Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 12(11): e0188170, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29161301

RESUMO

BACKGROUND: The traditional methods, plaque assays and immuno-focus assays, used to titrate infectious dengue virus (DENV) particles are time consuming and labor intensive. Here, we developed a DENV protease activity detection system (DENPADS) to visualize DENV infection in cells based on dengue protease activity. METHODOLOGY/PRINCIPAL FINDINGS: Dengue NS3 protease cleaves NS4B-NS5. BHK-21 cells stably expressing the sensor module comprising DENV-2 NS4 and the 10 amino-terminal amino acids of NS5 (N10NS5) fused with the SV40 nuclear localization signal (NLS) and Cre recombinase (Cre), were generated. Cre is constrained outside the nucleus in the absence of NS3 activity but translocates into the nucleus through NS4B-NS5 cleavage when cells are infected with DENV. Nuclear translocation of Cre can trigger the reporter system, which contains a cis-loxP-flanked mCherry with three continuous stop codons following an SV40 polyA tail cDNA upstream of EGFP or mHRP cDNA. Our results show that DENPADS is an efficient and accurate method to titrate 4 DENV serotypes in 24 hours. Compared with current virus titration methods, the entire process is easy to perform, and the data are easily acquired. CONCLUSIONS/SIGNIFICANCE: In this study, we demonstrate that DENPADS can be used to detect dengue viral infection through a fluorescence switch or HRP activity in the infected cells. This approach is sensitive with less incubation time and labor input. In addition, DENPADS can simultaneously evaluate the efficacy and cytotoxicity of potential anti-DENV candidates. Overall, DENPADS is a useful tool for dengue research.


Assuntos
Técnicas Biossensoriais , Vírus da Dengue/isolamento & purificação , Dengue/diagnóstico , Serina Endopeptidases/isolamento & purificação , Dengue/enzimologia , Dengue/virologia , Vírus da Dengue/patogenicidade , Humanos , Serina Endopeptidases/genética , Sorogrupo , Replicação Viral
2.
Sci Rep ; 6: 30648, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27470096

RESUMO

We developed a novel platform to express high levels of recombinant lipoproteins with intrinsic adjuvant properties. Based on this technology, our group developed recombinant lipidated dengue envelope protein domain IIIs as vaccine candidates against dengue virus. This work aims to evaluate the immune responses in mice to the tetravalent formulation. We demonstrate that 4 serotypes of recombinant lipidated dengue envelope protein domain III induced both humoral and cellular immunity against all 4 serotypes of dengue virus on the mixture that formed the tetravalent formulation. Importantly, the immune responses induced by the tetravalent formulation in the absence of the exogenous adjuvant were functional in clearing the 4 serotypes of dengue virus in vivo. We affirm that the tetravalent formulation of recombinant lipidated dengue envelope protein domain III is a potential vaccine candidate against dengue virus and suggest further detailed studies of this formulation in nonhuman primates.


Assuntos
Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Dengue/prevenção & controle , Lipoproteínas/imunologia , Proteínas Recombinantes/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/genética , Modelos Animais de Doenças , ELISPOT , Feminino , Imunidade Celular , Imunidade Humoral , Lipoproteínas/genética , Camundongos Endogâmicos BALB C , Testes de Neutralização , Domínios Proteicos , Proteínas Recombinantes/genética , Sorogrupo , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/genética
3.
Hum Vaccin Immunother ; 12(7): 1678-89, 2016 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-26901482

RESUMO

Dengue has a major impact on global public health, and the use of dengue vaccine is very limited. In this study, we evaluated the immunogenicity and protective efficacy of a dengue vaccine made from a recombinant measles virus (MV) that expresses envelope protein domain III (ED3) of dengue-1 to 4. Following immunization with the MV-vectored dengue vaccine, mice developed specific interferon-gamma and antibody responses against dengue virus and MV. Neutralizing antibodies against MV and dengue viruses were also induced, and protective levels of FRNT50 ≥ 10 to 4 serotypes of dengue viruses were detected in the MV-vectored dengue vaccine-immunized mice. In addition, specific interferon-gamma and antibody responses to dengue viruses were still induced by the MV-vectored dengue vaccine in mice that were pre-infected with MV. This finding suggests that the pre-existing immunity to MV did not block the initiation of immune responses. By contrast, mice that were pre-infected with dengue-3 exhibited no effect in terms of their antibody responses to MV and dengue viruses, but a dominant dengue-3-specific T-cell response was observed. After injection with dengue-2, a detectable but significantly lower viremia and a higher titer of anti-dengue-2 neutralizing antibodies were observed in MV-vectored dengue vaccine-immunized mice versus the vector control, suggesting that an anamnestic antibody response that provided partial protection against dengue-2 was elicited. Our results with regard to T-cell responses and the effect of pre-immunity to MV or dengue viruses provide clues for the future applications of an MV-vectored dengue vaccine.


Assuntos
Formação de Anticorpos , Vacinas contra Dengue/imunologia , Portadores de Fármacos , Vírus do Sarampo/genética , Linfócitos T/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/genética , Interferon gama/metabolismo , Vírus do Sarampo/imunologia , Camundongos Endogâmicos C57BL , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
4.
Vaccine ; 34(8): 1054-61, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26776472

RESUMO

The linkage of an immunogen with a toll-like receptor ligand has great potential to induce highly potent immune responses with the initial features of antigen-presenting cell activation. In the current study, we expressed recombinant dengue-3 envelope protein domain III (D3ED III) in lipidated form using an Escherichia coli-based system. The recombinant lipidated dengue-3 envelope protein domain III (LD3ED III) augments the expression levels of IL-12 family cytokines. LD3ED III-immunized mice enhance wide ranges of T cell responses as indicated by IFN-γ, IL-17, IL-21 production. Additionally, LD3ED III-immunized mice increase the frequencies of anti-D3ED III antibody producing cells. The boosted antibody titers cover various IgG isotypes, including IgG1, IgG2a, IgG2b, and IgG3. Importantly, LD3ED III-immunized mice induce neutralizing antibody capacity associated with a reduction of viremia levels after challenges. In contrast, mice that are immunized with D3ED III formulated with aluminum phosphate (D3ED III/Alum) only enhance Th2 responses and boost IgG1 antibody titers. Neither neutralizing antibody responses nor the inhibition of viremia levels after challenge is observed in mice that are immunized with D3ED III/Alum. These results suggest that LD3ED III can induce broad profiles of cellular and humoral immune responses.


Assuntos
Vacinas contra Dengue/imunologia , Dengue/prevenção & controle , Proteínas do Envelope Viral/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Citocinas/imunologia , Células Dendríticas/imunologia , Vírus da Dengue , Feminino , Imunidade Celular , Imunidade Humoral , Imunoglobulina G/sangue , Lipídeos/química , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/imunologia , Linfócitos T/imunologia , Viremia/prevenção & controle
5.
PLoS One ; 10(12): e0145717, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26714037

RESUMO

Dengue is the leading cause of mosquito-borne viral infections and no vaccine is available now. Envelope protein domain III (ED3) is the major target for the binding of dengue virus neutralizing antibodies; however, the ED3-specifc T-cell response is less well understood. To investigate the T-cell responses to four serotypes of dengue virus (DENV-1 to 4), we immunized mice using either a tetravalent ED3-based DNA or protein vaccine, or combined both as a DNA prime-protein boost strategy (prime-boost). A significant serotype-dependent IFN-γ or IL-4 response was observed in mice immunized with either the DNA or protein vaccine. The IFN-γ response was dominant to DENV-1 to 3, whereas the IL-4 response was dominant to DENV-4. Although the similar IgG titers for the four serotypes were observed in mice immunized with the tetravalent vaccines, the neutralizing antibody titers varied and followed the order of 2 = 3>1>4. Interestingly, the lower IFN-γ response to DENV-4 is attributable to the immunodominance change between two CD4+ T-cell epitopes; one T-cell epitope located at E349-363 of DENV-1 to 3 was more immunogenic than the DENV-4 epitope E313-327. Despite DENV-4 specific IFN-γ responses were suppressed by immunodominance change, either DENV-4-specific IFN-γ or neutralizing antibody responses were still recalled after DENV-4 challenge and contributed to virus clearance. Immunization with the prime-boost elicited both IFN-γ and neutralizing antibody responses and provided better protection than either DNA or protein immunization. Our findings shed light on how ED3-based tetravalent dengue vaccines sharpen host CD4 T-cell responses and contribute to protection against dengue virus.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Vacinas contra Dengue/química , Vacinas contra Dengue/imunologia , Epitopos Imunodominantes/imunologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Sequência de Aminoácidos , Animais , Feminino , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Estrutura Terciária de Proteína
6.
Vaccine ; 32(12): 1346-53, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24486311

RESUMO

The combination of recombinant protein antigens with an immunostimulator has the potential to greatly increase the immunogenicity of recombinant protein antigens. In the present study, we selected the dengue-4 envelope protein domain III as a dengue vaccine candidate and expressed the protein in lipidated form using an Escherichia coli-based system. The recombinant lipidated dengue-4 envelope protein domain III folded into the proper conformation and competed with the dengue-4 virus for cellular binding sites. Mice immunized with lipidated dengue-4 envelope protein domain III without exogenous adjuvant had higher frequencies of dengue-4 envelope protein domain III-specific B cells secreting antibodies than mice immunized with the nonlipidated form. Importantly, lipidated dengue-4 envelope protein domain III-immunized mice demonstrated a durable neutralizing antibody response and had reduced viremia levels after challenge. The study demonstrates that lipidated dengue-4 envelope protein domain III is immunogenic and may be a potential dengue vaccine candidate. Furthermore, the lipidation strategy can be applied to other serotypes of dengue virus.


Assuntos
Vacinas contra Dengue/imunologia , Dengue/prevenção & controle , Lipídeos/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Linhagem Celular , Cricetinae , Feminino , Imunidade Humoral , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/imunologia , Viremia/prevenção & controle
7.
PLoS Negl Trop Dis ; 7(9): e2432, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24069487

RESUMO

BACKGROUND: Dengue virus is a mosquito-transmitted virus that can cause self-limiting dengue fever, severe life-threatening dengue hemorrhagic fever and dengue shock syndrome. The existence of four serotypes of dengue virus has complicated the development of an effective and safe dengue vaccine. Recently, a clinical phase 2b trial of Sanofi Pasteur's CYD tetravalent dengue vaccine revealed that the vaccine did not confer full protection against dengue-2 virus. New approaches to dengue vaccine development are urgently needed. Our approach represents a promising method of dengue vaccine development and may even complement the deficiencies of the CYD tetravalent dengue vaccine. METHODOLOGY/PRINCIPAL FINDINGS: Two important components of a vaccine, the immunogen and immunopotentiator, were combined into a single construct to generate a new generation of vaccines. We selected dengue-2 envelope protein domain III (D2ED III) as the immunogen and expressed this protein in lipidated form in Escherichia coli, yielding an immunogen with intrinsic immunopotentiation activity. The formulation containing lipidated D2ED III (LD2ED III) in the absence of exogenous adjuvant elicited higher D2ED III-specific antibody responses than those obtained from its nonlipidated counterpart, D2ED III, and dengue-2 virus. In addition, the avidity and neutralizing capacity of the antibodies induced by LD2ED III were higher than those elicited by D2ED III and dengue-2 virus. Importantly, we showed that after lipidation, the subunit candidate LD2ED III exhibited increased immunogenicity while reducing the potential risk of antibody-dependent enhancement of infection in mice. CONCLUSIONS/SIGNIFICANCE: Our study suggests that the lipidated subunit vaccine approach could be applied to other serotypes of dengue virus and other pathogens.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Anticorpos Facilitadores , Vacinas contra Dengue/imunologia , Dengue/prevenção & controle , Proteínas do Envelope Viral/imunologia , Animais , Dengue/imunologia , Vacinas contra Dengue/administração & dosagem , Escherichia coli/genética , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/genética
8.
Microbes Infect ; 15(10-11): 719-28, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23774693

RESUMO

Many attempts have focused on the use of either immunomodulators or antigen delivery systems to obtain an efficacious vaccine. Here, we report a novel approach that combined an immunomodulator and delivery system to enhance antigen association and induce robust immunity. We expressed a recombinant lipidated dengue-1 envelope protein domain III (LD1ED III) and its non-lipidated form, D1ED III, in an Escherichia coli system. The LD1ED III contains a bacterial lipid moiety, which is a potent immunomodulator. We demonstrated that LD1ED III possesses an inherent immunostimulation ability that can activate RAW 264.7 macrophage cells by up-regulating their expression of CD40, CD80, CD83, CD86 and MHC II, whereas D1ED III could not induce the up-regulation of these molecules. Moreover, combining LD1ED III with a multiphase emulsion system (called PELC) increased the antigen association more than either combining D1ED III with PELC or the antigen alone. Enhanced antigen association has been shown to correlate with stronger T cell responses, greater antibody avidity and improved neutralizing capacity. Our results demonstrate that combining recombinant lipoproteins with PELC improved both the intensity and the quality of the immune response. This approach is a promising strategy for the development of subunit vaccines that induce robust immunity.


Assuntos
Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Emulsões/administração & dosagem , Lipídeos/administração & dosagem , Proteínas do Envelope Viral/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais/sangue , Afinidade de Anticorpos , Antígenos CD/biossíntese , Linhagem Celular , Vacinas contra Dengue/genética , Vírus da Dengue/genética , Escherichia coli/genética , Expressão Gênica , Antígenos de Histocompatibilidade Classe II/biossíntese , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/genética
9.
PLoS Negl Trop Dis ; 6(5): e1645, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22616020

RESUMO

The major weaknesses of subunit vaccines are their low immunogenicity and poor efficacy. Adjuvants can help to overcome some of these inherent defects with subunit vaccines. Here, we evaluated the efficacy of the newly developed water-in-oil-in-water multiphase emulsion system, termed PELC, in potentiating the protective capacity of dengue-1 envelope protein domain III. Unlike aluminum phosphate, dengue-1 envelope protein domain III formulated with PELC plus CpG oligodeoxynucleotides induced neutralizing antibodies against dengue-1 virus and increased the splenocyte secretion of IFN-γ after in vitro re-stimulation. The induced antibodies contained both the IgG1 and IgG2a subclasses. A rapid anamnestic neutralizing antibody response against a live dengue virus challenge was elicited at week 26 after the first immunization. These results demonstrate that PELC plus CpG oligodeoxynucleotides broaden the dengue-1 envelope protein domain III-specific immune responses. PELC plus CpG oligodeoxynucleotides is a promising adjuvant for recombinant protein based vaccination against dengue virus.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Óleos/administração & dosagem , Oligodesoxirribonucleotídeos/administração & dosagem , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra Dengue/genética , Imunoglobulina G/sangue , Interferon gama/metabolismo , Leucócitos Mononucleares/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Baço/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA