Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Opt Express ; 31(8): 12487-12496, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37157407

RESUMO

Chip-scale photonic systems that manipulate free-space emission have recently attracted attention for applications such as free-space optical communications and solid-state LiDAR. Silicon photonics, as a leading platform for chip-scale integration, needs to offer more versatile control of free-space emission. Here we integrate metasurfaces on silicon photonic waveguides to generate free-space emission with controlled phase and amplitude profiles. We demonstrate experimentally structured beams, including a focused Gaussian beam and a Hermite-Gaussian TEM10 beam, as well as holographic image projections. Our approach is monolithic and CMOS-compatible. The simultaneous phase and amplitude control enable more faithful generation of structured beams and speckle-reduced projection of holographic images.

2.
ACS Appl Mater Interfaces ; 14(36): 40771-40783, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36040289

RESUMO

In this work, we demonstrated the practical use of Au@Cu2O core-shell and Au@Cu2Se yolk-shell nanocrystals as photocatalysts in photoelectrochemical (PEC) water splitting and photocatalytic hydrogen (H2) production. The samples were prepared by conducting a sequential ion-exchange reaction on a Au@Cu2O core-shell nanocrystal template. Au@Cu2O and Au@Cu2Se displayed enhanced charge separation as the Au core and yolk can attract photoexcited electrons from the Cu2O and Cu2Se shells. The localized surface plasmon resonance (LSPR) of Au, on the other hand, can facilitate additional charge carrier generation for Cu2O and Cu2Se. Finite-difference time-domain simulations were carried out to explore the amplification of the localized electromagnetic field induced by the LSPR of Au. The charge transfer dynamics and band alignment of the samples were examined with time-resolved photoluminescence and ultraviolet photoelectron spectroscopy. As a result of the improved interfacial charge transfer, Au@Cu2O and Au@Cu2Se exhibited a substantially larger photocurrent of water reduction and higher photocatalytic activity of H2 production than the corresponding pure counterpart samples. Incident photon-to-current efficiency measurements were conducted to evaluate the contribution of the plasmonic effect of Au to the enhanced photoactivity. Relative to Au@Cu2O, Au@Cu2Se was more suited for PEC water splitting and photocatalytic H2 production by virtue of the structural advantages of yolk-shell architectures. The demonstrations from the present work may shed light on the rational design of sophisticated metal-semiconductor yolk-shell nanocrystals, especially those comprising metal selenides, for superior photocatalytic applications.

3.
Nanomaterials (Basel) ; 12(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35630849

RESUMO

Gold nanoparticles conjugated with collagen molecules and fibers have been proven to improve structure strength, water and enzyme degradation resistance, cell attachment, cell proliferation, and skin wound healing. In this study, high-power impulse magnetron sputtering (HiPIMS) was used to deposit ultrathin gold films (UTGF) and discontinuous island structures on type I collagen substrates. A long turn-off time of duty cycle and low chamber temperature of HiPIMS maintained substrate morphology. Increasing the deposition time from 6 s to 30 s elevated the substrate surface coverage by UTGF up to 91.79%, as observed by a field emission scanning electron microscope. X-ray diffractometry analysis revealed signature low and wide peaks for Au (111). The important surface functional groups and signature peaks of collagen substrate remained unchanged according to Fourier transform infrared spectroscopy results. Multi-peak curve fitting of the Amide I spectrum revealed the non-changed protein secondary structure of type I collagen, which mainly consists of α-helix. Atomic force microscopy observation showed that the roughness average value shifted from 1.74 to 4.17 nm by increasing the deposition time from 13 s to 77 s. The uneven surface of collagen substrate made quantification of thin film thickness by AFM difficult. Instead, UTGF thickness was measured using simultaneously deposited glass specimens placed in an HiPIMS chamber with collagen substrates. Film thickness was 3.99 and 10.37 nm at deposition times of 13 and 77 s, respectively. X-ray photoelectron spectroscopy showed preserved substrate elements on the surface. Surface water contact angle measurement revealed the same temporary hydrophobic behavior before water absorption via exposed collagen substrates, regardless of deposition time. In conclusion, HiPIMS is an effective method to deposit UTGF on biomedical materials such as collagen without damaging valuable substrates. The composition of two materials could be further used for biomedical purposes with preserved functions of UTGF and collagen.

4.
ACS Appl Mater Interfaces ; 13(18): 21186-21193, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33905241

RESUMO

Flexible electronics has recently captured extensive attention due to its intriguing functionalities and great potential for influencing our daily life. In addition, with the increasing demand for green energy, photoelectrochemical (PEC) water splitting is a clean process that directly converts solar energy to chemical energy in the form of hydrogen. Thus the development of flexible green energy electronics represents a new domain in the research field of energy harvesting. In this work, we demonstrate the BiVO4 (BVO)/WO3/ITO/muscovite heterostructure photoelectrode for water splitting with flexible characteristics. The performance of BVO was modified by specific crystal facets, and the BVO/WO3 bilayer exhibited superior performance of 33% enhanced PEC activity at 1 V vs Ag/AgCl compared with pure BVO due to the proper staggered band alignment. Moreover, excellent mechanical stability was verified by a series of bending modes. This study demonstrates a pathway to a flexible photoelectrode for developing innovative devices for solar fuel generation.

5.
ACS Appl Mater Interfaces ; 11(28): 25388-25398, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31260239

RESUMO

Microstructural evolution of nanocrystalline diamond (NCD) nanoneedles owing to the addition of methane and nitrogen in the reactant gases is systematically addressed. It has been determined that varying the concentration of CH4 in the CH4/H2/N2 plasma is significant to tailor the morphology and microstructure of NCD films. While NCD films grown with 1% CH4 in a CH4/H2/N2 (3%) plasma contain large diamond grains, the microstructure changed considerably for NCD films grown using 5% (or 10%) CH4, ensuing in nanosized diamond grains. For 15% CH4-grown NCD films, a well-defined nanoneedle structure evolves. These NCD nanoneedle films contain sp3 phase diamond, sheathed with sp2-bonded graphitic phases, achieving a low resistivity of 90 Ω cm and enhanced field electron emission (FEE) properties, namely, a low turn-on field of 4.3 V/µm with a high FEE current density of 3.3 mA/cm2 (at an applied field of 8.6 V/µm) and a significant field enhancement factor of 3865. Furthermore, a microplasma device utilizing NCD nanoneedle films as cathodes can trigger a gas breakdown at a low threshold field of 3600 V/cm attaining a high plasma illumination current density of 1.14 mA/cm2 at an applied voltage of 500 V, and a high plasma lifetime stability of 881 min is evidenced. The optical emission spectroscopy studies suggest that the C2, CN, and CH species in the growing plasma are the major causes for the observed microstructural evolution in the NCD films. However, the increase in substrate temperature to ∼780 °C due to the incorporation of 15% CH4 in the CH4/H2/N2 plasma is the key driver resulting in the origin of nanoneedles in NCD films. The outstanding optoelectronic characteristics of these nanoneedle films make them suitable as cathodes in high-brightness display panels.

6.
ACS Appl Mater Interfaces ; 11(3): 3006-3015, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30565913

RESUMO

As the feet of clay, photocorrosion induced by hole accumulation has placed serious limitations on the widespread deployment of sulfide nanostructures for photoelectrochemical (PEC) water splitting. Developing sufficiently stable electrodes to construct durable PEC systems is therefore the key to the realization of solar hydrogen production. Here, an innovative charge-transfer manipulation concept based on the aligned hole transport across the interface has been realized to enhance the photostability of In2S3 electrodes toward PEC solar hydrogen production. The concept was realized by conducting compact deposition of In2S3 nanocrystals on the TiO2 nanowire array. Under PEC operation, the supporting TiO2 nanowires functioned as an anisotropic charge-transfer backbone to arouse aligned charge transport across the TiO2-In2S3 interface. Because of the aligned hole transport, the TiO2 nanowire-supported In2S3 hybrid nanostructures (TiO2-In2S3) exhibited improved hole-transfer dynamics at the TiO2-In2S3 interface and enhanced hole injection kinetics at the electrode surface, substantially increasing the long-term photostability toward solar hydrogen production. The PEC durability tests showed that TiO2-In2S3 electrodes can achieve nearly 90.9% retention of initial photocurrent upon continuous irradiation for 6 h, whereas the pure In2S3 merely retained 20.8% of initial photocurrent. This double-gain charge-transfer manipulation concept is expected to convey a viable approach to the intelligent design of highly efficient and sufficiently stable sulfide photocatalysts for sustainable solar fuel generation.

7.
Nanomaterials (Basel) ; 8(9)2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30149533

RESUMO

Low temperature (350 °C) grown conductive nanocrystalline diamond (NCD) films were realized by lithium diffusion from Cr-coated lithium niobate substrates (Cr/LNO). The NCD/Cr/LNO films showed a low resistivity of 0.01 Ω·cm and excellent field electron emission characteristics, viz. a low turn-on field of 2.3 V/µm, a high-current density of 11.0 mA/cm² (at 4.9 V/m), a large field enhancement factor of 1670, and a life-time stability of 445 min (at 3.0 mA/cm²). The low temperature deposition process combined with the excellent electrical characteristics offers a new prospective for applications based on temperature sensitive materials.

8.
J Biomed Nanotechnol ; 14(9): 1627-1634, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29958556

RESUMO

In this paper, nitrogen incorporated ultrananocrystalline diamond (NUNCD) films were fabricated for use as electrodes to detect dopamine. The NUNCD electrodes achieved high sensitivity, great selectivity, and excellent detection limits for dopamine sensing. The NUNCD electrode, fabricated as a potential sensitive biosensor for dopamine without any catalyst or mediators, demonstrated good activity for the direct detection of dopamine by simply putting the bare NUNCD electrode into a dopamine solution. Furthermore, the marked selectivity of the NUNCD electrode is very favorable for the determination of dopamine (DA) concentration (0.32 µM) in the presence of ascorbic acid (AA) and uric acid (UA). Considering dopamine detection in real biological fluid samples, the NUNCD electrode performed excellently with a detection limit of 0.39 µM and a high recovery ranging from 90-120%, revealing that NUNCD electrodes have promising use in the sensing of dopamine.


Assuntos
Eletrodos , Ácido Ascórbico , Diamante , Dopamina , Nitrogênio , Ácido Úrico
9.
Chemosphere ; 207: 110-117, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29793022

RESUMO

Mechanical recovery of oils using oil sorbents is one of the most important approaches to manage marine oil spills. However, the properties of the oils spilled into sea are influenced by external environmental conditions. In this study, we present a graphene-based (GB) sponge as a novel sorbent for crude oil removal and compare its performance with that of a commercial sorbent sheet under various environmental parameters. The GB sponge with excellent superhydrophobic and superoleophilic characteristics is demonstrated to be an efficient sorbent for crude oils, with high sorption capacity (up to 85-95 times its weight) and good reusability. The crude-oil-sorption capacity of our GB sponge is remarkably higher (about 4-5 times) than that of the commercial sheet and most other previously reported sponge sorbents. Moreover, several challenging environmental conditions were examined for their effects on the sorption performance, including the weathering time of oils, seawater temperature, and turbulence (wave effect). The results show that the viscosity of the oil increased with increasing weathering time or decreasing temperature; therefore, the sorption rate seemed to decrease with longer weathering times and lower temperatures. Turbulence can facilitate inner sorption and promote higher oil sorption. Our results indicate that the extent of the effects of weather and other environmental factors on crude oil should be considered in the assessment of the effective adsorption capacity and efficiency of sorbents. The present work also highlights the widespread potential applications of our GB sponge in marine spilled-oil cleanup and hydrophobic solvent removal.


Assuntos
Recuperação e Remediação Ambiental/métodos , Grafite/química , Petróleo/metabolismo , Adsorção , Petróleo/análise
10.
ACS Appl Mater Interfaces ; 10(27): 22997-23008, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29664283

RESUMO

Poor kinetics of hole transportation at the electrode/electrolyte interface is regarded as a primary cause for the mediocre performance of n-type TiO2 photoelectrodes. By adopting nanotubes as the electrode backbone, light absorption and carrier collection can be spatially decoupled, allowing n-type TiO2, with its short hole diffusion length, to maximize the use of the available photoexcited charge carriers during operation in photoelectrochemical (PEC) water splitting. Here, we presented a delicate electrochemical anodization process for the preparation of quaternary Ti-Nb-Ta-Zr-O mixed-oxide (denoted as TNTZO) nanotube arrays and demonstrated their utility in PEC water splitting. The charge-transfer dynamics for the electrodes was investigated using time-resolved photoluminescence, electrochemical impedance spectroscopy, and the decay of open-circuit voltage analysis. Data reveal that the superior photoactivity of TNTZO over pristine TiO2 originated from the introduction of Nd, Ta, and Zr elements, which enhanced the amount of accessible charge carriers, modified the electronic structure, and improved the hole injection kinetics for expediting water splitting. By modulating the water content of the electrolyte employed in the anodization process, the wall thickness of the grown TNTZO nanotubes can be reduced to a size smaller than that of the depletion layer thickness, realizing a fully depleted state for charge carriers to further advance the PEC performance. Hydrogen evolution tests demonstrate the practical efficacy of TNTZO for realizing solar hydrogen production. Furthermore, with the composition complexity and fully depleted band structure, the present TNTZO nanotube arrays may offer a feasible and universal platform for the loading of other semiconductors to construct a sophisticated heterostructure photoelectrode paradigm, in which the photoexcited charge carriers can be entirely utilized for efficient solar-to-fuel conversion.

11.
ACS Appl Mater Interfaces ; 9(46): 40645-40654, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29099171

RESUMO

We report a versatile strategy to exploit parafilm waste as a carbon precursor for fabrication of freestanding, hollow few-layer graphene fiber mesh (HFGM) structures without use of any gaseous carriers/promoters via an annealing route. The freestanding HFGMs possess good mechanical flexibility, tailorable transparency, and high electrical conductivity, consequently qualifying them as promising electrochemical electrodes. Because of the hollow spaces, electrolyte ions can easily access into and contact with interior surfaces of the graphene fibers, accordingly increasing electrode/electrolyte interfacial area. As expected, solid-state supercapacitors based on the HFGMs exhibit a considerable enhancement in specific capacitance (20-30 fold) as compared to those employing chemical vapor deposition compact graphene films. Moreover, the parafilm waste is found to be beneficial for one-step fabrication of nanocarbon/few-layer graphene composite meshes with superior electrochemical performance, outstanding superhydrophobic property, good self-cleaning ability, and great promise for oil spill cleanup.

12.
ACS Appl Mater Interfaces ; 8(7): 4624-32, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26815945

RESUMO

We developed an innovative approach of self-biased sputtering solid doping source process to synthesize doped crystalline Si film on flexible polyimide (PI) substrate via microwave-plasma-enhanced chemical vapor deposition (MWPECVD) using SiCl4/H2 mixture. In this process, P dopants or B dopants were introduced by sputtering the solid doping target through charged-ion bombardment in situ during high-density microwave plasma deposition. A strong correlation between the number of solid doping targets and the characteristics of doped Si films was investigated in detail. The results show that both P- and B-doped crystalline Si films possessed a dense columnar structure, and the crystallinity of these structures decreased with increasing the number of solid doping targets. The films also exhibited a high growth rate (>4.0 nm/s). Under optimal conditions, the maximum conductivity and corresponding carrier concentration were, respectively, 9.48 S/cm and 1.2 × 10(20) cm(-3) for P-doped Si film and 7.83 S/cm and 1.5 × 10(20) cm(-3) for B-doped Si film. Such high values indicate that the incorporation of dopant with high doping efficiency (around 40%) into the Si films was achieved regardless of solid doping sources used. Furthermore, a flexible crystalline Si film solar cell with substrate configuration was fabricated by using the structure of PI/Mo film/n-type Si film/i-type Si film/p-type Si film/ITO film/Al grid film. The best solar cell performance was obtained with an open-circuit voltage of 0.54 V, short-circuit current density of 19.18 mA/cm(2), fill factor of 0.65, and high energy conversion of 6.75%. According to the results of bending tests, the critical radius of curvature (RC) was 12.4 mm, and the loss of efficiency was less than 1% after the cyclic bending test for 100 cycles at RC, indicating superior flexibility and bending durability. These results represent important steps toward a low-cost approach to high-performance flexible crystalline Si film-based photovoltaic devices.

13.
ACS Appl Mater Interfaces ; 7(49): 27526-38, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26600097

RESUMO

An electron field emitter with superior electron field emission (EFE) properties and improved lifetime stability is being demonstrated via the combination of carbon nanotubes and the CH4/N2 plasma grown ultrananocrystalline diamond (N-UNCD) films. The resistance of the carbon nanotubes to plasma ion bombardment is improved by the formation of carbon nanocones on the side walls of the carbon nanotubes, thus forming strengthened carbon nanotubes (s-CNTs). The N-UNCD films can thus be grown on s-CNTs, forming N-UNCD/s-CNTs carbon nanocomposite materials. The N-UNCD/s-CNTs films possess good conductivity of σ = 237 S/cm and marvelous EFE properties, such as low turn-on field of (E0) = 3.58 V/µm with large EFE current density of (J(e)) = 1.86 mA/cm(2) at an applied field of 6.0 V/µm. Moreover, the EFE emitters can be operated under 0.19 mA/cm(2) for more than 350 min without showing any sign of degradation. Such a superior EFE property along with high robustness characteristic of these combination of materials are not attainable with neither N-UNCD films nor s-CNTs films alone. Transmission electron microscopic investigations indicated that the N-UNCD films contain needle-like diamond grains encased in a few layers of nanographitic phase, which enhanced markedly the transport of electrons in the N-UNCD films. Moreover, the needle-like diamond grains were nucleated from the s-CNTs without the necessity of forming the interlayer that facilitate the transport of electrons crossing the diamond-to-Si interface. Both these factors contributed to the enhanced EFE behavior of the N-UNCD/s-CNTs films.

14.
ACS Appl Mater Interfaces ; 7(18): 9453-61, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25905566

RESUMO

Graphene with carbon atoms bonded in a honeycomb lattice can be tailored by doping various species to alter the electrical properties of the graphene for fabricating p-type or n-type field-effect transistors (FETs). In this study, large-area and single-layer graphene was grown on electropolished Cu foil using the thermal chemical vapor deposition method; the graphene was then transferred onto a poly(ethylene terephthalate) (PET) substrate to produce flexible, transparent FETs. TiO2 and nitrogen-doped TiO2 (N-TiO2) nanoparticles were doped on the graphene to alter its electrical properties, thereby enhancing the carrier mobility and enabling the transistors to sense UV and visible light optically. The results indicated that the electron mobility of the graphene was 1900 cm(2)/(V·s). Dopings of TiO2 and N-doped TiO2 (1.4 at. % N) lead to n-type doping effects demonstrating extremely high carrier mobilities of 53000 and 31000 cm(2)/(V·s), respectively. Through UV and visible light irradiation, TiO2 and N-TiO2 generated electrons and holes; the generated electrons transferred to graphene channels, causing the FETs to exhibit n-type electric behavior. In addition, the Dirac points of the graphene recovered to their original state within 5 min, confirming that the graphene-based FETs were photosensitive to UV and visible light. In a bending state with a radius of curvature greater than 2.0 cm, the carrier mobilities of the FETs did not substantially change, demonstrating the application possibility of the fabricated graphene-based FETs in photosensors.

15.
Nanoscale ; 7(10): 4377-85, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25684389

RESUMO

Hybridization of gold nanoparticles in the ultrananocrystalline diamond materials improves the electrical conductivity of the materials to a high level of 230 (Ω cm)(-1) with a sheet carrier concentration of 8.9 × 10(20) cm(-2). These hybrid materials show enhanced electron field emission (EFE) properties, viz. a low turn-on field of 2.1 V µm(-1) with a high EFE current density of 5.3 mA cm(-2) (at an applied field of 4.9 V µm(-1)) and the life-time stability up to a period of 372 min. The fabrication of these hybrid materials with high conductivity and superior EFE behaviors is a direct and simple process which opens new prospects in flat panel displays and high brightness electron sources.

16.
J Biomed Mater Res A ; 100(10): 2787-92, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22623173

RESUMO

Titanium dioxide (TiO(2)), known to exhibit good biocompatibility, is applied in this study as a thin film formed onto polyetheretherketone (PEEK) substrate, which has been widely used in spinal interbody fusion cages. For successful deposition, an arc ionplating (AIP) technique was applied to deposit TiO(2) at low deposition temperature without damaging PEEK substrate, while providing satisfactory film adhesion. This study systematically investigates the effects of TiO(2) thin film phase composition and surface characteristics, controlled by using different target current and substrate bias, on osteoblast compatibility. Experimental results showed that anatase phase (A-TiO(2)) and/or rutile phase (R-TiO(2) ) TiO(2) coatings, respectively, can be prepared in appropriate deposition conditions. Overall, the TiO(2)-coated PEEK presented better osteoblast compatibility than the bare PEEK material in terms of cell adhesion, cell proliferation, and cell differentiation abilities, as well as osteogenesis performance (as determined by levels of osteopontin, osteocalcin, and calcium content). Surface roughness and hydrophilicity of the AIP-TiO(2) films were found to be responsible for significant osteoblast cell growth. It is also noticeable that the R-TiO(2) exhibited better osteoblast compatibility than the A-TiO(2) due to the presence of negatively charged hydroxyl groups on R-TiO(2) (110) surface in nature.


Assuntos
Materiais Revestidos Biocompatíveis/farmacologia , Galvanoplastia/métodos , Cetonas/farmacologia , Osteoblastos/citologia , Polietilenoglicóis/farmacologia , Próteses e Implantes , Medula Espinal/fisiologia , Titânio/química , Animais , Benzofenonas , Células Cultivadas , Cristalografia , Teste de Materiais , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/ultraestrutura , Polímeros , Medula Espinal/efeitos dos fármacos , Propriedades de Superfície , Água/química , Difração de Raios X
17.
Implant Dent ; 21(3): 171-4, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22513500

RESUMO

PURPOSE: This case report describes a biologic complication related to polylactic acid membrane in guided bone regeneration (GBR). MATERIALS AND METHODS: A healthy 42-year-old patient complained of persistent discomfort of the maxillary anterior gingiva. Clinical examination and radiographs showed severe periodontal destruction of teeth 7 through 10. Teeth extraction was followed by early implant placement with GBR. RESULTS: Four months later, severe bone resorption was observed upon surgical exposure. A second GBR was performed. Wound healing progressed uneventfully and an implant-supported fixed partial denture was later loaded. CONCLUSION: We presume that this complication was a foreign body reaction to the polylactic acid membrane. Such a reaction can affect soft and hard tissue healing following GBR. Long-term follow-up is needed to determine stability of the results.


Assuntos
Implantes Absorvíveis/efeitos adversos , Perda do Osso Alveolar/etiologia , Reação a Corpo Estranho/etiologia , Regeneração Tecidual Guiada Periodontal/métodos , Ácido Láctico/efeitos adversos , Polímeros/efeitos adversos , Adulto , Perda do Osso Alveolar/cirurgia , Regeneração Óssea , Prótese Dentária Fixada por Implante , Prótese Parcial Fixa , Humanos , Membranas Artificiais , Poliésteres
18.
J Am Chem Soc ; 132(37): 13000-7, 2010 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-20806923

RESUMO

Single crystal and powder samples of the series of iron chalcogenide superconductors with nominal composition, Fe((1.15))Te((1-)y)S(y), are found to form for 0 ≤ y ≤ 0.15. They crystallize in the tetragonal anti-PbO structure, which is composed of layers of edge-shared Fe(Te, S)(4) tetrahedra. For y = 0, Fe(1+x)Te (x ≈ 0.12(1)) is nonsuperconducting and undergoes a tetragonal (P4/nmm) to monoclinic (P2(1)/m) structural transition at ∼65 K, associated with the onset of commensurate antiferromagnetic order at q = (0.5 0 0.5). We show that on sulfur substitution, Fe(1+x)Te(1-y)S(y) becomes orthorhombic (Pmmn) at low temperature for 0 ≤ y ≤ 0.015, where the greatly suppressed magnetic scattering is now incommensurate at q = (0.5-δ 0 0.5) and possesses short ranged magnetic correlations that are well fitted with a two-dimensional Warren peak shape. At much higher concentrations of S (y ≥ 0.075), there is suppression of both the structural and magnetic transitions and a superconducting transition at 9 K is observed. Between these two composition regimes, there exists a region of phase separation (0.025 ≤ y ≤ 0.05), where the low temperature neutron diffraction data is best refined with a model containing both the tetragonal and orthorhombic phases. The increase in the amount of sulfur is found to be associated with a reduction in interstitial iron, x. Microprobe analysis of a single crystal of composition Fe((1.123(5)))Te((0.948(4)))S((0.052(4))) confirms the presence of compositional variation within the crystals, rationalizing the observed phase separation.

19.
J Am Chem Soc ; 132(29): 10006-8, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20608638

RESUMO

The layered telluride, Fe(1+x)Te, is a parent compound of the isostructural and superconducting phases, Fe(1+x)(Te, Se, S). Here we show that, through a simple reaction of I(2) vapor with both powder and single crystal samples, the interstitial iron can be removed from the FeTe framework topotactically. Neutron powder diffraction and X-ray single crystal diffraction confirm that the iron being extracted is the partially occupied site that lies between the 2-D blocks of edge-sharing FeTe(4) tetrahedra. The deintercalation process has consequences for both magnetic and crystallographic phase transitions in the compound at low temperatures. This technique could be of use for the tuning of stoichiometry of the superconducting phases and therefore enable more careful studies on how chemical composition affects magnetic and superconducting properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA