RESUMO
Hox transcription factors play a conserved role in specifying positional identity during animal development, with posterior Hox genes typically repressing the expression of more anterior Hox genes. Here, we dissect the regulation of the posterior Hox genes nob-1 and php-3 in the nematode C. elegans. We show that nob-1 and php-3 are co-expressed in gastrulation-stage embryos in cells that previously expressed the anterior Hox gene ceh-13. This expression is controlled by several partially redundant transcriptional enhancers. These enhancers act in a ceh-13-dependant manner, providing a striking example of an anterior Hox gene positively regulating a posterior Hox gene. Several other regulators also act positively through nob-1/php-3 enhancers, including elt-1/GATA, ceh-20/ceh-40/Pbx, unc-62/Meis, pop-1/TCF, ceh-36/Otx, and unc-30/Pitx. We identified defects in both cell position and cell division patterns in ceh-13 and nob-1;php-3 mutants, suggesting that these factors regulate lineage identity in addition to positional identity. Together, our results highlight the complexity and flexibility of Hox gene regulation and function and the ability of developmental transcription factors to regulate different targets in different stages of development.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Although the oncogenic functions of activating BRAF mutations have been clearly demonstrated in human cancer, their roles in nontransformed epithelial cells remain largely unclear. Investigating the cellular response to the expression of mutant BRAF in nontransformed epithelial cells is fundamental to the understanding of the roles of BRAF in cancer pathogenesis. In this study, we used two nontransformed cyst108 and RK3E epithelial cell lines as models in which to compare the phenotypes of cells expressing BRAF(WT) and BRAF(V600E). We found that transfection of the BRAF(V600E), but not the BRAF(WT), expression vector suppressed cellular proliferation and induced apoptosis in both cell types. BRAF(V600E) generated reactive oxygen species, induced DNA double-strand breaks, and caused subsequent DNA damage response as evidenced by an increased number of pCHK2 and γH2AX nuclear foci as well as the up-regulation of pCHK2, p53, and p21. Because BRAF and KRAS (alias Ki-ras) mutations have been correlated with GLUT1 up-regulation, which encodes glucose transporter-1, we demonstrated here that expression of BRAF(V600E), but not BRAF(WT), was sufficient to up-regulate GLUT1. Taken together, our findings provide new insights into mutant BRAF-induced oncogenic stress that is manifested by DNA damage and growth arrest by activating the pCHK2-p53-p21 pathway in nontransformed cells, while it also confers tumor-promoting phenotypes such as the up-regulation of GLUT1 that contributes to enhanced glucose metabolism that characterizes tumor cells.