Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Biomed Pharmacother ; 174: 116538, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579401

RESUMO

Glaucoma is considered a neurodegenerative disease characterized by progressive visual field defects that may lead to blindness. Although controlling intraocular pressure (IOP) is the mainstay of glaucoma treatment, some glaucoma patients have unmet needs due to unclear pathogenic mechanisms. Recently, there has been growing evidence that neuroinflammation is a potential target for the development of novel antiglaucoma agents. In this study, we investigated the protective effects and cellular mechanisms of H7E, a novel small molecule inhibits HDAC8, using in vitro and in vivo glaucoma-like models. Importantly, H7E mitigated extracellular MMP-9 activity and MCP-1 levels in glutamate- or S100B-stimulated reactive Müller glia. In addition, H7E inhibited the upregulation of inflammation- and proliferation-related signaling pathways, particularly the ERK and JNK MAPK pathways. Under conditions of oxidative damage, H7E prevents retinal cell death and reduces extracellular glutamate released from stressed Müller glia. In a mouse model of NMDA-induced retinal degeneration, H7E alleviated functional and structural defects within the inner retina as assessed by electroretinography and optical coherence tomography. Our results demonstrated that the newly identified compound H7E protects against glaucoma damage by specifically targeting HDAC8 activity in the retina. This protective effect is attributed to the inhibition of Müller glial activation and the prevention of retinal cell death caused by oxidative stress.


Assuntos
Células Ependimogliais , Glaucoma , Inibidores de Histona Desacetilases , Histona Desacetilases , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Animais , Estresse Oxidativo/efeitos dos fármacos , Glaucoma/tratamento farmacológico , Glaucoma/metabolismo , Glaucoma/patologia , Inibidores de Histona Desacetilases/farmacologia , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Camundongos , Histona Desacetilases/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Masculino , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/prevenção & controle
2.
Phytochemistry ; 219: 113998, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253160

RESUMO

In this study, preliminary field-sampling of bioactive fungal strains and bioassay-guided selection were conducted. A number of fungal strains were isolated from sea anemones along the northeastern coast of Badouzi, Keelung, Taiwan. Among them, Arthrinium arundinis MA30 showed significant anti-inflammatory activity and was thus selected for further chemical investigation. After a series of purification and isolation using different chromatographic techniques on the fermented products of A. arundinis MA30, thirty-one compounds were identified, five of which were previously unreported, including arthrinoic acid, hexylaconitic anhydride methyl ester, (3S,8R)-8-hydroxy-3-carboxy-2-methylenenonanoic acid, and arthripenoids G and H. These compounds were subjected to comprehensive spectroscopic data analysis. Of all the isolates, 1,3,5,6-tetrahydroxy-8-methylxanthone and arthripenoid C demonstrated the most distinctive inhibitory activities against nitric oxide production in mouse microglial BV-2 cells, with their respective inhibitory rates being 71% and 81% at 10 µM concentration, and their respective IC50 values were further determined to be 5.3 ± 0.6 and 1.6 ± 0.4 µM. These compounds showed no significant cytotoxicity, and curcumin was used as a positive control in this study.


Assuntos
Ascomicetos , Anêmonas-do-Mar , Animais , Camundongos , Ascomicetos/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química
3.
J Tradit Complement Med ; 13(6): 568-574, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38020555

RESUMO

Background and aim: Acupuncture has been criticized as a theatrical placebo for the sham effect. Unfortunately, sham tests used in control groups in acupuncture studies have always ignored the underlying biophysical factors, including resonance involved in acupuncture points and meridians. Experimental procedure: In this study, the effects of sham acupuncture at Tsu San Li (St-36) were examined by analyzing noninvasive 30-sec. recordings of the radial arterial pulses for 3 groups of patients treated with different probes (blunt, sharp, and patch) on the superficial skin of the acupuncture point. The 3 groups were then treated with the sharp probe for 3 different periods (16, 30, and 50 s). Then we compared the harmonics of the radial arterial pulse after Fourier transformation before and after the treatment. Results: Our results indicated that different probes have effects similar to needle insertion at Tsu San Li. Meanwhile, the harmonic effect of the sharp probe strengthened as time increased. Conclusions: This study revealed that the meridian effect of sham testing from mechanical stimulation, even from simple touch, on an acupuncture point, should not be overlooked. Thus, even simple touch can be added to electrical or laser acupuncture.

4.
Bot Stud ; 64(1): 34, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38030829

RESUMO

BACKGROUND: Endophytic fungi have proven to be a rich source of novel natural products with a wide-array of biological activities and higher levels of structural diversity. RESULTS: Chemical investigation on the liquid- and solid-state fermented products of Chaetomium globosum Km1226 isolated from the littoral medicinal herb Atriplex maximowicziana Makino resulted in the isolation of compounds 1-14. Their structures were determined by spectroscopic analysis as three previously undescribed C13-polyketides, namely aureonitol C (1), mollipilins G (2), and H (3), along with eleven known compounds 4-14. Among these, mollipilin A (5) exhibited significant nitric oxide production inhibitory activity in LPS-induced BV-2 microglial cells with an IC50 value of 0.7 ± 0.1 µM, and chaetoglobosin D (10) displayed potent anti-angiogenesis property in human endothelial progenitor cells (EPCs) with an IC50 value of 0.8 ± 0.3 µM. CONCLUSIONS: Three previously unreported compounds 1-3 were isolated and identified. Mollipilin A (5) and chaetoglobosin D (10) could possibly be developed as anti-inflammatory and anti-angiogenic lead drugs, respectively.

5.
Biochem Pharmacol ; 215: 115700, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482199

RESUMO

Diabetic retinopathy (DR) is a severe consequence of long-term diabetes mellitus and may lead to vision loss. Retinal pigment epithelial (RPE) cells are a diverse group of retinal cells with varied metabolic and functional roles. In hypoxic conditions, RPE cells have been shown to produce angiogenic factors, such as vascular endothelial growth factor (VEGF), which is regulated by hypoxia-inducible factor 1-alpha (HIF1A). VEGF plays a crucial role in angiogenesis in DR. In the present study, we investigated whether azatyrosine-phenylbutyric hydroxamide (AZP) has therapeutic effect on DR therapy. In this study, we treated high glucose-activated human retinal pigment epithelial cells (ARPE-19) with and without AZP. The effector proteins were evaluated using western blotting. In the in vivo study, AZP was administered to the db/db mice as a DR animal model. Moreover, invasive imaging techniques such as optical coherence tomography (OCT), fundus photography, and fundus fluorescein angiography (FFA) were performed on the mice to assess DR progression. We found that treatment of AZP for 12 weeks reversed increasing DR retinal alterations in db/db mice, decreasing vascular density, retinal blood perfusion, retinal thickness, decreasing DR lesion, lipofuscin accumulation, HIF1A, VEGF, and inflammation factor expression. In addition, AZP treatment could activate the aryl hydrocarbon receptor AHR and reverse the high-glucose-induced HIF1A and VEGF in ARPE-19 cells and db/db mice. In conclusion, AZP activated AHR while inhibiting HIF1A and VEGF. This study indicates that AZP may be a promising therapeutic agent for treating DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Camundongos , Humanos , Animais , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Glucose , Pigmentos da Retina/uso terapêutico
6.
Molecules ; 28(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446726

RESUMO

Pinus morrisonicola Hayata is a unique plant species found in Taiwan. Previous studies have identified its anti-hypertensive, anti-oxidative, and anti-inflammatory effects. In this study, a bioactivity-guided approach was employed to extract 20 compounds from the ethyl acetate fraction of the ethanol extract of Pinus morrisonicola Hayata's pine needles. The anti-aging effects of these compounds were investigated using HT-1080 cells. The structures of the purified compounds were confirmed through NMR and LC-MS analysis, revealing the presence of nine flavonoids, two lignans, one coumarin, one benzofuran, one phenylic acid, and six diterpenoids. Among them, PML18, PML19, and PML20 were identified as novel diterpene. Compounds 3, 4, and 5 exhibited remarkable inhibitory effects against MMP-2 and showed no significant cell toxicity at 25 µM. Although the purified compounds showed lower activity against Pro MMP-2 and Pro MMP-9 compared to the ethyl acetate fraction, we speculate that this is the result of synergistic effects.


Assuntos
Lignanas , Pinus , Metaloproteinase 2 da Matriz , Pinus/química , Lignanas/química , Extratos Vegetais/química , Folhas de Planta/química
7.
Redox Biol ; 64: 102786, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37348156

RESUMO

Diabetic retinopathy (DR) is a major cause of blindness in adult, and the accumulation of advanced glycation end products (AGEs) is a major pathologic event in DR. Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is a precursor of AGEs. Although the therapeutic potential of metformin for retinopathy disorders has recently been elucidated, possibly through AMPK activation, it remains unknown how metformin directly affects the MGO-induced stress response in retinal pigment epithelial cells. Therefore, in this study, we compared the effects of metformin and the AMPK activator A769662 on MGO-induced DR in mice, as well as evaluated cytotoxicity, mitochondrial dynamic changes and dysfunction in ARPE-19 cells. We found MGO can induce mitochondrial ROS production and mitochondrial membrane potential loss, but reduce cytosolic ROS level in ARPE-19 cells. Although these effects of MGO can be reversed by both metformin and A769662, we demonstrated that reduction of mitochondrial ROS production rather than restoration of cytosolic ROS level contributes to cell protective effects of metformin and A769662. Moreover, MGO inhibits AMPK activity, reduces LC3II accumulation, and suppresses protein and gene expressions of MFN1, PGC-1α and TFAM, leading to mitochondrial fission, inhibition of mitochondrial biogenesis and autophagy. In contrast, these events of MGO were reversed by metformin in an AMPK-dependent manner as evidenced by the effects of compound C and AMPK silencing. In addition, we observed an AMPK-dependent upregulation of glyoxalase 1, a ubiquitous cellular enzyme that participates in the detoxification of MGO. In intravitreal drug-treated mice, we found that AMPK activators can reverse the MGO-induced cotton wool spots, macular edema and retinal damage. Functional, histological and optical coherence tomography analysis support the protective actions of both agents against MGO-elicited retinal damage. Metformin and A769662 via AMPK activation exert a strong protection against MGO-induced retinal pigment epithelial cell death and retinopathy. Therefore, metformin and AMPK activator can be therapeutic agents for DR.


Assuntos
Lactoilglutationa Liase , Metformina , Doenças Retinianas , Camundongos , Animais , Metformina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Aldeído Pirúvico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Óxido de Magnésio/metabolismo , Óxido de Magnésio/farmacologia , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Mitocôndrias/metabolismo , Doenças Retinianas/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Células Epiteliais/metabolismo , Pigmentos da Retina/farmacologia
8.
Fluids Barriers CNS ; 20(1): 31, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095509

RESUMO

Blue light is part of the natural light spectrum that emits high energy. Currently, people are frequently exposed to blue light from 3C devices, resulting in a growing incidence of retinopathy. The retinal vasculature is complex, and retinal vessels not only serve the metabolic needs of the retinal sublayers, but also maintain electrolyte homeostasis by forming the inner blood-retinal barrier (iBRB). The iBRB, which is primarily composed of endothelial cells, has well-developed tight junctions. However, with exposure to blue light, the risks of targeting retinal endothelial cells are currently unknown. We found that endothelial claudin-5 (CLDN5) was rapidly degraded under blue light, coinciding with the activation of a disintegrin and metalloprotease 17 (ADAM17), even at non-cytotoxic lighting. An apparently broken tight junction and a permeable paracellular cleft were observed. Mice exposed to blue light displayed iBRB leakage, conferring attenuation of the electroretinogram b-wave and oscillatory potentials. Both pharmacological and genetic inhibition of ADAM17 remarkably alleviated CLDN5 degradation induced by blue light. Under untreated condition, ADAM17 is sequestered by GNAZ (a circadian-responsive, retina-enriched inhibitory G protein), whereas ADAM17 escapes from GNAZ by blue light illuminance. GNAZ knockdown led to ADAM17 hyperactivation, CLDN5 downregulation, and paracellular permeability in vitro, and retinal damage mimicked blue light exposure in vivo. These data demonstrate that blue light exposure might impair the iBRB by accelerating CLDN5 degradation through the disturbance of the GNAZ-ADAM17 axis.


Assuntos
Barreira Hematorretiniana , Células Endoteliais , Camundongos , Animais , Barreira Hematorretiniana/metabolismo , Claudina-5/metabolismo , Células Endoteliais/metabolismo , Retina/metabolismo , Junções Íntimas/metabolismo
9.
Antioxidants (Basel) ; 12(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36671003

RESUMO

Adenosine triphosphate (ATP) released from dying cells with high concentrations is sensed as a danger signal by the P2X7 receptor. Sodium iodate (NaIO3) is an oxidative toxic agent, and its retinal toxicity has been used as the model of dry age-related macular degeneration (AMD). In this study, we used NaIO3-treated mice and cultured retinal cells, including BV-2 microglia, 661W photoreceptors, rMC1 Müller cells and ARPE-19 retinal epithelial cells, to understand the pathological action of P2X7 in retinal degeneration. We found that NaIO3 can significantly decrease the photoreceptor function by reducing a-wave and b-wave amplitudes in electroretinogram (ERG) analysis. Optical coherence tomography (OCT) analysis revealed the degeneration of retinal epithelium and ganglion cell layers. Interestingly, P2X7-/- mice were protected from the NaIO3-induced retinopathy and inflammatory NLRP3, IL-1ß and IL-6 gene expression in the retina. Hematoxylin and eosin staining indicated that the retinal epithelium was less deteriorated in P2X7-/- mice compared to the WT group. Although P2X7 was barely detected in 661W, rMC1 and ARPE-19 cells, its gene and protein levels can be increased after NaIO3 treatment, leading to a synergistic cytotoxicity of BzATP [2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate tri(triethyleneammonium)salt] and NaIO3 administration in ARPE-19 cells. In conclusion, the paracrine action of the ATP/P2X7 axis via cell-cell communication is involved in NaIO3-induced retinal injury. Our results show that P2X7 antagonist might be a potential therapy in inflammation-related retinal degeneration.

10.
J Agric Food Chem ; 71(2): 1122-1131, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36597352

RESUMO

To look in-depth into the traditional Mexican truffle, this study investigated the phytochemical and pharmacological properties of field-collected corn galls and the fermentate of its pathogen Ustilago maydis MZ496986. Here, we established the chemical profiles of both materials via the gradient HPLC-UV method and successfully identified six previously unreported chemical entities, ustilagols A-F (1-6), and 17 known components. Compounds 3, 5, and 9 exhibited potent nitric oxide production inhibitory activities in murine brain microglial BV-2 cells (IC50 = 6.7 ± 0.5, 5.8 ± 0.9, and 3.9 ± 0.1 µM) without cytotoxic effects. DIMBOA (9) also attenuates lipopolysaccharide (LPS)-stimulated NF-κB activation in RAW 264.7 macrophages (IC50 = 58.1 ± 7.2 µM). Ustilagol G (7) showed potent antiplatelet aggregation in U46619-stimulated human platelets (IC50 = 16.5 ± 5.3 µM). These findings highlighted the potential of corn galls and U. maydis MZ496986 fermentate as functional foods for improving inflammation-related discomforts and vascular obstruction.


Assuntos
Basidiomycota , Ustilago , Animais , Camundongos , Humanos , Ustilago/genética , Fungos , Macrófagos , Zea mays/microbiologia
11.
Biomed Pharmacother ; 158: 114138, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36535199

RESUMO

Age-related macular degeneration (AMD) is the leading cause of low vision and blindness for which there is currently no cure. Increased matrix metalloproteinase-9 (MMP-9) was found in AMD and potently contributes to its pathogenesis. Resident microglia also promote the processes of chronic neuroinflammation, accelerating the progression of AMD. The present study investigates the effects and mechanisms of the natural compound theissenolactone B (LB53), isolated from Theissenia cinerea, on the effects of RPE dysregulation and microglia hyperactivation and its retinal protective ability in a sodium iodate (NaIO3)-induced retinal degeneration model of AMD. The fungal component LB53 significantly reduces MMP-9 gelatinolysis in TNF-α-stimulated human RPE cells (ARPE-19). Similarly, LB53 abolishes MMP-9 protein and mRNA expression in ARPE-19 cells. Moreover, LB53 efficiently suppresses nitric oxide (NO) production, iNOS expression, and intracellular ROS levels in LPS-stimulated TLR 4-activated microglial BV-2 cells. According to signaling studies, LB53 specifically targets canonical NF-κB signaling in both ARPE-19 and BV-2 microglia. In an RPE-BV-2 interaction assay, LB53 ameliorates LPS-activated BV-2 conditioned medium-induced MMP-9 activation and expression in the RPE. In NaIO3-induced AMD mouse model, LB53 restores photoreceptor and bipolar cell dysfunction as assessed by electroretinography (ERG). Additionally, LB53 prevents retinal thinning, primarily the photoreceptor, and reduces retinal blood flow from NaIO3 damage evaluated by optic coherence tomography (OCT) and laser speckle flowgraphy (LSFG), respectively. Our results demonstrate that LB53 exerts neuroprotection in a mouse model of AMD, which can be attributed to its anti-retinal inflammatory effects by impeding RPE-mediated MMP-9 activation and anti-microglia.


Assuntos
Degeneração Macular , Degeneração Retiniana , Camundongos , Animais , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Microglia/metabolismo , Epitélio Pigmentado da Retina , Pigmentos da Retina/efeitos adversos , Pigmentos da Retina/metabolismo , Lipopolissacarídeos/farmacologia , Degeneração Macular/induzido quimicamente , Degeneração Macular/tratamento farmacológico , Degeneração Retiniana/metabolismo , Modelos Animais de Doenças
12.
J Nat Prod ; 85(11): 2667-2674, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36346918

RESUMO

Chromatographic separation on the liquid-state fermented products produced by the fungal strain Alternaria alstroemeriae Km2286 isolated from the littoral medicinal herb Atriplex maximowicziana Makino resulted in the isolation of compounds 1-9. Structures were determined by spectroscopic analysis as four undescribed perylenequinones, altertromins A-D (1-4), along with altertoxin IV (5), altertoxin VIII (6), stemphyperylenol (7), tenuazonic acid (8), and allo-tenuazonic acid (9). Compounds 1-6 exhibited antiviral activities against Epstein-Barr virus (EBV) with EC50 values ranging from 0.17 ± 0.07 to 3.13 ± 0.31 µM and selectivity indices higher than 10. In an anti-neuroinflammatory assay, compounds 1-4, 6, and 7 showed inhibitory activity of nitric oxide production in lipopolysaccharide-induced microglial BV-2 cells, with IC50 values ranging from 0.33 ± 0.04 to 4.08 ± 0.53 µM without significant cytotoxicity. This is the first report to describe perylenequinone-type compounds with potent anti-EBV and anti-neuroinflammatory activities.


Assuntos
Alternaria , Anti-Inflamatórios , Antivirais , Atriplex , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Perileno , Plantas Medicinais , Quinonas , Humanos , Alternaria/química , Alternaria/isolamento & purificação , Atriplex/microbiologia , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/efeitos dos fármacos , Estrutura Molecular , Perileno/química , Perileno/isolamento & purificação , Perileno/farmacologia , Plantas Medicinais/microbiologia , Quinonas/química , Quinonas/isolamento & purificação , Quinonas/farmacologia , Ácido Tenuazônico/química , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Antivirais/farmacologia
13.
Phytochemistry ; 204: 113347, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36027968

RESUMO

One undescribed C40 terpenoid, calomacroquinoic acid; four undescribed diterpenes, 5α,6α-epoxy-7α-hydroxyferruginol, 15-ethoxysugiol, 7-methoxy-6,7-secoabieta-8,11,13-triene-6,12-diol, and ethyl 7,8-secoabieta-11,14-dioxo-7-ate; two compounds isolated from Nature for the first time, 6ß,7α-dihydroxyferruginol and 12-O-methyltaxochinon; and six known compounds were successfully identified from the bark of Taiwan incense cedar Calocedrus formosana. Structures of all isolates were elucidated by physical data (appearance, ultraviolet, infrared, specific rotation, and X-ray) and spectroscopic data (1D and 2D nuclear magnetic resonance, and high-resolution electron ionization mass spectrometry). The biosynthetic pathway of calomacroquinoic acid is also described in the current study. Nitric oxide production in lipopolysaccharide (LPS)-stimulated BV-2 microglia cells was inhibited by 6,7-dehydroferruginol, 7α,11-dihydroxy-12-methoxy-8,11,13-abietriene, and trans-communic acid. Altogether, the bark of C. formosana possessed several potential natural therapeutics against inflammation-related neuronal diseases.

14.
Phytochemistry ; 200: 113229, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35568258

RESUMO

Marine fungi are regarded as an under-explored source of structurally interesting and bioactive natural products with the potential to provide attractive lead compounds for drug discovery. In this study, several fungal strains were isolated from marine algae collected from the northeastern coast of Taiwan. In the preliminary antimicrobial screening against bacteria and fungi, the ethyl acetate extract of the fermented products of Aspergillus terreus NTU243 derived from a green alga Ulva lactuca was found to exhibit significant antimicrobial activities. Therefore, bioassay-guided separations of the active principle from liquid and solid fermented products of A. terreus NTU243 were undertaken, which resulted in the isolation and purification of 16 compounds. Their structures were elucidated by spectroscopic analysis to be four previously undescribed aspulvinones S-V as well as twelve known compounds. All the isolates were assessed for anti-inflammatory activity by measuring the amount of nitric oxide (NO) production in lipopolysaccharide (LPS)-induced BV-2 cells, and aspulvinone V, butyrolactone I, and (+)-terrein inhibited 45.0%, 34.5%, and 49.2% of NO production, respectively, at 10 µM concentration. Additionally, zymography showed that the conditioned medium of THP-1 cells post-LPS challenged significantly enhanced matrix metalloproteinase (MMP)-9-mediated gelatinolysis, and pretreatment with aspulvinones U and V significantly attenuated MMP-9-mediated gelatinolysis by 56.0% and 67.8%, separately.


Assuntos
Anti-Infecciosos , Produtos Biológicos , 4-Butirolactona/análogos & derivados , Anti-Infecciosos/farmacologia , Aspergillus , Compostos de Benzilideno , Produtos Biológicos/química , Fungos , Lipopolissacarídeos , Óxido Nítrico
15.
Mar Drugs ; 20(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35200610

RESUMO

Eight trichothecenes, including four new compounds 1-4 and four known entities 5-8, together with one known cyclonerane (9) were isolated from the solid-state fermentation of Trichoderma brevicompactum NTU439 isolated from the marine alga Mastophora rosea. The structures of 1-9 were determined by 1D/2D NMR (nuclear magnetic resonance), MS (mass spectrometry), and IR (infrared spectroscopy) spectroscopic data. All of the compounds were evaluated for cytotoxic activity against HCT-116, PC-3, and SK-Hep-1 cancer cells by the SRB assay, and compound 8 showed promising cytotoxic activity against all three cancer cell lines with the IC50 values of 3.3 ± 0.3, 5.3 ± 0.3, and 1.8 ± 0.8 µM, respectively. Compounds 1-2, 4-6, and 7-8 potently inhibited LPS-induced NO production, and compounds 5 and 8 showed markedly inhibited gelatinolysis of MMP-9 in S1 protein-stimulated THP-1 monocytes.


Assuntos
Antineoplásicos/farmacologia , Hypocreales/metabolismo , Tricotecenos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Células HCT116 , Humanos , Concentração Inibidora 50 , Neoplasias Hepáticas/tratamento farmacológico , Espectroscopia de Ressonância Magnética , Masculino , Espectrometria de Massas , Células PC-3 , Neoplasias da Próstata/tratamento farmacológico , Rodófitas/microbiologia , Tricotecenos/química , Tricotecenos/isolamento & purificação
16.
Int Immunopharmacol ; 106: 108603, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35123286

RESUMO

Dendritic cells (DCs) are professional antigen-presenting cells that play a key role in directing T-cell responses and are involved in the pathogenesis of allergic asthma. Acteoside, an active phenylethanoid glycoside, is widely distributed in many medicinal plants. Herein, we explored the immunomodulatory effects of acteoside on bone marrow-derived DCs in vitro, and further investigated the immunosuppressive ability of acteoside to manipulate T helper type 2 (Th2)-mediated allergic asthma in mice. Following lipopolysaccharide activation, 50 µM of acteoside significantly reduced the production of proinflammatory mediators, including interleukin (IL)-12 and tumor necrosis factor (TNF)-α, whereas it enhanced secretion of the anti-inflammatory cytokine, IL-10, by DCs. However, these effects of acteoside on DCs were reversed by pretreatment with CH223191, an aryl hydrocarbon receptor (AhR) antagonist. Additionally, coculture of acteoside-treated DCs with CD4+ T cells promoted the generation of forkhead box P3-positive (Foxp3+) regulatory T cells (Tregs) via AhR activation. Using a murine asthma model, our results demonstrated that oral administration of 50 mg/kg of acteoside decreased levels of Th2-type cytokines, such as IL-4, IL-5, and IL-13, whereas the level of IL-10 and the frequency of CD4+Foxp3+ Tregs were augmented. Moreover, acteoside treatment markedly inhibited the elevated serum level of ovalbumin-specific immunoglobulin E, attenuated the development of airway hyperresponsiveness, and reduced inflammatory cell counts in bronchoalveolar lavage fluid. Additionally, histological results reveled that acteoside ameliorated pulmonary inflammation in asthmatic mice. Taken together, these results indicated that acteoside exhibits immunomodulatory effects on DCs and plays an anti-inflammatory role in the treatment of allergic asthma.


Assuntos
Asma , Linfócitos T Reguladores , Animais , Asma/patologia , Líquido da Lavagem Broncoalveolar , Citocinas/farmacologia , Células Dendríticas , Fatores de Transcrição Forkhead , Glucosídeos , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina , Fenóis , Receptores de Hidrocarboneto Arílico , Células Th2
17.
Bot Stud ; 62(1): 18, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34698886

RESUMO

BACKGROUND: Many groups of fungi live as an endophyte in plants. Both published and undiscovered bioactive compounds can be found in endophytic fungi. Various biological activities of bioactive compounds from endophytic fungi had been reported, including anti-inflammatory and anticancerous effects. The chemical investigation of biologically active compounds from endophytic fungi Melaleuca leucadendra Linn. have not yet been stated. RESULTS: One new compound, namely nigaurdiol (1), along with five known compounds, xyloketal K (2), bostrycin (3), deoxybostrycin (4), xylanthraquinone (5), and ergosterol (6), were isolated from the Melaleuca leucadendra Linn. associated fungal strain Nigrospora aurantiaca #TMU062. Their chemical structures were elucidated by spectroscopic data and compared with literature. All isolated compounds were evaluated for inhibitory effect of NO production in LPS-activated microglial BV-2 cells. CONCLUSIONS: Compound 6 exhibited considerable inhibitory effect on NO production with IC50 values of 7.2 ± 1.4 µM and the survival rate of the cells was 90.8 ± 6.7% at the concentration of 10 µM.

18.
Molecules ; 26(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299636

RESUMO

Age-related macular degeneration (AMD) occurs due to an abnormality of retinal pigment epithelium (RPE) cells that leads to gradual degeneration of the macula. Currently, AMD drug pipelines are endowed with limited options, and anti-VEGF agents stand as the dominantly employed therapy. Despite the proven efficacy of such agents, the evidenced side effects associated with their use underscore the need to elucidate other mechanisms involved and identify additional molecular targets for the sake of therapy improvement. The previous literature provided us with a solid rationale to preliminarily explore the potential of selective HDAC6 and HSP90 inhibitors to treat wet AMD. Rather than furnishing single-target agents (either HDAC6 or HSP90 inhibitor), this study recruited scaffolds endowed with the ability to concomitantly modulate both targets (HDAC6 and HSP90) for exploration. This plan was anticipated to accomplish the important goal of extracting amplified benefits via dual inhibition (HDAC6/HSP90) in wet AMD. As a result, G570 (indoline-based hydroxamate), a dual selective HDAC6-HSP90 inhibitor exerting its effects at micromolar concentrations, was pinpointed in the present endeavor to attenuate blue light-induced cell migration and retinal neovascularization by inhibiting VEGF production. In addition to the identification of a potential chemical tool (G570), the outcome of this study validates the candidate HDAC6-HSP90 as a compelling target for the development of futuristic therapeutics for wet AMD.


Assuntos
Movimento Celular , Células Epiteliais/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Luz , Neovascularização Retiniana/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/biossíntese , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Células Epiteliais/patologia , Proteínas de Choque Térmico HSP90/metabolismo , Células HeLa , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/química , Humanos , Masculino , Camundongos , Neovascularização Retiniana/induzido quimicamente , Neovascularização Retiniana/patologia , Epitélio Pigmentado da Retina/irrigação sanguínea , Epitélio Pigmentado da Retina/patologia
19.
J Nat Prod ; 84(7): 1898-1903, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34185528

RESUMO

Theissenia cinerea 89091602 is a previously reported plant-derived bioactive fungal strain, and the active principles separated from the extracts of its submerged culture were shown to exhibit potent anti-neuroinflammatory activities in both cellular study and animal testing. In a continuation of our previous investigation on the bioactive entities from this fungus, solid state fermentation was performed in an attempt to diversify the bioactive secondary metabolites. In the present study, five previously unreported polyketides, theissenophenol (1), theissenepoxide (2), theissenolactone D (3), theissenone (4), and theissenisochromanone (5), together with the known theissenolactone B (6), theissenolactone C (7), and arthrinone (8), were isolated and characterized through spectroscopic analysis and comparison with the literature data. The configurations of theissenepoxide (2) and theissenisochromanone (5) were further corroborated by single-crystal X-ray diffraction data analysis. Theissenone (4), theissenolactone B (6), theissenolactone C (7), and arthrinone (8) exhibited potent nitric oxide production inhibitory activities in murine brain microglial BV-2 cells with IC50 values of 5.0 ± 1.0, 4.5 ± 0.6, 1.1 ± 0.1, and 3.2 ± 0.3 µM, respectively, without any significant cytotoxic effects.


Assuntos
Anti-Inflamatórios/farmacologia , Ascomicetos/química , Microglia/efeitos dos fármacos , Policetídeos/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Linhagem Celular , Camundongos , Estrutura Molecular , Doenças Neuroinflamatórias , Óxido Nítrico , Policetídeos/isolamento & purificação , Taiwan
20.
Molecules ; 26(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067678

RESUMO

Intracerebral hemorrhage (ICH) is a devastating neurological disorder characterized by an exacerbation of neuroinflammation and neuronal injury, for which few effective therapies are available at present. Inhibition of excessive neuroglial activation has been reported to alleviate ICH-related brain injuries. In the present study, the anti-ICH activity and microglial mechanism of ergosta-7,9(11),22-trien-3ß-ol (EK100), a bioactive ingredient from Asian medicinal herb Antrodia camphorate, were evaluated. Post-treatment of EK100 significantly attenuated neurobehavioral deficit and MRI-related brain lesion in the mice model of collagenase-induced ICH. Additionally, EK100 alleviated the inducible expression of cyclooxygenase (COX)-2 and the activity of matrix metalloproteinase (MMP)-9 in the ipsilateral brain regions. Consistently, it was shown that EK100 concentration-dependently inhibited the expression of COX-2 protein in Toll-like receptor (TLR)-4 activator lipopolysaccharide (LPS)-activated microglial BV-2 and primary microglial cells. Furthermore, the production of microglial prostaglandin E2 and reactive oxygen species were attenuated by EK100. EK100 also attenuated the induction of astrocytic MMP-9 activation. Among several signaling pathways, EK100 significantly and concentration-dependently inhibited activation of c-Jun N-terminal kinase (JNK) MAPK in LPS-activated microglial BV-2 cells. Consistently, ipsilateral JNK activation was markedly inhibited by post-ICH-treated EK100 in vivo. In conclusion, EK100 exerted the inhibitory actions on microglial JNK activation, and attenuated brain COX-2 expression, MMP-9 activation, and brain injuries in the mice ICH model. Thus, EK100 may be proposed and employed as a potential therapeutic agent for ICH.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Ergosterol/análogos & derivados , Ergosterol/farmacologia , Animais , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Ciclo-Oxigenase 2/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Polyporales/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA