Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Laser Photon Rev ; 17(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38883699

RESUMO

Label-free super-resolution (LFSR) imaging relies on light-scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super-resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state-of-the-art in this field, and to discuss the resolution boundaries and hurdles which need to be overcome to break the classical diffraction limit of the LFSR imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction-limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super-resolution capability which are based on understanding resolution as an information science problem, on using novel structured illumination, near-field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere-assisted approaches. To this end, this Roadmap brings under the same umbrella researchers from the physics and biomedical optics communities in which such studies have often been developing separately. The ultimate intent of this paper is to create a vision for the current and future developments of LFSR imaging based on its physical mechanisms and to create a great opening for the series of articles in this field.

2.
Opt Express ; 30(25): 45233-45245, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36522930

RESUMO

Interferometric scattering (iSCAT) microscopy is a highly sensitive imaging technique that uses common-path interferometry to detect the linear scattering fields associated with samples. However, when measuring a complex sample, such as a biological cell, the superposition of the scattering signals from various sources, particularly those along the optical axis of the microscope objective, considerably complicates the data interpretation. Herein, we demonstrate high-speed, wide-field iSCAT microscopy in conjunction with confocal optical sectioning. Utilizing the multibeam scanning strategy of spinning disk confocal microscopy, our iSCAT confocal microscope acquires images at a rate of 1,000 frames per second (fps). The configurations of the spinning disk and the background correction procedures are described. The iSCAT confocal microscope is highly sensitive-individual 10 nm gold nanoparticles are successfully detected. Using high-speed iSCAT confocal imaging, we captured the rapid movements of single nanoparticles on the model membrane and single native vesicles in the living cells. Label-free iSCAT confocal imaging enables the detailed visualization of nanoscopic cell dynamics in their most native forms. This holds promise to unveil cell activities that are previously undescribed by fluorescence-based microscopy.


Assuntos
Ouro , Nanopartículas Metálicas , Microscopia Confocal/métodos , Interferometria/métodos , Microscopia de Fluorescência/métodos
3.
ACS Nano ; 16(2): 2774-2788, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34967599

RESUMO

Chromatin is a DNA-protein complex that is densely packed in the cell nucleus. The nanoscale chromatin compaction plays critical roles in the modulation of cell nuclear processes. However, little is known about the spatiotemporal dynamics of chromatin compaction states because it remains difficult to quantitatively measure the chromatin compaction level in live cells. Here, we demonstrate a strategy, referenced as DYNAMICS imaging, for mapping chromatin organization in live cell nuclei by analyzing the dynamic scattering signal of molecular fluctuations. Highly sensitive optical interference microscopy, coherent brightfield (COBRI) microscopy, is implemented to detect the linear scattering of unlabeled chromatin at a high speed. A theoretical model is established to determine the local chromatin density from the statistical fluctuation of the measured scattering signal. DYNAMICS imaging allows us to reconstruct a speckle-free nucleus map that is highly correlated to the fluorescence chromatin image. Moreover, together with calibration based on nanoparticle colloids, we show that the DYNAMICS signal is sensitive to the chromatin compaction level at the nanoscale. We confirm the effectiveness of DYNAMICS imaging in detecting the condensation and decondensation of chromatin induced by chemical drug treatments. Importantly, the stable scattering signal supports a continuous observation of the chromatin condensation and decondensation processes for more than 1 h. Using this technique, we detect transient and nanoscopic chromatin condensation events occurring on a time scale of a few seconds. Label-free DYNAMICS imaging offers the opportunity to investigate chromatin conformational dynamics and to explore their significance in various gene activities.


Assuntos
Núcleo Celular , Cromatina , Núcleo Celular/química , Microscopia/métodos , Microscopia de Interferência
4.
Phys Rev Lett ; 121(1): 018101, 2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-30028147

RESUMO

We report the experimental observation of speeded-up collective motion of the monolayer endothelia-cancer mixture on a collagen-coated substrate, after the invasion of a small fraction of motile cancer cells into the confluent endothelial monolayer, through disrupting cell-cell junctions. It is found that, with an increasing waiting time, the cancer-free confluent endothelial monolayer exhibits a dynamical slowing-down of liquidlike micromotion with a gradually decreasing degree of superdiffusion. After invasion, cancer cells aggregate and exhibit turbulentlike cooperative motion, which is enhanced with the increasing size of gradually aggregated cancer clusters, confined by the fluctuating boundaries of surrounding endothelial cells. It, in turn, enhances the surrounding endothelial cell motion and speeds up the originally slowed-down motion.


Assuntos
Células Endoteliais da Veia Umbilical Humana/patologia , Modelos Biológicos , Neoplasias Nasofaríngeas/patologia , Neoplasias da Medula Óssea/secundário , Agregação Celular/fisiologia , Comunicação Celular/fisiologia , Técnicas de Cocultura , Humanos , Invasividade Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA