Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Biomedicines ; 12(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38672261

RESUMO

Glioblastoma (GBM), the most aggressive form of brain cancer, is characterized by rapid growth and resistance to conventional therapies. Current treatments offer limited effectiveness, leading to poor survival rates and the need for novel therapeutic strategies. Arylquin 1 has emerged as a potential therapeutic candidate because of its unique mechanism of inducing apoptosis in cancer cells without affecting normal cells. This study investigated the efficacy of Arylquin 1 against GBM using the GBM8401 and A172 cells by assessing its dose-dependent cytotoxicity, apoptosis induction, and synergy with radiotherapy. In vitro assays demonstrated a significant reduction in cell viability and increased apoptosis, particularly at high concentrations of Arylquin 1. Migration and invasion analyses revealed notable inhibition of cellular motility. In vivo experiments on NU/NU nude mice with intracranially implanted GBM cells revealed that Arylquin 1 substantially reduced tumor growth, an effect magnified by concurrent radiotherapy. These findings indicate that by promoting apoptosis and enhancing radiosensitivity, Arylquin 1 is a potent therapeutic option for GBM treatment.

2.
Inflamm Regen ; 43(1): 13, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797799

RESUMO

BACKGROUND: CTLA4Ig is a dimeric fusion protein of the extracellular domain of cytotoxic T-lymphocyte protein 4 (CTLA4) and an Fc (Ig) fragment of human IgG1 that is approved for treating rheumatoid arthritis. However, CTLA4Ig may induce adverse effects. Developing a lesion-selective variant of CTLA4Ig may improve safety while maintaining the efficacy of the treatment. METHODS: We linked albumin to the N-terminus of CTLA4Ig (termed Alb-CTLA4Ig) via a substrate sequence of matrix metalloproteinase (MMP). The binding activities and the biological activities of Alb-CTLA4Ig before and after MMP digestion were analyzed by a cell-based ELISA and an in vitro Jurkat T cell activation assay. The efficacy and safety of Alb-CTLA4Ig in treating joint inflammation were tested in mouse collagen-induced arthritis. RESULTS: Alb-CTLA4Ig is stable and inactive under physiological conditions but can be fully activated by MMPs. The binding activity of nondigested Alb-CTLA4Ig was at least 10,000-fold weaker than that of MMP-digested Alb-CTLA4Ig. Nondigested Alb-CTLA4Ig was unable to inhibit Jurkat T cell activation, whereas MMP-digested Alb-CTLA4Ig was as potent as conventional CTLA4Ig in inhibiting the T cells. Alb-CTLA4Ig was converted to CTLA4Ig in the inflamed joints to treat mouse collagen-induced arthritis, showing similar efficacy to that of conventional CTLA4Ig. In contrast to conventional CTLA4Ig, Alb-CTLA4Ig did not inhibit the antimicrobial responses in the spleens of the treated mice. CONCLUSIONS: Our study indicates that Alb-CTLA4Ig can be activated by MMPs to suppress tissue inflammation in situ. Thus, Alb-CTLA4Ig is a safe and effective treatment for collagen-induced arthritis in mice.

3.
Front Microbiol ; 13: 896588, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406412

RESUMO

Hepatitis C virus (HCV) NS3/4A protease is an attractive target for direct-acting antiviral agents. Real-time tracking of the NS3/4A protease distribution and activity is useful for clinical diagnosis and disease management. However, no approach has been developed that can systemically detect NS3/4A protease activity or distribution. We designed a protease-activatable retention probe for tracking HCV NS3/4A protease activity via positron emission topography (PET) imaging. A cell-penetrating probe was designed that consisted of a cell-penetrating Tat peptide, HCV NS3/4A protease substrate, and a hydrophilic domain. The probe was labeled by fluorescein isothiocyanate (FITC) and 124I in the hydrophilic domain to form a TAT-ΔNS3/4A-124I-FITC probe. Upon cleavage at NS3/4A substrate, the non-penetrating hydrophilic domain is released and accumulated in the cytoplasm allowing PET or optical imaging. The TAT-ΔNS3/4A-FITC probe selectively accumulated in NS3/4A-expressing HCC36 (NS3/4A-HCC36) cells/tumors and HCV-infected HCC36 cells. PET imaging showed that the TAT-ΔNS3/4A-124I-FITC probe selectively accumulated in the NS3/4A-HCC36 xenograft tumors and liver-implanted NS3/4A-HCC36 tumors, but not in the control HCC36 tumors. The TAT-ΔNS3/4A-124I-FITC probe can be used to represent NS3/4 protease activity and distribution via a clinical PET imaging system allowing. This strategy may be extended to detect any cellular protease activity for optimization the protease-based therapies.

4.
Cancers (Basel) ; 14(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36230725

RESUMO

Preoperative concurrent chemoradiotherapy (CCRT) is a standard treatment for locally advanced rectal cancer patients, but 20-30% do not benefit from the desired therapeutic effects. Previous reports indicate that high levels of ERCC1 reduce the effectiveness of cisplatin-based CCRT; however, it remains unclear as to whether ERCC1 overexpression increases radiation resistance. To clarify the correlation between ERCC1 levels and radiation (RT) resistance, we established two cell lines (HCT116-Tet-on and COLO205-Tet-on), induced them to overexpress ERCC1, detected cell survival following exposure to radiation, established HCT116-Tet-on and COLO205-Tet-on heterotopic cancer animal models, and detected tumor volume following exposure to radiation. We found that ERCC1 overexpression increased radiation resistance. After regulating ERCC1 levels and radiation exposure to verify the correlation, we noted that increased radiation resistance was dependent on ERCC1 upregulation in both cell lines. For further verification, we exposed HCT116-Tet-on and COLO205-Tet-on heterotopic cancer animal models to radiation and observed that ERCC1 overexpression increased colorectal cancer tumor radioresistance in both. Combined, our results suggest that ERCC1 overexpression may serve as a suitable CCRT prognostic marker for colorectal cancer patients.

5.
J Nanobiotechnology ; 20(1): 58, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35101043

RESUMO

BACKGROUND: Humanization of mouse monoclonal antibodies (mAbs) is crucial for reducing their immunogenicity in humans. However, humanized mAbs often lose their binding affinities. Therefore, an in silico humanization method that can prevent the loss of the binding affinity of mAbs is needed. METHODS: We developed an in silico V(D)J recombination platform in which we used V(D)J human germline gene sequences to design five humanized candidates of anti-tumor necrosis factor (TNF)-α mAbs (C1-C5) by using different human germline templates. The candidates were subjected to molecular dynamics simulation. In addition, the structural similarities of their complementarity-determining regions (CDRs) to those of original mouse mAbs were estimated to derive the weighted interatomic root mean squared deviation (wRMSDi) value. Subsequently, the correlation of the derived wRMSDi value with the half maximal effective concentration (EC50) and the binding affinity (KD) of the humanized anti-TNF-α candidates was examined. To confirm whether our in silico estimation method can be used for other humanized mAbs, we tested our method using the anti-epidermal growth factor receptor (EGFR) a4.6.1, anti-glypican-3 (GPC3) YP9.1 and anti-α4ß1 integrin HP1/2L mAbs. RESULTS: The R2 value for the correlation between the wRMSDi and log(EC50) of the recombinant Remicade and those of the humanized anti-TNF-α candidates was 0.901, and the R2 value for the correlation between wRMSDi and log(KD) was 0.9921. The results indicated that our in silico V(D)J recombination platform could predict the binding affinity of humanized candidates and successfully identify the high-affinity humanized anti-TNF-α antibody (Ab) C1 with a binding affinity similar to that of the parental chimeric mAb (5.13 × 10-10). For the anti-EGFR a4.6.1, anti-GPC3 YP9.1, and anti-α4ß1 integrin HP1/2L mAbs, the wRMSDi and log(EC50) exhibited strong correlations (R2 = 0.9908, 0.9999, and 0.8907, respectively). CONCLUSIONS: Our in silico V(D)J recombination platform can facilitate the development of humanized mAbs with low immunogenicity and high binding affinities. This platform can directly transform numerous mAbs with therapeutic potential to humanized or even human therapeutic Abs for clinical use.


Assuntos
Inibidores do Fator de Necrose Tumoral , Recombinação V(D)J , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais Humanizados , Camundongos , Fator de Necrose Tumoral alfa
6.
Chem Sci ; 12(28): 9759-9769, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34349949

RESUMO

The on-target toxicity of monoclonal antibodies (Abs) is mainly due to the fact that Abs cannot distinguish target antigens (Ags) expressed in disease regions from those in normal tissues during systemic administration. In order to overcome this issue, we "copied" an autologous Ab hinge as an "Ab lock" and "pasted" it on the binding site of the Ab by connecting a protease substrate and linker in between to generate a pro-Ab, which can be specifically activated in the disease region to enhance Ab selectivity and reduce side effects. Previously, we reported that 70% of pro-Abs can achieve more than 100-fold blocking ability compared to the parental Abs. However, 30% of pro-Abs do not have such efficient blocking ability. This is because the same Ab lock linker cannot be applied to every Ab due to the differences in the complementarity-determining region (CDR) loops. Here we designed a method which uses structure-based computational simulation (MSCS) to optimize the blocking ability of the Ab lock for all Ab drugs. MSCS can precisely adjust the amino acid composition of the linker between the Ab lock and Ab drug with the assistance of molecular simulation. We selected αPD-1, αIL-1ß, αCTLA-4 and αTNFα Ab as models and attached the Ab lock with various linkers (L1 to L7) to form pro-Abs by MSCS, respectively. The resulting cover rates of the Ab lock with various linkers compared to the Ab drug were in the range 28.33-42.33%. The recombinant pro-Abs were generated by MSCS prediction in order to verify the application of molecular simulation for pro-Ab development. The binding kinetics effective concentrations (EC-50) for αPD-1 (200-250-fold), αIL-1ß (152-186-fold), αCTLA-4 (68-150-fold) and αTNFα Ab (20-123-fold) were presented as the blocking ability of pro-Ab compared to the Ab drug. Further, there was a positive correlation between cover rate and blocking ability of all pro-Ab candidates. The results suggested that MSCS was able to predict the Ab lock linker most suitable for application to αPD-1, αIL-1ß, αCTLA-4 and αTNFα Ab to form pro-Abs efficiently. The success of MSCS in optimizing the pro-Ab can aid the development of next-generation pro-Ab drugs to significantly improve Ab-based therapies and thus patients' quality of life.

8.
Acta Biomater ; 111: 386-397, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32417267

RESUMO

Targeted antibodies and methoxy-PEGylated nanocarriers have gradually become a mainstream of cancer therapy. To increase the anti-cancer effects of targeted antibodies combined with mPEGylated liposomes (mPEG-liposomes), we describe a bispecific antibody in which an anti-methoxy-polyethylene glycol scFv (αmPEG scFv) was fused to the C-terminus of an anti-HER2 (αHER2) antibody to generate a HER2 × mPEG BsAb that retained the original efficacy of a targeted antibody while actively attracting mPEG-liposomes to accumulate at tumor sites. HER2 ×mPEG BsAb can simultaneously bind to HER2-high expressing MCF7/HER2 tumor cells and mPEG molecules on mPEG-liposomal doxorubicin (Lipo-Dox). Pre-incubation of HER2 × mPEG BsAb with cells increased the endocytosis of Lipo-DiD and enhanced the cytotoxicity of Lipo-Dox to MCF7/HER2 tumor cells. Furthermore, pre-treatment of HER2 × mPEG BsAb enhanced the tumor accumulation and retention of Lipo-DiR 2.2-fold in HER2-high expressing MCF7/HER2 tumors as compared to HER2-low expressing MCF7/neo1 tumors. Importantly, HER2 × mPEG BsAb plus Lipo-Dox significantly suppressed tumor growth as compared to control BsAb plus Lipo-Dox in MCF7/HER2 tumor-bearing mice. These results indicate that HER2 × mPEG BsAb can enhance tumor accumulation of mPEG-liposomes to improve the therapeutic efficacy of combination treatment. Anti-mPEG scFv can be fused to any kind of targeted antibody to generate BsAbs to actively attract mPEG-drugs and improve anti-cancer efficacy. STATEMENT OF SIGNIFICANCE: Antibody targeted therapy and PEGylated drugs have gradually become the mainstream of cancer therapy. To enhance the anti-cancer effects of targeted antibodies combined with PEGylated drugs is very important. To this aim, we fused an anti-PEG scFv to the C-terminal of HER2 targeted antibodies to generate a HER2×mPEG bispecific antibody (BsAb) to retain the original efficacy of targeted antibody whilst actively attract mPEG-liposomal drugs to accumulate at tumor sites. The present study demonstrates pre-treatment of HER2×mPEG BsAb can enhance tumor accumulation of mPEG-liposomal drugs to improve the therapeutic efficacy of combination treatment. Anti-mPEG scFv can be fused to any kind of targeted antibody to generate BsAbs to actively attract mPEG-drugs and improve anti-cancer efficacy.


Assuntos
Anticorpos Biespecíficos , Lipossomos , Animais , Anticorpos Biespecíficos/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Humanos , Células MCF-7 , Camundongos , Polietilenoglicóis , Receptor ErbB-2
9.
Sci Rep ; 9(1): 9931, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289297

RESUMO

Membrane antigens (mAgs) are important targets for the development of antibody (Ab) drugs. However, native mAgs are not easily prepared, causing difficulties in acquiring functional Abs. In this study, we present a platform in which human mAgs were expressed in native form on cell adjuvants made with membrane-bound cytokines that were then used immunize syngeneic mice directly. The membrane-bound cytokines were used as immune stimulators to enhance specific Ab responses against the desired mAgs. Then, mAgs-expressing xenogeneic cells were used for Ab characterization to reduce non-specific binding. We established cell adjuvants by expressing membrane-bound cytokines (mIL-2, mIL-18, or mGM-CSF) on BALB/3T3 cells, which were effective in stimulating splenocyte proliferation in vitro. We then transiently expressed ecotropic viral integration site 2B (EVI2B) on the adjuvants and used them to directly immunize BALB/c mice. We found that 3T3/mGM-CSF cells stimulated higher specific anti-EVI2B Ab response in the immunized mice than the other cell adjuvants. A G-protein coupled receptor (GPCR), CXCR2, was then transiently expressed on 3T3/mGM-CSF cell adjuvant to immunize mice. The immune serum exhibited relatively higher binding to xenogeneic 293 A/CXCR2 cells than 293 A cells (~3.5-fold). Several hybridoma clones also exhibited selective binding to 293 A/CXCR2 cells. Therefore, the cell adjuvant could preserve the native conformation of mAgs and exhibit anti-mAg Ab stimulatory ability, providing a more convenient and effective method to generate functional Abs, thus possibly accelerating Ab drug development.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Anticorpos Monoclonais/imunologia , Membrana Celular/metabolismo , Receptores de Interleucina-8B/imunologia , Animais , Formação de Anticorpos , Membrana Celular/imunologia , Citocinas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Receptores de Interleucina-8B/metabolismo
10.
PLoS Biol ; 17(6): e3000286, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31194726

RESUMO

During rheumatoid arthritis (RA) treatment, long-term injection of antitumor necrosis factor α antibodies (anti-TNFα Abs) may induce on-target toxicities, including severe infections (tuberculosis [TB] or septic arthritis) and malignancy. Here, we used an immunoglobulin G1 (IgG1) hinge as an Ab lock to cover the TNFα-binding site of Infliximab by linking it with matrix metalloproteinase (MMP) -2/9 substrate to generate pro-Infliximab that can be specifically activated in the RA region to enhance the selectivity and safety of treatment. The Ab lock significantly inhibits the TNFα binding and reduces the anti-idiotypic (anti-Id) Ab binding to pro-Infliximab by 395-fold, 108-fold compared with Infliximab, respectively, and MMP-2/9 can completely restore the TNFα neutralizing ability of pro-Infliximab to block TNFα downstream signaling. Pro-Infliximab was only selectively activated in the disease site (mouse paws) and presented similar pharmacokinetics (PKs) and bio-distribution to Infliximab. Furthermore, pro-Infliximab not only provided equivalent therapeutic efficacy to Infliximab but also maintained mouse immunity against Listeria infection in the RA mouse model, leading to a significantly higher survival rate (71%) than that of the Infliximab treatment group (0%). The high-selectivity pro-Infliximab maintains host immunity and keeps the original therapeutic efficiency, providing a novel strategy for RA therapy.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Infliximab/farmacologia , Animais , Artrite Reumatoide/fisiopatologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/uso terapêutico , Infliximab/metabolismo , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
11.
Biomater Sci ; 7(8): 3404-3417, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31251311

RESUMO

For those patients with HER2-overexpressing breast cancer, treatment with PEGylated liposomal doxorubicin (PLD) is inefficacious due to the intrinsic low sensitivity to doxorubicin. A very large increase in drug accumulation by active targeting may enhance the therapeutic efficacy of PLD. We established a humanized bispecific antibody (BsAb; mPEG × HER2) which has dual specificity for methoxy-polyethylene glycol (mPEG) and human epidermal growth factor receptor 2 (HER2) to enhance the specificity, internalization and anticancer activity of PLD for cancer cells that overexpress HER2. One-step formulation of PLD with mPEG × HER2 converted the PLD into HER2 targeted liposomes that were stable at 4 °C in PBS as well as at 37 °C in the presence of serum. αHER2/PLD induced receptor-mediated endocytosis and enhanced doxorubicin accumulation in MCF7/HER2 (HER2-amplified) breast cancer cells. αHER2/PLD also displayed more than 200-fold increased cytotoxicity to MCF7/HER2 cells and 28-fold increased cytotoxicity to drug-resistant MDA-MB-361 cells with a physical deletion of the TOP2A gene. αHER2/PLD specifically accumulated doxorubicin in the nucleus of cancer cells in tumor-bearing mice and produced significantly greater antitumor activity against MCF7/HER2 (P < 0.0001) and MDA-MB-361 (P < 0.05) tumors as compared to untargeted PLD. Furthermore, the cardiotoxicity of αHER2/PLD was similar to that of PLD in human cardiomyocytes and in mice. Our results indicate that the one-step formulation of PLD by mPEG × HER2 is a simple method to confer tumor specificity, increase drug internalization and enhance the anticancer activity of PLD against HER2-overexpressing and doxorubicin-resistant breast cancer.


Assuntos
Anticorpos Biespecíficos/imunologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Nanopartículas/química , Polietilenoglicóis/química , Animais , Antineoplásicos/química , Transporte Biológico , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidade , Composição de Medicamentos , Humanos , Células MCF-7 , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Polietilenoglicóis/metabolismo , Polietilenoglicóis/toxicidade , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo
12.
Sci Rep ; 8(1): 17868, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30552393

RESUMO

The sensitivity of traditional enzyme-linked immunosorbent assays (ELISAs) is limited by the low binding avidity and heterogeneous orientation of capture antibodies coated on polystyrene-based microplates. Here, we developed a highly sensitive ELISA strategy by fixing poly-protein G-expressing cells on microplates to improve the coating amount and displayed orientation of capture antibodies. One or eight repeated fragment crystallisable (Fc) binding domains of protein G are stably expressed on the surface of BALB/c 3T3 cells (termed 1pG cells or 8pG cells), which then act as highly antibody-trapping microparticles. The 8pG cells showed higher antibody-trapping ability than the 1pG cells did. The antibody-coating amount of the 8pG cell-based microplates was 1.5-23 times and 1.2-6.8 times higher than that of traditional polystyrene-based and commercial protein G-based microplates, respectively. The 8pG cell-based microplates were then applied to an anti-IFN-α sandwich ELISA and an anti-CTLA4 competitive ELISA, respectively, and dramatically enhanced their detection sensitivity. Importantly, direct coating unpurified capture antibody produced by mammalian cells did not impair the antigen-capturing function of 8pG cell-based microplates. The 8pG cell-based microplates exhibited a significant improvement in antibody-coating amount and preserved the homogeneous orientation of capture antibodies, making them a potential replacement for traditional microplates in various formats of ELISAs.


Assuntos
Anticorpos/metabolismo , Proteínas de Bactérias/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Proteínas Recombinantes/metabolismo , Animais , Células 3T3 BALB , Proteínas de Bactérias/genética , Células Imobilizadas , Camundongos , Ligação Proteica , Proteínas Recombinantes/genética , Sensibilidade e Especificidade
13.
Theranostics ; 8(11): 3164-3175, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896310

RESUMO

Rationale: Increasing frequency of human exposure to PEG-related products means that healthy people are likely to have pre-existing anti-PEG antibodies (pre-αPEG Ab). However, the influence of pre-αPEG Abs on the pharmacokinetics (PK) and therapeutic efficacy of LipoDox is unknown. Methods: We generated two pre-αPEG Ab mouse models. First, naïve mice were immunized with PEGylated protein to generate an endogenous αPEG Ab titer (endo αPEG). Second, monoclonal αPEG Abs were passively transferred (αPEG-PT) into naïve mice to establish a αPEG titer. The naïve, endo αPEG and αPEG-PT mice were intravenously injected with 111in-labeled LipoDox to evaluate its PK. Tumor-bearing naïve, endo αPEG and αPEG-PT mice were intravenously injected with 111in-labeled LipoDox to evaluate its biodistribution. The therapeutic efficacy of LipoDox was estimated in the tumor-bearing mice. Results: The areas under the curve (AUC)last of LipoDox in endo αPEG and αPEG-PT mice were 11.5- and 15.6- fold less, respectively, than that of the naïve group. The biodistribution results suggested that pre-αPEG Ab can significantly reduce tumor accumulation and accelerate blood clearance of 111In-labeled LipoDox from the spleen. The tumor volumes of the tumor-bearing endo αPEG and αPEG-PT mice after treatment with LipoDox were significantly increased as compared with that of the tumor-bearing naïve mice. Conclusions: Pre-αPEG Abs were found to dramatically alter the PK and reduce the tumor accumulation and therapeutic efficacy of LipoDox. Pre-αPEG may have potential as a marker to aid development of personalized therapy using LipoDox and achieve optimal therapeutic efficacy.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Anticorpos/imunologia , Doxorrubicina/análogos & derivados , Neoplasias Experimentais/tratamento farmacológico , Animais , Antibióticos Antineoplásicos/imunologia , Antibióticos Antineoplásicos/farmacocinética , Anticorpos/sangue , Doxorrubicina/imunologia , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapêutico , Feminino , Lipossomos/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/metabolismo , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/uso terapêutico
14.
Sci Rep ; 8(1): 4256, 2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29511251

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

15.
Sci Rep ; 7(1): 11587, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912497

RESUMO

Systemic injection of therapeutic antibodies may cause serious adverse effects due to on-target toxicity to the antigens expressed in normal tissues. To improve the targeting selectivity to the region of disease sites, we developed protease-activated pro-antibodies by masking the binding sites of antibodies with inhibitory domains that can be removed by proteases that are highly expressed at the disease sites. The latency-associated peptide (LAP), C2b or CBa of complement factor 2/B were linked, through a substrate peptide of matrix metalloproteinase-2 (MMP-2), to an anti-epidermal growth factor receptor (EGFR) antibody and an anti-tumor necrosis factor-α (TNF-α) antibody. Results showed that all the inhibitory domains could be removed by MMP-2 to restore the binding activities of the antibodies. LAP substantially reduced (53.8%) the binding activity of the anti-EGFR antibody on EGFR-expressing cells, whereas C2b and CBa were ineffective (21% and 9.3% reduction, respectively). Similarly, LAP also blocked 53.9% of the binding activity of the anti-TNF-α antibody. Finally, molecular dynamic simulation showed that the masking efficiency of LAP, C2b and CBa was 33.7%, 10.3% and -5.4%, respectively, over the binding sites of the antibodies. This strategy may aid in designing new protease-activated pro-antibodies that attain high therapeutic potency yet reduced systemic on-target toxicity.


Assuntos
Anticorpos Monoclonais/química , Sítios de Ligação , Peptídeo Hidrolases/química , Domínios e Motivos de Interação entre Proteínas , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Especificidade de Anticorpos/imunologia , Ativação Enzimática/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Humanos , Metaloproteinase 2 da Matriz/química , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/farmacologia , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/química
16.
Anal Chem ; 89(11): 6082-6090, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28485140

RESUMO

Sensitive quantification of the pharmacokinetics of poly(ethylene glycol) (PEG) and PEGylated molecules is critical for PEGylated drug development. Here, we developed a sensitive sandwich enzyme-linked immunosorbent assay (ELISA) for PEG by tethering an anti-PEG antibody (AGP3) via tethers with different dimensions on the surface of 293T cells (293T/S-αPEG, short-type cells; 293T/L-αPEG, long-type cells; 293T/SL-αPEG, hybrid-type cells) to improve the binding capacity and detection limit for free PEG and PEGylated molecules. The binding capacity of hybrid-type cells for PEG-like molecules (CH3-PEG5K-FITC (FITC = fluorescein isothiocyanate) and eight-arm PEG20K-FITC) was at least 10-80-fold greater than that of 293T cells expressing anti-PEG antibodies with uniform tether lengths. The detection limit of free PEG (OH-PEG3K-NH2 and CH3-PEG5K-NH2) and PEG-like molecule (CH3-PEG5K-FITC, CH3-PEG5K-SHPP, and CH3-PEG5K-NIR797) was14-137 ng mL-1 in the hybrid-type cell-based sandwich ELISA. 293T/SL-αPEG cells also had significantly higher sensitivity for quantification of a PEGylated protein (PegIntron) and multiarm PEG macromolecules (eight-arm PEG20K-NH2 and eight-arm PEG40K-NH2) at 3.2, 16, and 16 ng mL-1, respectively. Additionally, the overall binding capacity of 293T/SL-αPEG cells for PEGylated macromolecules was higher than that of 293T/S-αPEG or 293T/L-αPEG cells. Anchoring anti-PEG antibodies on cells via variable-length tethers for cell-based sandwich ELISA, therefore, provides a sensitive, high-capacity method for quantifying free PEG and PEGylated molecules.


Assuntos
Anticorpos/metabolismo , Membranas/metabolismo , Polietilenoglicóis/análise , Reagentes de Ligações Cruzadas/química , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Humanos
17.
Sci Rep ; 7(1): 989, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28428542

RESUMO

The sensitivities of solid-phase immunoassays are limited by the quantity of detection antibodies bound to their antigens on the solid phase. Here, we developed a poly-protein G-expressing bacterium as an antibody-trapping microparticle to enhance the signals of immunoassays by increasing the accumulation of detection antibodies on the given antigen. Eight tandemly repeated fragment crystallisable (Fc) binding domains of protein G were stably expressed on the surface of Escherichia coli BL21 cells (termed BL21/8G). BL21/8G cells showed a higher avidity for trapping antibodies on their surface than monomeric protein G-expressing BL21 (BL21/1G) cells did. In the sandwich enzyme-linked immunosorbent assay (ELISA), simply mixing the detection antibody with BL21/8G provided a detection limit of 6 pg/mL for human interferon-α (IFN-α) and a limit of 30 pg/mL for polyethylene glycol (PEG)-conjugated IFN-α (Pegasys), which are better than that of the traditional ELISA (30 pg/mL for IFN-α and 100 pg/mL for Pegasys). Moreover, the sensitivity of the Western blot for low-abundance Pegasys (0.4 ng/well) was increased by 25 folds upon mixing of an anti-PEG antibody with BL21/8G cells. By simply being mixed with a detection antibody, the poly-protein G-expressing bacteria can provide a new method to sensitively detect low-abundance target molecules in solid-phase immunoassays.


Assuntos
Anticorpos Monoclonais/metabolismo , Antígenos de Bactérias/genética , Escherichia coli/crescimento & desenvolvimento , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Sítios de Ligação , Elementos Facilitadores Genéticos , Ensaio de Imunoadsorção Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Interferon gama/imunologia , Limite de Detecção
18.
J Biomed Nanotechnol ; 13(2): 192-03, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29377649

RESUMO

Solid lipid nanoparticles (SLNs) are suitable candidates for the delivery of various anti-cancer drugs. However, currently insufficient tumor-permeability and non-specific uptake by the reticuloendothelial system limits the application of SLNs. Here, we developed novel pH-sensitive cationic polyoxyethylene (PEGylated) SLNs (PEG-SLNs+) that could accumulate long-term at various tumor sites to enhance the therapeutic efficiency of camptothecin (CPT). These CPT-loaded PEG-SLNs+ (CPT-PEG-SLNs+) were spherical nanoparticles, with small size (∼52.3±1.7 nm), positive charge (∼34.3±3.5 mV) and high entrapment efficiency (∼99.4±1.7%). Drug release profile indicated the overall released amount of CPT from CPT-PEG-SLNs+ at pH 5.5 was 20.2% more than at pH 7.4, suggesting CPT-PEG-SLNs+ were a pH-sensitive SLNs. This PEG-SLNs+ could be efficiently uptaken into cells to inhibit the proliferation of CL1-5 cells (IC50 = 0.37 ±0.21 ug/ml) or HCC36 cells (IC50 = 0.16±0.43 ug/ml). In living animal, our PEG-SLNs+ could accumulate long-term (for more than 120 hours) in various types of tumor, including human lung carcinoma (NCI-H358, CRL5802, CL1-5), human colon carcinoma (HCT-116) and human hepatocellular carcinoma (HCC36), and CPT-PEG-SLNs+ could efficiently enhance the therapeutic efficiency of CPT to suppress the growth of the HCC36 or CL1-5 tumors. Therefore, Successful development of these pH-sensitive PEGylated cationic SLNs may provide a selective and efficient drug delivery system for cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Camptotecina/análogos & derivados , Proliferação de Células/efeitos dos fármacos , Lipídeos/farmacologia , Nanopartículas/química , Polietilenoglicóis/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Camptotecina/química , Camptotecina/farmacocinética , Camptotecina/farmacologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos , Lipídeos/química , Camundongos , Camundongos Nus , Tamanho da Partícula , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Ratos , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Sci Rep ; 6: 39119, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27991598

RESUMO

Attachment of polyethylene glycol (PEG) molecules to nanoparticles (PEGylation) is a widely-used method to improve the stability, biocompatibility and half-life of nanomedicines. However, the evaluation of the PEGylated nanomedicine pharmacokinetics (PK) requires the decomposition of particles and purification of lead compounds before analysis by high performance liquid chromatography (HPLC), mass spectrometry, etc. Therefore, a method to directly quantify un-decomposed PEGylated nanoparticles is needed. In this study, we developed anti-PEG bioparticles and combined them with anti-PEG antibodies to generate a quantitative enzyme-linked immunosorbent assay (ELISA) for direct measurement of PEGylated nanoparticles without compound purification. The anti-PEG bioparticles quantitative ELISA directly quantify PEG-quantum dots (PEG-QD), PEG-stabilizing super-paramagnetic iron oxide (PEG-SPIO), Lipo-Dox and PEGASYS and the detection limits were 0.01 nM, 0.1 nM, 15.63 ng/mL and 0.48 ng/mL, respectively. Furthermore, this anti-PEG bioparticle-based ELISA tolerated samples containing up to 10% mouse or human serum. There was no significant difference in pharmacokinetic studies of radiolabeled PEG-nanoparticles (Nano-X-111In) through anti-PEG bioparticle-based ELISA and a traditional gamma counter. These results suggest that the anti-PEG bioparticle-based ELISA may provide a direct and effective method for the quantitation of any whole PEGylated nanoparticles without sample preparation.


Assuntos
Anticorpos/metabolismo , Nanopartículas/química , Polietilenoglicóis/análise , Soro/química , Animais , Biotinilação , Ensaio de Imunoadsorção Enzimática , Humanos , Camundongos , Polietilenoglicóis/química , Pontos Quânticos
20.
PLoS One ; 11(8): e0160418, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27494183

RESUMO

Molecular weight markers that can tolerate denaturing conditions and be auto-detected by secondary antibodies offer great efficacy and convenience for Western Blotting. Here, we describe M&R LE protein markers which contain linear epitopes derived from the heavy chain constant regions of mouse and rabbit immunoglobulin G (IgG Fc LE). These markers can be directly recognized and stained by a wide range of anti-mouse and anti-rabbit secondary antibodies. We selected three mouse (M1, M2 and M3) linear IgG1 and three rabbit (R1, R2 and R3) linear IgG heavy chain epitope candidates based on their respective crystal structures. Western blot analysis indicated that M2 and R2 linear epitopes are effectively recognized by anti-mouse and anti-rabbit secondary antibodies, respectively. We fused the M2 and R2 epitopes (M&R LE) and incorporated the polypeptide in a range of 15-120 kDa auto-detecting markers (M&R LE protein marker). The M&R LE protein marker can be auto-detected by anti-mouse and anti-rabbit IgG secondary antibodies in standard immunoblots. Linear regression analysis of the M&R LE protein marker plotted as gel mobility versus the log of the marker molecular weights revealed good linearity with a correlation coefficient R2 value of 0.9965, indicating that the M&R LE protein marker displays high accuracy for determining protein molecular weights. This accurate, regular and auto-detected M&R LE protein marker may provide a simple, efficient and economical tool for protein analysis.


Assuntos
Anticorpos/análise , Western Blotting/métodos , Epitopos/imunologia , Animais , Anticorpos/imunologia , Biomarcadores/análise , Epitopos/genética , Imunoglobulina G/genética , Camundongos , Peso Molecular , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA