RESUMO
The unsaturated lipids produced by human gut bacteria have an extraordinary range of structural diversity, largely because of the isomerism of the carbon-carbon double bond (CâC) in terms of its position and stereochemistry. Characterizing distinct CâC configurations poses a considerable challenge in research, primarily owing to limitations in current bioanalytical methodologies. This study developed a novel structural lipidomics workflow by combining MELDI (meta-chloroperoxybenzoic acid epoxidation for lipid double-bond identification) with liquid chromatography-tandem mass spectrometry for CâC characterization. We utilized this workflow to quantitatively assess more than 50 CâC positional and cis/trans isomers of fatty acids and phospholipids from selected human gut bacteria. Strain-specific isomer profiles revealed unexpectedly high productivity of trans-10-octadecenoic acid by Enterococcus faecalis, Bifidobacterium longum, and Lactobacillus acidophilus among numerous trans-fatty acid isomers produced by gut bacteria. Isotope-tracking experiments suggested that gut bacteria produce trans-10-octadecenoic acid through the isomeric biotransformation of oleic acid in vitro and that such isomeric biotransformation of dietary oleic acid is dependent on the presence of gut bacteria in vivo.
RESUMO
Candida tropicalis-a prevalent gut commensal fungus in healthy individuals - contributes to intestinal health and disease. However, how commensal C. tropicalis influences intestinal homeostasis and barrier function is poorly understood. Here, we demonstrated that the reference strain of C. tropicalis (MYA-3404) ameliorated intestinal inflammation in murine models of chemically induced colitis and bacterial infection. Intestinal colonization of C. tropicalis robustly upregulated the expression of IL-17A and IL-22 to increase barrier function and promote proliferation of intestinal epithelial cells in the mouse colon. Metabolomics analysis of fecal samples from mice colonized with C. tropicalis revealed alterations in vitamin B3 metabolism, promoting conversion of nicotinamide to nicotinic acid. Although nicotinamide worsened colitis, treatment with nicotinic acid alleviated disease symptoms and enhanced epithelial proliferation and Th17 cell differentiation. Oral gavage of C. tropicalis mitigated nicotinamide-induced intestinal dysfunction in experimental colitis. Blockade of nicotinic acid production with nicotinamidase inhibitors lowered the protective effects against colitis in mice treated with C. tropicalis. Notably, a clinical C. tropicalis strain isolated from patients with candidemia lacked the protective effects against murine colitis observed with the reference strain. Together, our results highlight a novel role for C. tropicalis in resolving intestinal inflammation through the modulation of vitamin B3 metabolism.
⢠Protection against colitis conferred by intestinal colonization of Candida tropicalis depends on metabolic activity and strain⢠C. tropicalis MYA-3404 supplementation promotes intestinal epithelial barrier function through IL-17A and IL-22 expressed by Th17 cells, γδ T cells, and ILC3⢠MYA-3404 strain uses its enzymatic activity to modulate vitamin B3 metabolism for protective benefits.
Assuntos
Candida tropicalis , Colite , Interleucina-17 , Interleucina 22 , Interleucinas , Mucosa Intestinal , Camundongos Endogâmicos C57BL , Animais , Candida tropicalis/efeitos dos fármacos , Camundongos , Interleucina-17/metabolismo , Humanos , Colite/induzido quimicamente , Colite/microbiologia , Colite/tratamento farmacológico , Interleucinas/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Niacinamida/farmacologia , Niacina/farmacologia , Niacina/administração & dosagem , Modelos Animais de Doenças , Células Th17/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Colo/microbiologia , Colo/patologia , Inflamação/metabolismoRESUMO
During the summer of 2024, COVID-19 cases surged globally, driven by variants derived from JN.1 subvariants of SARS-CoV-2 that feature new mutations, particularly in the N-terminal domain (NTD) of the spike protein. In this study, we report on the neutralizing antibody (nAb) escape, infectivity, fusion, and stability of these subvariants-LB.1, KP.2.3, KP.3, and KP.3.1.1. Our findings demonstrate that all of these subvariants are highly evasive of nAbs elicited by the bivalent mRNA vaccine, the XBB.1.5 monovalent mumps virus-based vaccine, or from infections during the BA.2.86/JN.1 wave. This reduction in nAb titers is primarily driven by a single serine deletion (DelS31) in the NTD of the spike, leading to a distinct antigenic profile compared to the parental JN.1 and other variants. We also found that the DelS31 mutation decreases pseudovirus infectivity in CaLu-3 cells, which correlates with impaired cell-cell fusion. Additionally, the spike protein of DelS31 variants appears more conformationally stable, as indicated by reduced S1 shedding both with and without stimulation by soluble ACE2, and increased resistance to elevated temperatures. Molecular modeling suggests that the DelS31 mutation induces a conformational change that stabilizes the NTD and strengthens the NTD-Receptor-Binding Domain (RBD) interaction, thus favoring the down conformation of RBD and reducing accessibility to both the ACE2 receptor and certain nAbs. Additionally, the DelS31 mutation introduces an N-linked glycan modification at N30, which shields the underlying NTD region from antibody recognition. Our data highlight the critical role of NTD mutations in the spike protein for nAb evasion, stability, and viral infectivity, and suggest consideration of updating COVID-19 vaccines with antigens containing DelS31.
RESUMO
We investigate JN.1-derived subvariants SLip, FLiRT, and KP.2 for neutralization by antibodies in vaccinated individuals, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients, or class III monoclonal antibody S309. Compared to JN.1, SLip, KP.2, and especially FLiRT exhibit increased resistance to bivalent-vaccinated and BA.2.86/JN.1-wave convalescent human sera. XBB.1.5 monovalent-vaccinated hamster sera robustly neutralize FLiRT and KP.2 but have reduced efficiency for SLip. All subvariants are resistant to S309 and show decreased infectivity, cell-cell fusion, and spike processing relative to JN.1. Modeling reveals that L455S and F456L in SLip reduce spike binding for ACE2, while R346T in FLiRT and KP.2 strengthens it. These three mutations, alongside D339H, alter key epitopes in spike, likely explaining the reduced sensitivity of these subvariants to neutralization. Our findings highlight the increased neutralization resistance of JN.1 subvariants and suggest that future vaccine formulations should consider the JN.1 spike as an immunogen, although the current XBB.1.5 monovalent vaccine could still offer adequate protection.
Assuntos
Anticorpos Neutralizantes , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/imunologia , Animais , Humanos , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/virologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Cricetinae , Anticorpos Antivirais/imunologia , Fusão de Membrana , Anticorpos Monoclonais/imunologia , Mutação , Chlorocebus aethiops , Enzima de Conversão de Angiotensina 2/metabolismo , Epitopos/imunologia , Células Vero , Testes de Neutralização , Vacinas contra COVID-19/imunologiaRESUMO
As the new SARS-CoV-2 Omicron variants and subvariants emerge, there is an urgency to develop intranasal, broadly protective vaccines. Here, we developed highly efficacious, intranasal trivalent SARS-CoV-2 vaccine candidates (TVC) based on three components of the MMR vaccine: measles virus (MeV), mumps virus (MuV) Jeryl Lynn (JL1) strain, and MuV JL2 strain. Specifically, MeV, MuV-JL1, and MuV-JL2 vaccine strains, each expressing prefusion spike (preS-6P) from a different variant of concern (VoC), were combined to generate TVCs. Intranasal immunization of IFNAR1-/- mice and female hamsters with TVCs generated high levels of S-specific serum IgG antibodies, broad neutralizing antibodies, and mucosal IgA antibodies as well as tissue-resident memory T cells in the lungs. The immunized female hamsters were protected from challenge with SARS-CoV-2 original WA1, B.1.617.2, and B.1.1.529 strains. The preexisting MeV and MuV immunity does not significantly interfere with the efficacy of TVC. Thus, the trivalent platform is a promising next-generation SARS-CoV-2 vaccine candidate.
Assuntos
Administração Intranasal , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Feminino , SARS-CoV-2/imunologia , SARS-CoV-2/genética , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/virologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Camundongos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Cricetinae , Humanos , Vacina contra Sarampo-Caxumba-Rubéola/imunologia , Vacina contra Sarampo-Caxumba-Rubéola/administração & dosagem , Vírus do Sarampo/imunologia , Vírus do Sarampo/genética , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Vírus da Caxumba/imunologia , Vírus da Caxumba/genética , Camundongos Knockout , Mesocricetus , Imunoglobulina A/imunologia , Imunoglobulina A/sangueRESUMO
SARS-CoV-2 variants derived from the immune evasive JN.1 are on the rise worldwide. Here, we investigated JN.1-derived subvariants SLip, FLiRT, and KP.2 for their ability to be neutralized by antibodies in bivalent-vaccinated human sera, XBB.1.5 monovalent-vaccinated hamster sera, sera from people infected during the BA.2.86/JN.1 wave, and class III monoclonal antibody (Mab) S309. We found that compared to parental JN.1, SLip and KP.2, and especially FLiRT, exhibit increased resistance to COVID-19 bivalent-vaccinated human sera and BA.2.86/JN.1-wave convalescent sera. Interestingly, antibodies in XBB.1.5 monovalent vaccinated hamster sera robustly neutralized FLiRT and KP.2 but had reduced efficiency for SLip. These JN.1 subvariants were resistant to neutralization by Mab S309. In addition, we investigated aspects of spike protein biology including infectivity, cell-cell fusion and processing, and found that these subvariants, especially SLip, had a decreased infectivity and membrane fusion relative to JN.1, correlating with decreased spike processing. Homology modeling revealed that L455S and F456L mutations in SLip reduced local hydrophobicity in the spike and hence its binding to ACE2. In contrast, the additional R346T mutation in FLiRT and KP.2 strengthened conformational support of the receptor-binding motif, thus counteracting the effects of L455S and F456L. These three mutations, alongside D339H, which is present in all JN.1 sublineages, alter the epitopes targeted by therapeutic Mabs, including class I and class III S309, explaining their reduced sensitivity to neutralization by sera and S309. Together, our findings provide insight into neutralization resistance of newly emerged JN.1 subvariants and suggest that future vaccine formulations should consider JN.1 spike as immunogen, although the current XBB.1.5 monovalent vaccine could still offer adequate protection.
RESUMO
This paper proposes an alternative method for grating period measurement based on heterodyne grating interferometry. The optical configurations for measuring the period of reflection/transmission gratings were demonstrated, and four commercially available gratings were used to evaluate the effectiveness of the proposed method. Based on the phase-lock technique, the grating period could be obtained immediately through the phase wrapped/unwrapped process. Under precise measurement conditions, the grating period measurement error of the proposed method was better than 1 nm, and the grating period difference between product specifications was less than 1%. In addition, the measurement results of the proposed method also exhibited high similarity with optical microscopy measurements.
RESUMO
The diagnosis of inherited retinal degeneration (IRD) is challenging owing to its phenotypic and genotypic complexity. Clinical information is important before a genetic diagnosis is made. Metabolomics studies the entire picture of bioproducts, which are determined using genetic codes and biological reactions. We demonstrated that the common diagnoses of IRD, including retinitis pigmentosa (RP), cone-rod dystrophy (CRD), Stargardt disease (STGD), and Bietti's crystalline dystrophy (BCD), could be differentiated based on their metabolite heatmaps. Hundreds of metabolites were identified in the volcano plot compared with that of the control group in every IRD except BCD, considered as potential diagnosing markers. The phenotypes of CRD and STGD overlapped but could be differentiated by their metabolomic features with the assistance of a machine learning model with 100% accuracy. Moreover, EYS-, USH2A-associated, and other RP, sharing considerable similar characteristics in clinical findings, could also be diagnosed using the machine learning model with 85.7% accuracy. Further study would be needed to validate the results in an external dataset. By incorporating mass spectrometry and machine learning, a metabolomics-based diagnostic workflow for the clinical and molecular diagnoses of IRD was proposed in our study.
Assuntos
Aprendizado de Máquina , Metabolômica , Degeneração Retiniana , Retinose Pigmentar , Doença de Stargardt , Humanos , Metabolômica/métodos , Diagnóstico Diferencial , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/sangue , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Masculino , Feminino , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genética , Retinose Pigmentar/sangue , Retinose Pigmentar/metabolismo , Doença de Stargardt/genética , Adulto , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Biomarcadores/sangue , Metaboloma , Criança , Distrofias de Cones e Bastonetes/diagnóstico , Distrofias de Cones e Bastonetes/genética , Distrofias de Cones e Bastonetes/sangue , Distrofias de Cones e Bastonetes/metabolismo , Espectrometria de Massas , Degeneração Macular/sangue , Degeneração Macular/diagnóstico , Degeneração Macular/genéticaRESUMO
Drug abuse is a severe social problem worldwide. Particularly, the issue of new psychoactive substances (NPSs) have increasingly emerged. NPSs are structural or functional analogs of traditional illicit drugs, such as cocaine, cannabis, and amphetamine; these molecules provide the same or more severe neurological effects. Usually, immunoassays are utilized in the preliminary screening method. However, NPSs have poor detectability in commercially available immunoassay kits. Meanwhile, various chromatography combined with the mass spectrometry platform have been developed to quantify NPSs. Still, a significant amount of time and resources are required during these procedures. Therefore, we established a rapid analytical platform for NPSs employing paper-loaded direct analysis in real time triple quadrupole mass spectrometry (pDART-QqQ-MS). We implemented this platform for the semiquantitative analysis of forensic drug tests in urine. This platform significantly shrinks the analytical time of a single sample within 30 s and requires a low volume of the specimen. The platform can detect 21 NPSs in urine mixtures at a lower limit of qualification of concentration ranging from 20 to 75 nanograms per milliliter (ng mL-1) and is lower than the cutoff value of currently available immune-based devices for detecting multiple drugs (1000 ng mL-1). Urine samples from drug addicts have been collected to verify the platform's effectiveness. By combining efficiency and accuracy, our platform offers a promising solution for addressing the challenges posed by NPSs in drug abuse detection.
Assuntos
Drogas Ilícitas , Psicotrópicos , Detecção do Abuso de Substâncias , Humanos , Psicotrópicos/análise , Psicotrópicos/urina , Detecção do Abuso de Substâncias/métodos , Drogas Ilícitas/análise , Drogas Ilícitas/urina , Limite de Detecção , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas/métodosRESUMO
The rapid evolution of SARS-CoV-2 variants presents a constant challenge to the global vaccination effort. In this study, we conducted a comprehensive investigation into two newly emerged variants, BA.2.87.1 and JN.1, focusing on their neutralization resistance, infectivity, antigenicity, cell-cell fusion, and spike processing. Neutralizing antibody (nAb) titers were assessed in diverse cohorts, including individuals who received a bivalent mRNA vaccine booster, patients infected during the BA.2.86/JN.1-wave, and hamsters vaccinated with XBB.1.5-monovalent vaccine. We found that BA.2.87.1 shows much less nAb escape from WT-BA.4/5 bivalent mRNA vaccination and JN.1-wave breakthrough infection sera compared to JN.1 and XBB.1.5. Interestingly, BA.2.87.1 is more resistant to neutralization by XBB.1.5-monovalent-vaccinated hamster sera than BA.2.86/JN.1 and XBB.1.5, but efficiently neutralized by a class III monoclonal antibody S309, which largely fails to neutralize BA.2.86/JN.1. Importantly, BA.2.87.1 exhibits higher levels of infectivity, cell-cell fusion activity, and furin cleavage efficiency than BA.2.86/JN.1. Antigenically, we found that BA.2.87.1 is closer to the ancestral BA.2 compared to other recently emerged Omicron subvariants including BA.2.86/JN.1 and XBB.1.5. Altogether, these results highlight immune escape properties as well as biology of new variants and underscore the importance of continuous surveillance and informed decision-making in the development of effective vaccines. IMPORTANCE: This study investigates the recently emerged SARS-CoV-2 variants, BA.2.87.1 and JN.1, in comparison to earlier variants and the parental D614G. Varied infectivity and cell-cell fusion activity among these variants suggest potential disparities in their ability to infect target cells and possibly pathogenesis. BA.2.87.1 exhibits lower nAb escape from bivalent mRNA vaccinee and BA.2.86/JN.1-infected sera than JN.1 but is relatively resistance to XBB.1.5-vaccinated hamster sera, revealing distinct properties in immune reason and underscoring the significance of continuing surveillance of variants and reformulation of vaccines. Antigenic differences between BA.2.87.1 and other earlier variants yield critical information not only for antibody evasion but also for viral evolution. In conclusion, this study furnishes timely insights into the spike biology and immune escape of the emerging variants BA.2.87.1 and JN.1, thus guiding effective vaccine development and informing public health interventions.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Fusão Celular , Evasão da Resposta Imune , SARS-CoV-2 , Animais , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , COVID-19/imunologia , COVID-19/virologia , Humanos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Cricetinae , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Vacinas contra COVID-19/imunologiaRESUMO
The rapid evolution of SARS-CoV-2 variants presents a constant challenge to the global vaccination effort. In this study, we conducted a comprehensive investigation into two newly emerged variants, BA.2.87.1 and JN.1, focusing on their neutralization resistance, infectivity, antigenicity, cell-cell fusion, and spike processing. Neutralizing antibody (nAb) titers were assessed in diverse cohorts, including individuals who received a bivalent mRNA vaccine booster, patients infected during the BA.2.86/JN.1-wave, and hamsters vaccinated with XBB.1.5-monovalent vaccine. We found that BA.2.87.1 shows much less nAb escape from WT-BA.4/5 bivalent mRNA vaccination and JN.1-wave breakthrough infection sera compared to JN.1 and XBB.1.5. Interestingly. BA.2.87.1 is more resistant to neutralization by XBB.15-monovalent-vaccinated hamster sera than BA.2.86/JN.1 and XBB.1.5, but efficiently neutralized by a class III monoclonal antibody S309, which largely fails to neutralize BA.2.86/JN.1. Importantly, BA.2.87.1 exhibits higher levels of infectivity, cell-cell fusion activity, and furin cleavage efficiency than BA.2.86/JN.1. Antigenically, we found that BA.2.87.1 is closer to the ancestral BA.2 compared to other recently emerged Omicron subvariants including BA.2.86/JN.1 and XBB.1.5. Altogether, these results highlight immune escape properties as well as biology of new variants and underscore the importance of continuous surveillance and informed decision-making in the development of effective vaccines.
RESUMO
Dietary patterns and corresponding gut microbiota profiles are associated with various health conditions. A diet rich in polyphenols, primarily plant-based, has been shown to promote the growth of probiotic bacteria in the gastrointestinal tract, subsequently reducing the risk of metabolic disorders in the host. The beneficial effects of these bacteria are largely due to the specific metabolites they produce, such as short-chain fatty acids and membrane proteins. In this study, we employed a metabolomics-guided bioactive metabolite identification platform that included bioactivity testing using in vitro and in vivo assays to discover a bioactive metabolite produced from probiotic bacteria. Through this approach, we identified 5'-methylthioadenosine (MTA) as a probiotic bacterial-derived metabolite with anti-obesity properties. Furthermore, our findings indicate that MTA administration has several regulatory impacts on liver functions, including modulating fatty acid synthesis and glucose metabolism. The present study elucidates the intricate interplay between dietary habits, gut microbiota, and their resultant metabolites.
Assuntos
Desoxiadenosinas , Microbioma Gastrointestinal , Doenças Metabólicas , Tionucleosídeos , Humanos , Metionina , Bifidobacterium , RacemetioninaRESUMO
Mass spectrometry imaging (MSI) visualizes spatial distribution of molecules in a biological tissue. However, compared with traditional microscopy-based imaging, conventional MSI is limited to its spatial resolution, resulting in difficulties in identifying detailed tissue morphological characters, such as lesion boundary or nanoscale structures. On the other hand, expansion microscopy, a tissue expansion method widely used in optical imaging to improve morphological details, has great potential to solve insufficient spatial resolution in mass spectrometry imaging (MSI). However, expansion microscopy was not originally designed for MSI, resulting in problems while combining expansion microscopy and MSI such as expanded sample fragility, vacuum stability and molecule loss during sample preparation. In this research we developed a MALDI MSI compatible expansion protocol by adjusting sample preparation methods during tissue expansion, successfully combining expansion microscopy with MSI. After tissue expansion the expanded sample can be readily applied to MALDI MSI sample preparation and further data acquisition. The MALDI MSI compatible expansion protocol has great potential to be widely applied in MALDI MSI sample preparation to facilitate improvement of MSI spatial resolution.
Assuntos
Microscopia , Imagem Óptica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Expansão de Tecido , LasersRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The Compendium of Materia Medica and the Classic of Materia Medica, the two most prominent records of traditional Chinese medicine, documented the therapeutic benefits of Ganoderma sinense particularly in addressing pulmonary-related ailments. Ganoderma formosanum, an indigenous subspecies of G. sinense from Taiwan, has demonstrated the same therapeutic properties. AIM OF THE STUDY: The aim of this study is to identify bioactive compounds and evaluate the potential of G. formosanum extracts as a novel treatment to alleviate pulmonary fibrosis (PF). Using an in-house drug screening platform, two-stage screening was performed to determine their anti-fibrotic efficacy. METHODS AND MATERIALS: G. formosanum was fractionated into four partitions by solvents of different polarities. To determine their antifibrotic and pro-apoptotic properties, the fractions were analyzed using two TGF-ß1-induced pulmonary fibrosis cell models (NIH-3T3) and human pulmonary fibroblast cell lines, immunoblot, qRT-PCR, and annexin V assays. Subsequently, transcriptomic analysis was conducted to validate the findings and explore possible molecular pathways. The identification of potential bioactive compounds was achieved through UHPLC-MS/MS analysis, while molecular interaction study was investigated by multiple ligands docking and molecular dynamic simulations. RESULTS: The ethyl acetate fraction (EAF) extracted from G. formosanum demonstrated substantial anti-fibrotic and pro-apoptotic effects on TGF-ß1-induced fibrotic models. Moreover, the EAF exhibited no discernible cytotoxicity. Untargeted UHPLC-MS/MS analysis identified potential bioactive compounds in EAF, including stearic acid, palmitic acid, and pentadecanoic acid. Multiple ligands docking and molecular dynamic simulations further confirmed that those bioactive compounds possess the ability to inhibit TGF-ß receptor 1. CONCLUSION: Potential bioactive compounds in G. formosanum were successfully extracted and identified in the EAF, whose anti-fibrotic and pro-apoptotic properties could potentially modulate pulmonary fibrosis. This finding not only highlights the EAF's potential as a promising therapeutic candidate to treat pulmonary fibrosis, but it also elucidates how Ganoderma confers pulmonary health benefits as described in the ancient texts.
Assuntos
Ganoderma , Materia Medica , Fibrose Pulmonar , Humanos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Materia Medica/farmacologia , Espectrometria de Massas em Tandem , Fibrose , PulmãoRESUMO
SCOPE: Particulate matter (PM) contains toxic organic matter and heavy metals that enter the entire body through blood flow and may cause mortality. Ganoderma formosanum mycelium, a valuable traditional Chinese medicine that has been used since ancient times, contains various active ingredients that can effectively impede inflammatory responses on murine alveolar macrophages induced by PM particles. METHODS AND RESULTS: An experimental study assessing the effect of G. formosanum mycelium extract's water fraction (WA) on PM-exposed murine alveolar macrophages using ROS measurement shows that WA reduces intracellular ROS by 12% and increases cell viability by 16% when induced by PM particles. According to RNA-Sequencing, western blotting, and real-time qPCR are conducted to analyze the metabolic pathway. The WA reduces the protein ratio in p-NF-κB/NF-κB by 18% and decreases the expression of inflammatory genes, including IL-1ß by 38%, IL-6 by 29%, and TNF-α by 19%. Finally, the identification of seven types of anti-inflammatory compounds in the WA fraction is achieved through UHPLC-ESI-Orbitrap-Elite-MS/MS analysis. These compounds include anti-inflammatory compounds, namely thiamine, adenosine 5'-monophosphate, pipecolic acid, L-pyroglutamic acid, acetyl-L-carnitine, D-mannitol, and L-malic acid. CONCLUSIONS: The study suggests that the WA has the potential to alleviate the PM -induced damage in alveolar macrophages, demonstrating its anti-inflammatory properties.
Assuntos
Ganoderma , Macrófagos Alveolares , NF-kappa B , Camundongos , Animais , Macrófagos Alveolares/química , Macrófagos Alveolares/metabolismo , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem , Material Particulado/toxicidade , Material Particulado/análise , Anti-Inflamatórios/farmacologia , Pulmão/química , Pulmão/metabolismoRESUMO
The prevalence of drug-resistant bacterial pathogens foreshadows a healthcare crisis. Calcium-dependent antibiotics (CDAs) are promising candidates to combat infectious diseases as many of them show modes of action (MOA) orthogonal to widespread resistance mechanisms. The calcium dependence is nonetheless one of the hurdles toward realizing their full potential. Using laspartomycin C (LspC) as a model, we explored the possibility of reducing, or even eliminating, its calcium dependence. We report herein a synthetic LspC analogue (B1) whose activity no longer depends on calcium and is instead induced by phenylboronic acid (PBA). In LspC, Asp1 and Asp7 coordinate to calcium to anchor it in the active conformation; these residues are replaced by serine in B1 and condense with PBA to form a boronic ester with the same anchoring effect. Using thin-layer chromatography, MS, NMR, and complementation assays, we demonstrate that B1 inhibits bacterial growth via the same MOA as LspC, i.e., sequestering the cell wall biosynthetic intermediate undecaprenyl phosphate. B1 is as potent and effective as LspC against several Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. Our success in converting a CDA to a boron-dependent antibiotic opens a new avenue in the design and functional control of drug molecules.
Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/química , Cálcio , Boro , Bactérias , Testes de Sensibilidade MicrobianaRESUMO
BACKGROUND: CDK4/6 inhibitors (CDK4/6i) have shown great efficacy in prolonging progression-free survival and is the current standard of care for hormone positive (HR(+)) metastatic breast cancer (mBC). Despite well tolerability and ease of use, the most common side effect of CDK4/6i is myelosuppression, with neutropenia the most prevalent adverse effect. Studies show that the prevalence and severity of neutropenia are more marked in Asian patients, although details remain obscure. METHODS: In this study, we retrospectively analyzed 105 Taiwanese patients who received palbociclib for HR(+) HER2(-) mBC at the Taipei Veterans General Hospital. To investigate a possible genetic association for high prevalence of neutropenia, we queried the Taiwan Biobank with publicly available germline databases (ALFA, gnomAD, ExAC, 1000 Genomes project, HapMap), for the allele frequencies of 4 neutropenia-related SNPs (ABCB1_rs1045642, ABCB1_rs1128503, ERCC1_rs3212986, ERCC1_rs11615) and compared between different ethnicities. In addition, one of the patients was a long-term patient with peritoneal dialysis. We quantified the levels of palbociclib in her serum and peritoneal fluid by liquid chromatography-mass spectrometry (LC-MS). RESULTS: Interestingly, in our cohort, early neutropenia nadir (occurred within 56 days of start) was associated with worse treatment outcome, while occurrence of grade 3/4 neutropenia was associated with better outcome. We observed an extremely high incidence of neutropenia (96.2% any grade, 70.4% grade 3/4). In the analyzed germline databases, we discovered a higher SNP frequency of the T allele in ABCB1_rs1128503, a lower frequency of T allele in ABCB1_rs1045642, and a higher SNP frequency of G allele in ERCC1_rs11615. We observed that palbociclib levels in peritoneal dialysate ranged from around 20-50 ppb, and serum levels reached 100-110 ppb during drug administration and decreased to <10 ppb during discontinuation. CONCLUSION: Our retrospective analysis of real world palbociclib use reveals an association with grade 3/4 neutropenia with better outcome and early neutropenia nadir with worse outcome. Our findings of Asian specific SNPs support a predisposition toward profound and prevalent neutropenia in Asian patients under CDK4/6i. We also report the first pharmacokinetics analysis on a patient with peritoneal dialysis receiving CDK4/6i. In summary, our study provides novel clinical and genotypic insights into CDK4/6i associated neutropenia.
Assuntos
Neoplasias da Mama , Neutropenia , Piperazinas , Piridinas , Feminino , Humanos , Estudos Retrospectivos , Prevalência , Receptor ErbB-2/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neutropenia/induzido quimicamente , Neutropenia/epidemiologia , Neutropenia/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Quinase 4 Dependente de CiclinaRESUMO
Tumor metastasis and cancer recurrence are often a result of cell heterogeneity, where specific subpopulations of tumor cells may be resistant to radio- or chemotherapy. To investigate this physiological and phenotypic diversity, single-cell metabolomics provides a powerful approach at the chemical level, where distinct lipid profiles can be found in different tumor cells. Here, we established a highly sensitive platform using nanoflow liquid chromatography (nLC) combined with multinozzle emitter electrospray ionization mass spectrometry for more in-depth metabolomics profiling. Our platform identified 15 and 17 lipids from individual osteosarcoma (U2OS) and glioblastoma (GBM) cells when analyzing single-cell samples. Additionally, we used the functional single-cell selection (fSCS) pipeline to analyze the subpopulations of cells with a DNA damage response (DDR) in U2OS cells and fast migration in GBM cells. Specifically, we observed a down-regulation of polyunsaturated fatty acids (PUFAs) in U2OS cells undergoing DDR, such as fatty acids FA 20:3; O2 and FA 17:4; O3. Furthermore, ceramides (Cer 38:0; O3) and triglycerides (TG 36:0) were found to be down-regulated in fast-migrating GBM cells compared to the slow-migrating subpopulation. These findings suggest the potential roles of these metabolites and/or lipids in the cellular behavior of the subpopulations.
Assuntos
Glioblastoma , Espectrometria de Massas por Ionização por Electrospray , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Metabolômica/métodos , Ácidos Graxos Insaturados/metabolismo , TriglicerídeosRESUMO
Enzymatic digestion remains one of the "rate-determining steps" in the bottom-up analysis of proteins. However, by performing digestion in microdroplets generated from electrosonic spray, the reaction could be accelerated to a timescale lower than milliseconds. Here, we describe a simple and rapid online digestion platform named online microdroplet-assisted enzymatic digestion (MAED). It involves the integration of intact protein separation with enzymatic digestion in microdroplets. Via online MAED, various protein standards, including an antibody standard, were characterized in a bottom-up manner without prior digestion, and high sequence coverages were obtained. We further extended the application of online MAED to a more complex sample, mouse brain extract, where protein identifications were successfully yielded. Compared with the conventional bottom-up approach, a more comprehensive characterization could be obtained particularly for low molecular weight proteins. In short, we provide a rapid and alternative bottom-up analysis in a top-down fashion as well as a new possibility for microdroplet chemistry.
Assuntos
Digestão , Proteínas , Animais , Camundongos , Proteínas/químicaRESUMO
Depression is a severe mental disorder, with approximately 300 million people suffering from it. Recent studies have demonstrated that chronic neuroinflammation is significantly associated with intestinal flora and barrier function in depression. As a therapeutic herb, garlic (Allium sativum L.) has detoxification, antibacterial activity, and antiinflammatory functions; however, its antidepressant effect through gut microbiota and barrier function has not been reported yet. The present study investigated the effect of garlic essential oil (GEO) and its active constituent diallyl disulfide (DADS) on depressive behavior by attenuating the NLRP3 inflammasome, alternating intestinal barrier function and gut microbiota in an unpredictable chronic mild stress (US) model in rats. This study found that dopamine and serotonin turnover rates were reduced significantly with a low dose of GEO (25 mg per kg bw). The GEO groups effectively reversed sucrose preference and increased the total distance traveled in the behavioral test. Moreover, 25 mg per kg bw GEO inhibited the UCMS-induced activated inflammatory response, reflected by reduced expression in the frontal cortex of NLRP3, ASC, caspase-1, and its downstream IL-1ß proteins, as well as the concentration of IL-1ß and TNF-α in the serum. Supplementation with GEO increased the expression of occludin and ZO-1 and the concentration of short-chain fatty acids to influence the impact of intestinal permeability in depressive conditions. The results revealed that GEO administration caused significant changes in the α and ß diversity and abundance of certain bacteria. At the genus level, GEO administration significantly increased the relative abundance, particularly beneficial SCFA-producing bacteria, and may improve depression-like behavior. In conclusion, these results indicated the antidepressant effects of GEO involved in the inflammatory pathway, short-chain fatty acids, intestinal integrity, and intestinal composition.