Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Radiol Med ; 128(9): 1148-1161, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37462887

RESUMO

OBJECTIVES: Glymphatic system maintains brain fluid circulation via active transportation of astrocytic aquaporin-4 in perivascular space. The diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) is an established method measuring perivascular glymphatic activity, but comprehensive investigations into its influential factors are lacking. METHODS: Community-dwelling older adults underwent brain MRI scans, neuropsychiatric, and multi-domain assessments. Blood biomarker tests included glial fibrillary acidic protein (GFAP) for astrocyte injury. RESULTS: In 71 enrolled participants, the DTI-ALPS index was associated with modifiable factors, including lipid profile (high-density lipoprotein, r = 0.396; very-low-density lipoprotein, r = - 0.342), glucose intolerance (diabetes mellitus, standardized mean difference (SMD) = 0.7662; glycated hemoglobin, r = - 0.324), obesity (body mass index, r = - 0.295; waist, r = - 0.455), metabolic syndrome (SMD = - 0.6068), cigarette-smoking (SMD = - 0.6292), and renal clearance (creatinine, r = - 0.387; blood urea nitrogen, r = - 0.303). Unmodifiable associative factors of DTI-ALPS were age (r = - 0.434) and sex (SMD = 1.0769) (all p < 0.05). A correlation of DTI-ALPS and blood GFAP was noticed (r = - 0.201, one-tailed t-test for the assumption that astrocytic injury impaired glymphatic activity, p = 0.046). Their cognitive correlations diverged, domain-specific for DTI-ALPS (Facial Memory Test, r = 0.272, p = 0.022) but global cognition-related for blood GFAP (MoCA, r = - 0.264, p = 0.026; ADAS-cog, r = 0.304, p = 0.010). CONCLUSION: This correlation analysis revealed multiple modifiable and unmodifiable association factors to the glymphatic image marker. The DTI-ALPS index correlated with various metabolic factors that are known to increase the risk of vascular diseases such as atherosclerosis. Furthermore, the DTI-ALPS index was associated with renal indices, and this connection might be a link of water regulation between the two systems. In addition, the astrocytic biomarker, plasma GFAP, might be a potential marker of the glymphatic system; however, more research is needed to confirm its effectiveness.


Assuntos
Sistema Glinfático , Humanos , Idoso , Sistema Glinfático/diagnóstico por imagem , Imagem de Tensor de Difusão , Astrócitos , Fatores de Risco , Encéfalo
2.
Hum Brain Mapp ; 44(7): 2669-2683, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36807461

RESUMO

The preprocessing of diffusion magnetic resonance imaging (dMRI) data involve numerous steps, including the corrections for head motion, susceptibility distortion, low signal-to-noise ratio, and signal drifting. Researchers or clinical practitioners often need to configure different preprocessing steps depending on disparate image acquisition schemes, which increases the technical threshold for dMRI analysis for nonexpert users. This could cause disparities in data processing approaches and thus hinder the comparability between studies. To make the dMRI data processing steps transparent and adapt to various dMRI acquisition schemes for researchers, we propose a semi-automated pipeline tool for dMRI named integrated diffusion image operator or iDIO. This pipeline integrates features from a wide range of advanced dMRI software tools and targets at providing a one-click solution for dMRI data analysis, via adaptive configuration for a set of suggested processing steps based on the image header of the input data. Additionally, the pipeline provides options for post-processing, such as estimation of diffusion tensor metrics and whole-brain tractography-based connectomes reconstruction using common brain atlases. The iDIO pipeline also outputs an easy-to-interpret quality control report to facilitate users to assess the data quality. To keep the transparency of data processing, the execution log and all the intermediate images produced in the iDIO's workflow are accessible. The goal of iDIO is to reduce the barriers for clinical or nonspecialist users to adopt the state-of-art dMRI processing steps.


Assuntos
Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo , Imageamento por Ressonância Magnética , Software
3.
Neuroimage Clin ; 35: 103044, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35597030

RESUMO

BACKGROUND AND PURPOSE: MRI images timely and accurately reflect ischemic injuries to the brain tissues and, therefore, can support clinical decision-making of acute ischemic stroke (AIS). To maximize the information provided by the MRI images, we leverage deep learning models to segment, classify, and map lesion distributions of AIS. METHODS: We evaluated brain MRI images of AIS patients from 2017 to 2020 at a tertiary teaching hospital and developed the Semantic Segmentation Guided Detector Network (SGD-Net), composed of the first U-shaped model for segmentation in diffusion-weighted imaging (DWI) and the second model for binary classification of lesion size (lacune vs. non-lacune) and circulatory territory of lesion location (anterior vs. posterior circulation). Next, we modified the two-stage deep learning model into SGD-Net Plus by automatically segmenting AIS lesions in DWI images and registering the lesion in T1-weighted images and the brain atlases. RESULTS: The final enrollment (216 patients with 4606 slices) was divided into 80% for model development and 20% for testing. S1 model segmented AIS lesions in DWI images accurately with a pixel accuracy > 99% (Dice 0.806-0.828 and IoU 0.675-707). In comprehensive evaluation of classification performance, the two-stage SGD-Net outperformed the traditional one-stage models in classifying AIS lesion size (accuracy 0.867-0.956 vs. 0.511-0.867, AUROC 0.962-0.992 vs. 0.528-0.937, AUPRC 0.964-0.994 vs. 0.549-0.938) and location (accuracy 0.860-0.930 vs. 0.326-0.721, AUROC 0.936-0.988 vs. 0.493-0.833, AUPRC 0.883-0.978 vs. 0.365-0.695). The precise lesion segmentation at the first stage of the deep learning model was the basis for further application. After that, the modified two-stage model SGD-Net Plus accurately reported the volume, region percentage, and lesion percentage of each region on the selected brain atlas. Its reports provided clear descriptions and quantifications of the AIS-related brain injuries on white matter tracts, Brodmann areas, and cytoarchitectonic areas. CONCLUSION: Domain knowledge-oriented design of artificial intelligence applications can deepen our understanding of patients' conditions and strengthen the use of MRI for patient care. SGD-Net precisely segments AIS lesions on DWI and accurately classifies the lesions. In addition, SGD-Net Plus maps the AIS lesions and quantifies their occupancy in each brain region. They are practical tools to meet the clinical needs and enrich educational resources of neuroimage.


Assuntos
Mapeamento Encefálico , Processamento de Imagem Assistida por Computador , AVC Isquêmico , Inteligência Artificial , Mapeamento Encefálico/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , AVC Isquêmico/diagnóstico por imagem
5.
Front Aging Neurosci ; 13: 753236, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744693

RESUMO

Background: The corpus callosum (CC) is the most prominent white matter connection for interhemispheric information transfer. It is implicated in a variety of cognitive functions, which tend to decline with age. The region-specific projections of the fiber bundles with microstructural heterogeneity of the CC are associated with cognitive functions and diseases. However, how the CC is associated with the information transfer within functional networks and the connectivity changes during aging remain unclear. Studying the CC topography helps to understand the functional specialization and age-related changes of CC subregions. Methods: Diffusion tractography was used to subdivide the CC into seven subregions from 1,086 healthy volunteers within a wide age range (21-90 years), based on the connections to the cortical parcellations of the functional networks. Quantitative diffusion indices and connection probability were calculated to study the microstructure differences and age-related changes in the CC subregions. Results: According to the population-based probabilistic topography of the CC, part of the default mode network (DMN) and limbic network (LN) projected fibers through the genu and rostrum; the frontoparietal network (FPN), ventral attention network (VA) and somatomotor networks (SM) were interconnected by the CC body; callosal fibers arising from the part of the default mode network (DMN), dorsal attention network (DA) and visual network (VIS) passed through the splenium. Anterior CC subregions interconnecting DMN, LN, FPN, VA, and SM showed lower fractional anisotropy (FA) and higher mean diffusivity (MD) and radial diffusivity (RD) than posterior CC subregions interconnecting DA and VIS. All the CC subregions showed slightly increasing FA and decreasing MD, RD, and axial diffusivity (AD) at younger ages and opposite trends at older ages. Besides, the anterior CC subregions exhibited larger microstructural and connectivity changes compared with the posterior CC subregions during aging. Conclusion: This study revealed the callosal subregions related to functional networks and uncovered an overall "anterior-to-posterior" region-specific changing trend during aging, which provides a baseline to identify the presence and timing of callosal connection states.

6.
Front Neurosci ; 15: 702353, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646116

RESUMO

Diffusion Tensor Imaging (DTI) tractography has been widely used in brain tumor surgery to ensure thorough resection and minimize functional damage. However, due to enhanced anisotropic uncertainty in the area with peritumoral edema, diffusion tractography is generally not practicable leading to high false-negative results in neural tracking. In this study, we evaluated the usefulness of the neurite orientation dispersion and density imaging (NODDI) derived tractography for investigating structural heterogeneity of the brain in patients with brain tumor. A total of 24 patients with brain tumors, characterized by peritumoral edema, and 10 healthy counterparts were recruited from 2014 to 2021. All participants underwent magnetic resonance imaging. Moreover, we used the images obtained from the healthy participants for calibrating the orientation dispersion threshold for NODDI-derived corticospinal tract (CST) reconstruction. Compared to DTI, NODDI-derived tractography has a great potential to improve the reconstruction of fiber tracking through regions of vasogenic edema. The regions with edematous CST in NODDI-derived tractography demonstrated a significant decrease in the intracellular volume fraction (VFic, p < 0.000) and an increase in the isotropic volume fraction (VFiso, p < 0.014). Notably, the percentage of the involved volume of the concealed CST and lesion-to-tract distance could reflect the motor function of the patients. After the tumor resection, four patients with 1-5 years follow-up were showed subsidence of the vasogenic edema and normal CST on DTI tractography. NODDI-derived tractography revealed tracts within the edematous area and could assist neurosurgeons to locate the neural tracts that are otherwise not visualized by conventional DTI tractography.

7.
Front Aging Neurosci ; 13: 700764, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408645

RESUMO

Objective: Although previous studies postulated that physical and cognitive decline codeveloped in preclinical dementia, the interconnected relationship among subjective cognitive complaints (SCCs), objective cognitive performance, and physical activity remained hazy. We investigated the mediating roles of physical activity between subjective and objective cognition. Diffusion tensor imaging (DTI) was utilized to test our hypothesis that brain white matter microstructural changes underlie the physical-cognitive decline in subjective cognitive decline (SCD). Methods: We enrolled cognitively normal older adults aged > 50 years in the Community Medicine Research Center of Keelung Chang Gung Memorial Hospital during 2017-2020. Regression models analyzed mediation effects of physical activity between subjective and objective cognition. The self-reported AD8 questionnaire assessed SCCs. The SCD group, defined by AD8 score ≥ 2, further underwent diffusion MRI scans. Those who agreed to record actigraphy also wore the SOMNOwatch™ for 72 h. Spearman's correlation coefficients evaluated the associations of diffusion indices with physical activity and cognitive performance. Results: In 95 cognitively normal older adults, the AD8 score and the Montreal Cognitive Assessment (MoCA) score were mediated partially by the metabolic equivalent of the International Physical Activity Questionnaire-Short Form (IPAQ-SF MET) and fully by the sarcopenia score SARC-F. That is, the relation between SCCs and poorer cognitive performance was mediated by physical inactivity. The DTI analysis of 31 SCD participants found that the MoCA score correlated with mean diffusivity at bilateral inferior cerebellar peduncles and the pyramids segment of right corticospinal tract [p < 0.05, false discovery rate (FDR) corrected]. The IPAQ-SF MET was associated with fractional anisotropy (FA) at the right posterior corona radiata (PCR) (p < 0.05, FDR corrected). In 15 SCD participants who completed actigraphy recording, the patterns of physical activity in terms of intradaily variability and interdaily stability highly correlated with FA of bilateral PCR and left superior corona radiata (p < 0.05, FDR corrected). Conclusions: This study addressed the role of physical activity in preclinical dementia. Physical inactivity mediated the relation between higher SCCs and poorer cognitive performance. The degeneration of specific white matter tracts underlay the co-development process of physical-cognitive decline in SCD.

8.
Magn Reson Med ; 86(3): 1514-1530, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33960501

RESUMO

PURPOSE: Recent advances in diffusion-weighted MRI provide "restricted diffusion signal fraction" and restricting pore size estimates. Materials based on co-electrospun oriented hollow cylinders have been introduced to provide validation for such methods. This study extends this work, exploring accuracy and repeatability using an extended acquisition on a 300 mT/m gradient human MRI scanner, in substrates closely mimicking tissue, that is, non-circular cross-sections, intra-voxel fiber crossing, intra-voxel distributions of pore-sizes, and smaller pore-sizes overall. METHODS: In a single-blind experiment, diffusion-weighted data were collected from a biomimetic phantom on a 3T Connectom system using multiple gradient directions/diffusion times. Repeated scans established short-term and long-term repeatability. The total scan time (54 min) matched similar protocols used in human studies. The number of distinct fiber populations was estimated using spherical deconvolution, and median pore size estimated through the combination of CHARMED and AxCaliber3D framework. Diffusion-based estimates were compared with measurements derived from scanning electron microscopy. RESULTS: The phantom contained substrates with different orientations, fiber configurations, and pore size distributions. Irrespective of one or two populations within the voxel, the pore-size estimates (~5 µm) and orientation-estimates showed excellent agreement with the median values of pore-size derived from scanning electron microscope and phantom configuration. Measurement repeatability depended on substrate complexity, with lower values seen in samples containing crossing-fibers. Sample-level repeatability was found to be good. CONCLUSION: While no phantom mimics tissue completely, this study takes a step closer to validating diffusion microstructure measurements for use in vivo by demonstrating the ability to quantify microgeometry in relatively complex configurations.


Assuntos
Biomimética , Imagem de Difusão por Ressonância Magnética , Encéfalo , Humanos , Microscopia Eletrônica de Varredura , Imagens de Fantasmas , Método Simples-Cego
9.
Cereb Cortex ; 31(10): 4652-4669, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34013342

RESUMO

The human hippocampus is involved in forming new memories: damage impairs memory. The dual stream model suggests that object "what" representations from ventral stream temporal cortex project to the hippocampus via the perirhinal and then lateral entorhinal cortex, and spatial "where" representations from the dorsal parietal stream via the parahippocampal gyrus and then medial entorhinal cortex. The hippocampus can then associate these inputs to form episodic memories of what happened where. Diffusion tractography was used to reveal the direct connections of hippocampal system areas in humans. This provides evidence that the human hippocampus has extensive direct cortical connections, with connections that bypass the entorhinal cortex to connect with the perirhinal and parahippocampal cortex, with the temporal pole, with the posterior and retrosplenial cingulate cortex, and even with early sensory cortical areas. The connections are less hierarchical and segregated than in the dual stream model. This provides a foundation for a conceptualization for how the hippocampal memory system connects with the cerebral cortex and operates in humans. One implication is that prehippocampal cortical areas such as the parahippocampal TF and TH subregions and perirhinal cortices may implement specialized computations that can benefit from inputs from the dorsal and ventral streams.


Assuntos
Hipocampo/fisiologia , Memória/fisiologia , Vias Neurais/fisiologia , Adulto , Córtex Entorrinal/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Memória Episódica , Modelos Neurológicos , Giro Para-Hipocampal/fisiologia , Córtex Perirrinal , Lobo Temporal/fisiologia , Adulto Jovem
10.
Brain Connect ; 11(9): 759-771, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33858197

RESUMO

Background: Aging is accompanied by a gradual deterioration in multiple cognitive abilities and brain structures. Both cognitive function and white matter (WM) structure are found to be associated with neurodegeneration diseases and correlated with sex during aging. However, it is still unclear whether the brain structural change could be attributable to sex, and how sex would affect cognitive performances during aging. Materials and Methods: Diffusion magnetic resonance imaging (MRI) scans were performed on 1127 healthy participants (age range: 21-89) at a single site. The age trajectories of the WM tract microstructure were delineated to estimate the turning age and changing rate between sexes. The canonical correlation analysis and moderated mediation analysis were used to examine the relationship between sex-linked WM tracts and cognitive performances. Results: The axon intactness and demyelination of sex-linked tracts during aging were multifaceted. Sex-linked tracts in females peak around 5 years later than those in males but change significantly faster after the turning age. Projection and association tracts (e.g., corticospinal tracts and parahippocampal cingulum) contributed to a significant decrease in visuospatial functions (VS) and executive functions (E). We discovered that there is a stronger indirect effect of sex-linked tracts on cognitive functions in females than in males. Conclusion: Our findings suggest that the vulnerable projection and association tracts in females may induce negative impacts on integrating multiple functions, which results in a faster decrease in VS and E. Impact statement By recruiting a healthy population for diffusion magnetic resonance imaging (MRI) scan, we demonstrated that the age-related changes of white matter (WM) integrity were manipulated by sex. Sex-linked tracts in females reached the turning age 5 years later, but change faster than those in males after the turning age. The most significant sex effect was found in projection and association tracts. Our results indicated that sex affected both WM microstructure and cognitive functions and was further involved in the mediation of the age-WM-cognition relationship. The vulnerability of projection and association tracts in females may induce negative impacts on visuospatial and executive functions.


Assuntos
Substância Branca , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Análise de Correlação Canônica , Pré-Escolar , Cognição , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Substância Branca/diagnóstico por imagem , Adulto Jovem
11.
Aging (Albany NY) ; 12(24): 25319-25336, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33234736

RESUMO

Both physical and cognitive deficits occur in the aging process. We operationally defined the phenomenon as physio-cognitive decline syndrome (PCDS) and aimed to decipher its corresponding neuroanatomy patterns and neurocircuit. High resolution 3T brain magnetic resonance imaging (MRI) images from a community-dwelling longitudinal aging cohort were analysed. PCDS was defined as weakness (handgrip strength) and/or slowness (gait speed) concomitant with impairment in any cognitive domain (defined by 1.5 standard deviation below age, sex-matched norms), but without dementia or disability. Among 1196 eligible ≥ 50-year-old (62±9 years, 47.6%men) subjects, 15.9% had PCDS. Compared to the other participants, individuals with PCDS had significantly lower gray-matter volume (GMV) in the bilateral amygdala and thalamus, right hippocampus, right temporo-occipital cortex, and left cerebellum VI and V regions. The regions of reduced GMV in people with PCDS were similar between the middle-aged and older adults; whereas larger clusters with more extensive GMV-depleted regions were observed in ≥65-year-olds with PCDS. Diffusion-weighted tractography showed disrupted hippocampus-amygdala-cerebellum connections in subjects with PCDS. The neuroanatomic characteristics revealed by this study provide evidence for pathophysiological processes associated with concomitant physio-cognitive decline in the elderly. This neurocircuit might constitute a target for future preventive interventions.


Assuntos
Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Debilidade Muscular/diagnóstico por imagem , Velocidade de Caminhada , Idoso , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/patologia , Tonsila do Cerebelo/fisiopatologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Cerebelo/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Estudos de Coortes , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Feminino , Fragilidade/diagnóstico por imagem , Fragilidade/fisiopatologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Substância Cinzenta/fisiopatologia , Força da Mão , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Sistema Límbico/diagnóstico por imagem , Sistema Límbico/patologia , Sistema Límbico/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Debilidade Muscular/fisiopatologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Lobo Occipital/diagnóstico por imagem , Lobo Occipital/patologia , Lobo Occipital/fisiopatologia , Tamanho do Órgão , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia , Lobo Temporal/fisiopatologia , Tálamo/diagnóstico por imagem , Tálamo/patologia , Tálamo/fisiopatologia
12.
Front Neurol ; 11: 315, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390933

RESUMO

The cerebellum has long been known to play an important role in motor and balance control, and accumulating evidence has revealed that it is also involved in multiple cognitive functions. However, the evidence from neuroimaging studies and clinical observations is not well-integrated at the anatomical or molecular level. The goal of this review is to summarize and link different aspects of the cerebellum, including molecular patterning, functional topography images, and clinical cerebellar disorders. More specifically, we explored the potential relationships between the cerebrocerebellar connections and the expression of particular molecules and, in particular, zebrin stripe (a Purkinje cell-specific antibody molecular marker, which is a glycolytic enzyme expressed in cerebellar Purkinje cells). We hypothesized that the zebrin patterns contribute to cerebellar functional maps-especially when cerebrocerebellar circuit changes exist in cerebellar-related diseases. The zebrin stripe receives input from climbing fibers and project to different parts of the cerebral cortex through its cerebrocerebellar connection. Since zebrin-positive cerebellar Purkinje cells are resistant to excitotoxicity and cell injury while zebrin-negative zones are more prone to damage, we suggest that motor control dysfunction symptoms such as ataxia and dysmetria present earlier and are easier to observe than non-ataxia symptoms due to zebrin-negative cell damage by cerebrocerebellar connections. In summary, we emphasize that the molecular zebrin patterns provide the basis for a new viewpoint from which to investigate cerebellar functions and clinico-neuroanatomic correlations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA