying dysfunction in heart disease. The manual input and time required to make cardiac shape models, however, limits their clinical utility. Here we present an end-to-end pipeline that uses deep learning for automated view classification, slice selection, phase selection, anatomical landmark localization, and myocardial image segmentation for the automated generation of three-dimensional, biventricular shape models. With this approach, we aim to make cardiac shape modeling a more robust and broadly applicable tool that has processing times consistent with clinical workflows. METHODS: Cardiovascular magnetic resonance (CMR) images from a cohort of 123 patients with repaired tetralogy of Fallot (rTOF) from two internal sites were used to train and validate each step in the automated pipeline. The complete automated pipeline was tested using CMR images from a cohort of 12 rTOF patients from an internal site and 18 rTOF patients from an external site. Manually and automatically generated shape models from the test set were compared using Euclidean projection distances, global ventricular measurements, and atlas-based shape mode scores. RESULTS: The mean absolute error (MAE) between manually and automatically generated shape models in the test set was similar to the voxel resolution of the original CMR images for end-diastolic models (MAE = 1.9 ± 0.5 mm) and end-systolic models (MAE = 2.1 ± 0.7 mm). Global ventricular measurements computed from automated models were in good agreement with those computed from manual models. The average mean absolute difference in shape mode Z-score between manually and automatically generated models was 0.5 standard deviations for the first 20 modes of a reference statistical shape atlas. CONCLUSIONS: Using deep learning, accurate three-dimensional, biventricular shape models can be reliably created. This fully automated end-to-end approach dramatically reduces the manual input required to create shape models, thereby enabling the rapid analysis of large-scale datasets and the potential to deploy statistical atlas-based analyses in point-of-care clinical settings. Training data and networks are available from cardiacatlas.org.


Assuntos
Aprendizado Profundo , Tetralogia de Fallot , Humanos , Tetralogia de Fallot/diagnóstico por imagem , Tetralogia de Fallot/cirurgia , Valor Preditivo dos Testes , Ventrículos do Coração , Diástole
9.
Radiographics ; 43(2): e220078, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36525366

RESUMO

Management of chronic thromboembolic pulmonary hypertension (CTEPH) should be determined by a multidisciplinary team, ideally at a specialized CTEPH referral center. Radiologists contribute to this multidisciplinary process by helping to confirm the diagnosis of CTEPH and delineating the extent of disease, both of which help determine a treatment decision. Preoperative assessment of CTEPH usually employs multiple imaging modalities, including ventilation-perfusion (V/Q) scanning, echocardiography, CT pulmonary angiography (CTPA), and right heart catheterization with pulmonary angiography. Accurate diagnosis or exclusion of CTEPH at imaging is imperative, as this remains the only form of pulmonary hypertension that is curative with surgery. Unfortunately, CTEPH is often misdiagnosed at CTPA, which can be due to technical factors, patient-related factors, radiologist-related factors, as well as a host of disease mimics including acute pulmonary embolism, in situ thrombus, vasculitis, pulmonary artery sarcoma, and fibrosing mediastinitis. Although V/Q scanning is thought to be substantially more sensitive for CTEPH compared with CTPA, this is likely due to lack of recognition of CTEPH findings rather than a modality limitation. Preoperative evaluation for pulmonary thromboendarterectomy (PTE) includes assessment of technical operability and surgical risk stratification. While the definitive therapy for CTEPH is PTE, other minimally invasive or noninvasive therapies also lead to clinical improvements including greater survival. Complications of PTE that can be identified at postoperative imaging include infection, reperfusion edema or injury, pulmonary hemorrhage, pericardial effusion or hemopericardium, and rethrombosis. ©RSNA, 2022 Online supplemental material is available for this article.


Assuntos
Hipertensão Pulmonar , Embolia Pulmonar , Humanos , Hipertensão Pulmonar/diagnóstico por imagem , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/cirurgia , Embolia Pulmonar/complicações , Embolia Pulmonar/diagnóstico por imagem , Embolia Pulmonar/cirurgia , Endarterectomia/efeitos adversos , Endarterectomia/métodos , Angiografia/métodos , Radiologistas , Doença Crônica
10.
J Vasc Interv Radiol ; 34(3): 409-419.e2, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36529442

RESUMO

PURPOSE: To investigate the utility and generalizability of deep learning subtraction angiography (DLSA) for generating synthetic digital subtraction angiography (DSA) images without misalignment artifacts. MATERIALS AND METHODS: DSA images and native digital angiograms of the cerebral, hepatic, and splenic vasculature, both with and without motion artifacts, were retrospectively collected. Images were divided into a motion-free training set (n = 66 patients, 9,161 images) and a motion artifact-containing test set (n = 22 patients, 3,322 images). Using the motion-free set, the deep neural network pix2pix was trained to produce synthetic DSA images without misalignment artifacts directly from native digital angiograms. After training, the algorithm was tested on digital angiograms of hepatic and splenic vasculature with substantial motion. Four board-certified radiologists evaluated performance via visual assessment using a 5-grade Likert scale. Subgroup analyses were performed to analyze the impact of transfer learning and generalizability to novel vasculature. RESULTS: Compared with the traditional DSA method, the proposed approach was found to generate synthetic DSA images with significantly fewer background artifacts (a mean rating of 1.9 [95% CI, 1.1-2.6] vs 3.5 [3.5-4.4]; P = .01) without a significant difference in foreground vascular detail (mean rating of 3.1 [2.6-3.5] vs 3.3 [2.8-3.8], P = .19) in both the hepatic and splenic vasculature. Transfer learning significantly improved the quality of generated images (P < .001). CONCLUSIONS: DLSA successfully generates synthetic angiograms without misalignment artifacts, is improved through transfer learning, and generalizes reliably to novel vasculature that was not included in the training data.


Assuntos
Aprendizado Profundo , Humanos , Estudos Retrospectivos , Angiografia Digital/métodos , Fígado , Artefatos
11.
Radiol Cardiothorac Imaging ; 4(3): e220029, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35923748

RESUMO

Supplemental material is available for this article.

12.
Radiol Cardiothorac Imaging ; 4(1): e210249, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35782758

RESUMO

Understanding of coronary sinus (CS) anatomy and abnormalities is of critical importance due to their use in interventional procedures. Herein, the authors report a rare case of an asymptomatic 72-year-old man with a left circumflex coronary artery-to-CS fistula, together with CS ostial atresia and persistent left superior vena cava. These findings are described using both cardiac CT angiography and MRI with four-dimensional flow for anatomic and functional assessment. Keywords: Cardiac, Coronary Sinus, Aneurysms, Fistula, CT Angiography, MR Imaging Supplemental material is available for this article. © RSNA, 2022.

14.
Ann Am Thorac Soc ; 19(12): 1993-2002, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35830591

RESUMO

Rationale: Chronic obstructive pulmonary disease (COPD) is a heterogeneous syndrome with phenotypic manifestations that tend to be distributed along a continuum. Unsupervised machine learning based on broad selection of imaging and clinical phenotypes may be used to identify primary variables that define disease axes and stratify patients with COPD. Objectives: To identify primary variables driving COPD heterogeneity using principal component analysis and to define disease axes and assess the prognostic value of these axes across three outcomes: progression, exacerbation, and mortality. Methods: We included 7,331 patients between 39 and 85 years old, of whom 40.3% were Black and 45.8% were female smokers with a mean of 44.6 pack-years, from the COPDGene (Genetic Epidemiology of COPD) phase I cohort (2008-2011) in our analysis. Out of a total of 916 phenotypes, 147 continuous clinical, spirometric, and computed tomography (CT) features were selected. For each principal component (PC), we computed a PC score based on feature weights. We used PC score distributions to define disease axes along which we divided the patients into quartiles. To assess the prognostic value of these axes, we applied logistic regression analyses to estimate 5-year (n = 4,159) and 10-year (n = 1,487) odds of progression. Cox regression and Kaplan-Meier analyses were performed to estimate 5-year and 10-year risk of exacerbation (n = 6,532) and all-cause mortality (n = 7,331). Results: The first PC, accounting for 43.7% of variance, was defined by CT measures of air trapping and emphysema. The second PC, accounting for 13.7% of variance, was defined by spirometric and CT measures of vital capacity and lung volume. The third PC, accounting for 7.9% of the variance, was defined by CT measures of lung mass, airway thickening, and body habitus. Stratification of patients across each disease axis revealed up to 3.2-fold (95% confidence interval [CI] 2.4, 4.3) greater odds of 5-year progression, 5.4-fold (95% CI 4.6, 6.3) greater risk of 5-year exacerbation, and 5.0-fold (95% CI 4.2, 6.0) greater risk of 10-year mortality between the highest and lowest quartiles. Conclusions: Unsupervised learning analysis of the COPDGene cohort reveals that CT measurements may bolster patient stratification along the continuum of COPD phenotypes. Each of the disease axes also individually demonstrate prognostic potential, predictive of future forced expiratory volume in 1 second decline, exacerbation, and mortality.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Feminino , Masculino , Humanos , Aprendizado de Máquina não Supervisionado , Volume Expiratório Forçado , Tomografia Computadorizada por Raios X/métodos , Progressão da Doença
16.
Eur Heart J Case Rep ; 6(4): ytac161, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35620060

RESUMO

Background: Postural orthostatic tachycardia syndrome (POTS), Ehlers-Danlos syndrome (EDS), and May-Thurner syndrome (MTS) are three syndromes that are often misdiagnosed or underdiagnosed. The true prevalence of these syndromes may be higher than currently reported. The following case series is the first to report a three-way association between POTS, EDS, and MTS. Case summary: We describe three patients with concomitant POTS, EDS, and MTS. Although abdominopelvic vasculature evaluation can be difficult via conventional imaging techniques, we present the use of novel dynamic contrast-enhanced magnetic resonance angiography with Differential Subsampling with Cartesian Ordering (DISCO) and four-dimensional flow magnetic resonance imaging to aid vasculature evaluation and the diagnosis of MTS. Two patients underwent left common iliac vein stenting to treat MTS, experiencing significant improvement in their POTS symptoms and quality of life. Discussion: Ehlers-Danlos syndrome, POTS, and MTS may interact synergistically to exacerbate symptoms. Patients with EDS should be evaluated for possible POTS and pelvic venous complications. Left common iliac vein stenting for MTS can mitigate POTS symptoms by decreasing lower extremity venous pooling and should be considered in this patient population. Further research is needed to understand the exact mechanism and intricacies of this syndrome triad.

17.
Radiol Artif Intell ; 4(2): e210160, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35391767

RESUMO

Quantitative imaging measurements can be facilitated by artificial intelligence (AI) algorithms, but how they might impact decision-making and be perceived by radiologists remains uncertain. After creation of a dedicated inspiratory-expiratory CT examination and concurrent deployment of a quantitative AI algorithm for assessing air trapping, five cardiothoracic radiologists retrospectively evaluated severity of air trapping on 17 examination studies. Air trapping severity of each lobe was evaluated in three stages: qualitatively (visually); semiquantitatively, allowing manual region-of-interest measurements; and quantitatively, using results from an AI algorithm. Readers were surveyed on each case for their perceptions of the AI algorithm. The algorithm improved interreader agreement (intraclass correlation coefficients: visual, 0.28; semiquantitative, 0.40; quantitative, 0.84; P < .001) and improved correlation with pulmonary function testing (forced expiratory volume in 1 second-to-forced vital capacity ratio) (visual r = -0.26, semiquantitative r = -0.32, quantitative r = -0.44). Readers perceived moderate agreement with the AI algorithm (Likert scale average, 3.7 of 5), a mild impact on their final assessment (average, 2.6), and a neutral perception of overall utility (average, 3.5). Though the AI algorithm objectively improved interreader consistency and correlation with pulmonary function testing, individual readers did not immediately perceive this benefit, revealing a potential barrier to clinical adoption. Keywords: Technology Assessment, Quantification © RSNA, 2021.

18.
Radiol Artif Intell ; 4(2): e210162, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35391776

RESUMO

CT pulmonary angiography (CTPA) is the first-line imaging test for evaluation of acute pulmonary emboli. However, diagnostic quality is heterogeneous across institutions and is frequently limited by suboptimal pulmonary artery (PA) contrast enhancement. In this retrospective study, a deep learning algorithm for measuring enhancement of the central PAs was developed and assessed for feasibility of its use in quality improvement of CTPA. In a convenience sample of 450 patients, automated measurement of CTPA enhancement showed high agreement with manual radiologist measurement (r = 0.996). Using a threshold of less than 250 HU for suboptimal enhancement, the sensitivity and specificity of the automated classification were 100% and 99.5%, respectively. The algorithm was further evaluated in a random sampling of 3195 CTPA examinations from January 2019 through May 2021. Beginning in January 2021, the scanning protocol was transitioned from bolus tracking to a timing bolus strategy. Automated analysis of these examinations showed that most suboptimal examinations following the change in protocol were performed using one scanner, highlighting the potential value of deep learning algorithms for quality improvement in the radiology department. Keywords: CT Angiography, Pulmonary Arteries © RSNA, 2022.

19.
Radiol Artif Intell ; 4(1): e219003, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35157746

RESUMO

[This corrects the article DOI: 10.1148/ryai.2021210211.].

20.
Radiol Artif Intell ; 4(1): e210211, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35146437

RESUMO

PURPOSE: To develop a convolutional neural network (CNN)-based deformable lung registration algorithm to reduce computation time and assess its potential for lobar air trapping quantification. MATERIALS AND METHODS: In this retrospective study, a CNN algorithm was developed to perform deformable registration of lung CT (LungReg) using data on 9118 patients from the COPDGene Study (data collected between 2007 and 2012). Loss function constraints included cross-correlation, displacement field regularization, lobar segmentation overlap, and the Jacobian determinant. LungReg was compared with a standard diffeomorphic registration (SyN) for lobar Dice overlap, percentage voxels with nonpositive Jacobian determinants, and inference runtime using paired t tests. Landmark colocalization error (LCE) across 10 patients was compared using a random effects model. Agreement between LungReg and SyN air trapping measurements was assessed using intraclass correlation coefficient. The ability of LungReg versus SyN emphysema and air trapping measurements to predict Global Initiative for Chronic Obstructive Lung Disease (GOLD) stages was compared using area under the receiver operating characteristic curves. RESULTS: Average performance of LungReg versus SyN showed lobar Dice overlap score of 0.91-0.97 versus 0.89-0.95, respectively (P < .001); percentage voxels with nonpositive Jacobian determinant of 0.04 versus 0.10, respectively (P < .001); inference run time of 0.99 second (graphics processing unit) and 2.27 seconds (central processing unit) versus 418.46 seconds (central processing unit) (P < .001); and LCE of 7.21 mm versus 6.93 mm (P < .001). LungReg and SyN whole-lung and lobar air trapping measurements achieved excellent agreement (intraclass correlation coefficients > 0.98). LungReg versus SyN area under the receiver operating characteristic curves for predicting GOLD stage were not statistically different (range, 0.88-0.95 vs 0.88-0.95, respectively; P = .31-.95). CONCLUSION: CNN-based deformable lung registration is accurate and fully automated, with runtime feasible for clinical lobar air trapping quantification, and has potential to improve diagnosis of small airway diseases.Keywords: Air Trapping, Convolutional Neural Network, Deformable Registration, Small Airway Disease, CT, Lung, Semisupervised Learning, Unsupervised Learning Supplemental material is available for this article. © RSNA, 2021 An earlier incorrect version of this article appeared online. This article was corrected on December 22, 2021.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA