Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Bot Stud ; 65(1): 8, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446324

RESUMO

BACKGROUND: Dragon blood is a red fruit resin from the palm tree Daemonorops draco and is a herbal ingredient used in the traditional Chinese medicine, "Jinchuang Ointment," which is used to treat non-healing diabetic wounds. According to the Taiwan Herbal Pharmacopeia, the dracorhodin content in dragon blood should exceed 1.0%. RESULTS: Our findings indicate that dracorhodin and dragon blood crude extracts can stimulate glucose uptake in mouse muscle cells (C2C12) and primary rat aortic smooth muscle cells (RSMC). Dracorhodin is not the only active compound in dragon blood crude extracts from D. draco. Next, we orally administered crude dragon blood extracts to male B6 mice. The experimental group displayed a decreasing trend in fasting blood glucose levels from the second to tenth week. In summary, crude extracts of dragon blood from D. draco demonstrated in vivo hypoglycemic effects in B6 male mice. CONCLUSIONS: We provide a scientific basis "Jinchuang ointment" in treating non-healing wounds in patients with diabetes.

2.
J Nanobiotechnology ; 22(1): 50, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38317220

RESUMO

Obesity is a major risk to human health. Adipogenesis is blocked by α-tocopherol and conjugated linoleic acid (CLA). However, their effect at preventing obesity is uncertain. The effectiveness of the bioactive agents is associated with their delivery method. Herein, we designed CLA-loaded tocol nanostructured lipid carriers (NLCs) for enhancing the anti-adipogenic activity of α-tocopherol and CLA. Adipogenesis inhibition by the nanocarriers was examined using an in vitro adipocyte model and an in vivo rat model fed a high fat diet (HFD). The targeting of the tocol NLCs into adipocytes and adipose tissues were also investigated. A synergistic anti-adipogenesis effect was observed for the combination of free α-tocopherol and CLA. Nanoparticles with different amounts of solid lipid were developed with an average size of 121‒151 nm. The NLCs with the smallest size (121 nm) showed greater adipocyte internalization and differentiation prevention than the larger size. The small-sized NLCs promoted CLA delivery into adipocytes by 5.5-fold as compared to free control. The nanocarriers reduced fat accumulation in adipocytes by counteracting the expression of the adipogenic transcription factors peroxisome proliferator activated receptor (PPAR)γ and CCAAT/enhancer-binding protein (C/EBP)α, and lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS). Localized administration of CLA-loaded tocol NLCs significantly reduced body weight, total cholesterol, and liver damage indicators in obese rats. The biodistribution study demonstrated that the nanoparticles mainly accumulated in liver and adipose tissues. The NLCs decreased adipocyte hypertrophy and cytokine overexpression in the groin and epididymis to a greater degree than the combination of free α-tocopherol and CLA. In conclusion, the lipid-based nanocarriers were verified to inhibit adipogenesis in an efficient and safe way.


Assuntos
Adipogenia , Ácidos Linoleicos Conjugados , Tocoferóis , Masculino , Humanos , Ratos , Animais , Ácidos Linoleicos Conjugados/farmacologia , Ácidos Linoleicos Conjugados/metabolismo , alfa-Tocoferol/metabolismo , alfa-Tocoferol/farmacologia , Distribuição Tecidual , Obesidade/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Fígado/metabolismo
3.
Biomed Pharmacother ; 170: 116073, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38159374

RESUMO

Atopic dermatitis (AD) is one of the most common skin autoimmune diseases needing continuous anti-inflammatory management. Pterostilbene is reported to exhibit anti-inflammatory activity with higher bioavailability and stability than its parent compound, resveratrol. In this study, a series of synthetic pterostilbene analogs were designed by the hybridization of pterostilbene with chalcones or benzoyl chloride. Seventeen analogs derived from pterostilbene were synthesized with differences in the positions of hydroxyl, methoxyl, or fluoro moieties. These compounds were screened by the inhibitory effect on the overexpressed Th2-associated cytokines/chemokines in the activated human keratinocytes (HaCaT). The anti-IL-5 and anti-CCL5 activity of these compounds led to the identification of three effective compounds: 3a ((E)- 4-(3,5-dimethoxystyryl)phenyl benzoate), 3d ((E)- 4-(3,5-dimethoxystyryl)phenyl 2-methoxybenzoate), and 3g ((E)- 4-(3,5-dimethoxystyryl)phenyl 2-fluorobenzoate). These benzoyl pterostilbenes also significantly decreased Th1/Th17-associated proinflammatory mediators in the activated macrophages (differentiated THP-1). The result showed that the conditioned medium of benzoyl pterostilbene-treated macrophages reduced the phosphorylated STAT3 in the keratinocytes, indicating the blockade of crosstalk between resident and immune cells. Compounds 3d and 3g generally showed greater skin absorption than 3a. The flux of 3g across barrier-defective skins mimicking the AD skin was 3-fold higher than that of across intact skin. The dinitrochlorobenzene (DNCB)-induced AD mouse model manifested that topical delivery with 3g improved the pathological signs through inhibiting cytokines/chemokines (IL-5, TNF-α, CCL17, and CCL22) and macrophage recruitment. The epidermal thickness was reduced from 76 to 55 µm after topical 3g delivery. The therapeutic activity of 3g was comparable to that of tacrolimus (TAC) used as a positive control. The benzoyl pterostilbenes attenuated the inflammation via the MAPK and c-Jun signaling. Furthermore, this study provided experimental evidence of benzoyl pterostilbene analogs for therapeutic potential on AD.


Assuntos
Dermatite Atópica , Animais , Camundongos , Humanos , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Ativação de Macrófagos , Pele , Queratinócitos , Inflamação/tratamento farmacológico , Inflamação/patologia , Citocinas , Quimiocinas , Anti-Inflamatórios/efeitos adversos , Camundongos Endogâmicos BALB C
4.
Mech Ageing Dev ; 210: 111761, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36496171

RESUMO

Reversing or slowing down the skin aging process is one of the most intriguing areas of focus across the social and scientific communities around the world. While aging is considered a universal and inevitable natural process of physiological decline, the aging of the skin is the most apparent visual representation of an individual's health. Aging skin may be objectively defined by epidermal thinning; increased transepidermal water loss; decreased cutaneous barrier function; loss of elasticity, laxity, and textured appearance; and gradual deterioration of the epidermal immune environment. As the largest structure of the immune system and of the body as a whole, the skin is the most vulnerable barrier of defense against the environment. The skin reflects an individual's exposures, lifestyle habits, and overall health. From an immunological perspective, cytokines and chemokines act as a central character in the communicating of the immunity in skin aging. These cell signaling proteins serve as the intercellular communication link. This review aims to elucidate how cell-cell crosstalk through cytokines and chemokines, and the interplay between host cells, infiltrating immune cells, and exogenous factors contribute to the overall aging skin.


Assuntos
Citocinas , Envelhecimento da Pele , Citocinas/metabolismo , Quimiocinas/metabolismo , Pele/metabolismo
5.
Bone Res ; 10(1): 7, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35075130

RESUMO

The outer coverings of the skeleton, which is also known as the periosteum, are arranged in concentric layers and act as a reservoir for tissue-specific bone progenitors. The cellular heterogeneity within this tissue depot is being increasingly recognized. Here, inducible PDGFRα reporter animals were found to mark a population of cells within the periosteum that act as a stem cell reservoir for periosteal appositional bone formation and fracture repair. During these processes, PDGFRα reporter+ progenitors give rise to Nestin+ periosteal cells before becoming osteoblasts and osteocytes. The diphtheria toxin-mediated ablation of PDGFRα reporter+ cells led to deficits in cortical bone formation during homeostasis and a diminutive hard callus during fracture repair. After ossicle transplantation, both mouse PDGFRα reporter+ periosteal cells and human Pdgfrα+ periosteal progenitors expand, ossify, and recruit marrow to a greater extent than their counterpart periosteal cells, whereas PDGFRα reporter- periosteal cells exhibit a predisposition to chondrogenesis in vitro. Total RNA sequencing identified enrichment of the secreted factors Fermt3 and Ptpn6 within PDGFRα reporter+ periosteal cells, which partly underlie the osteoblastogenic features of this cell population.

6.
Biomed Pharmacother ; 146: 112497, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34891117

RESUMO

Rhubarb as an herbal medicine has been shown to exhibit antiadipogenic activity. This study evaluated and compared the lipid-lowering activity of five rhubarb hydroxyanthraquinones (HAQs), including chrysophanol, aloe emodin, emodin, physcion, and rhein, aiming to identify candidate compounds for obesity treatment. Examination of the antiobesity effects of HAQs in 3T3-L1 adipocytes and high-fat diet (HFD)-induced obese rats showed that these anthraquinone compounds inhibited lipid accumulation in 3T3-L1 cells before and after differentiation. Emodin and rhein showed greater inhibition than the other compounds; dosage at 50 µM reduced intracellular triglyceride (TG) by about 30% in the differentiated adipocytes. Both compounds also revealed lipolytic effects to increase glycerol release from adipocytes. Adipokine overexpression induced by differentiation was downregulated by emodin and rhein through mitogen-activated protein kinase (MAPK) signaling. Despite their structural similarity, emodin and rhein exhibited different mechanisms on adipogenesis and lipid metabolism. Rhein restrained lipid deposition by controlling adipogenic transcriptional factors and lipolytic lipases during differentiation. The lipid-lowering effects of emodin did not use these pathways but reduced levels of lipogenic enzymes. HFD consumption in rats significantly increased body weight, visceral fat mass and adipocyte size, which were attenuated by intraperitoneal delivery of emodin or rhein. Rhein showed greater amelioration of obesity than emodin, decreasing plasma cholesterol by 29% and 14%, respectively. HAQs also suppressed cytokine upregulation in the liver and adipose tissues of obese rats. Rhein is a potential antiobesity agent through its ability to regulate obesity-associated adipogenesis, lipolysis and inflammation.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Antraquinonas/farmacologia , Fármacos Antiobesidade/farmacologia , Rheum/química , Células 3T3 , Animais , Sobrevivência Celular/efeitos dos fármacos , Citocinas/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Emodina/farmacologia , Glicerol/metabolismo , Fígado/efeitos dos fármacos , Camundongos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Regulação para Cima
7.
Molecules ; 26(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34770799

RESUMO

Biofilm formation is an important virulence factor for the opportunistic microorganisms that elicit skin infections. The recalcitrant feature of biofilms and their antibiotic tolerance impose a great challenge on the use of conventional therapies. Most antibacterial agents have difficulty penetrating the matrix produced by a biofilm. One novel approach to address these concerns is to prevent or inhibit the formation of biofilms using nanoparticles. The advantages of using nanosystems for antibiofilm applications include high drug loading efficiency, sustained or prolonged drug release, increased drug stability, improved bioavailability, close contact with bacteria, and enhanced accumulation or targeting to biomasses. Topically applied nanoparticles can act as a strategy for enhancing antibiotic delivery into the skin. Various types of nanoparticles, including metal oxide nanoparticles, polymeric nanoparticles, liposomes, and lipid-based nanoparticles, have been employed for topical delivery to treat biofilm infections on the skin. Moreover, nanoparticles can be designed to combine with external stimuli to produce magnetic, photothermal, or photodynamic effects to ablate the biofilm matrix. This study focuses on advanced antibiofilm approaches based on nanomedicine for treating skin infections. We provide in-depth descriptions on how the nanoparticles could effectively eliminate biofilms and any pathogens inside them. We then describe cases of using nanoparticles for antibiofilm treatment of the skin. Most of the studies included in this review were supported by in vivo animal infection models. This article offers an overview of the benefits of nanosystems for treating biofilms grown on the skin.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Pele/microbiologia , Nanomedicina Teranóstica , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/química , Humanos , Nanopartículas Metálicas/química , Nanopartículas/química , Dermatopatias/tratamento farmacológico , Dermatopatias/etiologia , Dermatopatias/patologia , Resultado do Tratamento
8.
Biomolecules ; 11(7)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34356649

RESUMO

Curcumin is a known anti-adipogenic agent for alleviating obesity and related disorders. Comprehensive comparisons of the anti-adipogenic activity of curcumin with other curcuminoids is minimal. This study compared adipogenesis inhibition with curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC), and their underlying mechanisms. We differentiated 3T3-L1 cells in the presence of curcuminoids, to determine lipid accumulation and triglyceride (TG) production. The expression of adipogenic transcription factors and lipogenic proteins was analyzed by Western blot. A significant reduction in Oil red O (ORO) staining was observed in the cells treated with curcuminoids at 20 µM. Inhibition was increased in the order of curcumin < DMC < BDMC. A similar trend was observed in the detection of intracellular TG. Curcuminoids suppressed differentiation by downregulating the expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), leading to the downregulation of the lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS). AMP-activated protein kinase α (AMPKα) phosphorylation was also activated by BDMC. Curcuminoids reduced the release of proinflammatory cytokines and leptin in 3T3-L1 cells in a dose-dependent manner, with BDMC showing the greatest potency. BDMC at 20 µM significantly decreased leptin by 72% compared with differentiated controls. Molecular docking computation indicated that curcuminoids, despite having structural similarity, had different interaction positions to PPARγ, C/EBPα, and ACC. The docking profiles suggested a possible interaction of curcuminoids with C/EBPα and ACC, to directly inhibit their expression.


Assuntos
Adipogenia/efeitos dos fármacos , Diarileptanoides/química , Diarileptanoides/farmacologia , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipogenia/fisiologia , Adipocinas/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcuma/química , Curcumina/análise , Curcumina/farmacologia , Enzimas/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , PPAR gama/química , PPAR gama/metabolismo , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Triglicerídeos/metabolismo
9.
Molecules ; 25(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287318

RESUMO

Diabetes mellitus is a well-known chronic metabolic disease that poses a long-term threat to human health and is characterized by a relative or absolute lack of insulin, resulting in hyperglycemia. Type 2 diabetes mellitus (T2DM) typically affects many metabolic pathways, resulting in ß-cell dysfunction, insulin resistance, abnormal blood glucose levels, inflammatory processes, excessive oxidative reactions, and impaired lipid metabolism. It also leads to diabetes-related complications in many organ systems. Antidiabetic drugs have been approved for the treatment of hyperglycemia in T2DM; these are beneficial for glucose metabolism and promote weight loss, but have the risk of side effects, such as nausea or an upset stomach. A wide range of active components, derived from medicinal plants, such as alkaloids, flavonoids, polyphenol, quinones, and terpenoids may act as alternative sources of antidiabetic agents. They are usually attributed to improvements in pancreatic function by increasing insulin secretions or by reducing the intestinal absorption of glucose. Ease of availability, low cost, least undesirable side effects, and powerful pharmacological actions make plant-based preparations the key player of all available treatments. Based on the study of therapeutic reagents in the pathogenesis of humans, we use the appropriate animal models of T2DM to evaluate medicinal plant treatments. Many of the rat models have characteristics similar to those in humans and have the advantages of ease of genetic manipulation, a short breeding span, and access to physiological and invasive testing. In this review, we summarize the pathophysiological status of T2DM rat models and focus on several bioactive compounds from herbal medicine with different functional groups that exhibit therapeutic potential in the T2DM rat models, in turn, may guide future approach in treating diabetes with natural drugs.


Assuntos
Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Animais , Modelos Animais de Doenças , Humanos , Hiperglicemia/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Plantas Medicinais/química , Ratos
10.
Elife ; 92020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33044169

RESUMO

Tissue resident mesenchymal stem/stromal cells (MSCs) occupy perivascular spaces. Profiling human adipose perivascular mesenchyme with antibody arrays identified 16 novel surface antigens, including endolysosomal protein CD107a. Surface CD107a expression segregates MSCs into functionally distinct subsets. In culture, CD107alow cells demonstrate high colony formation, osteoprogenitor cell frequency, and osteogenic potential. Conversely, CD107ahigh cells include almost exclusively adipocyte progenitor cells. Accordingly, human CD107alow cells drove dramatic bone formation after intramuscular transplantation in mice, and induced spine fusion in rats, whereas CD107ahigh cells did not. CD107a protein trafficking to the cell surface is associated with exocytosis during early adipogenic differentiation. RNA sequencing also suggested that CD107alow cells are precursors of CD107ahigh cells. These results document the molecular and functional diversity of perivascular regenerative cells, and show that relocation to cell surface of a lysosomal protein marks the transition from osteo- to adipogenic potential in native human MSCs, a population of substantial therapeutic interest.


Assuntos
Adipogenia/genética , Diferenciação Celular/genética , Proteína 1 de Membrana Associada ao Lisossomo/genética , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Adipócitos/metabolismo , Animais , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Ratos , Ratos Nus , Células-Tronco/metabolismo
11.
Bone Res ; 8(1): 22, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509378

RESUMO

Human osteogenic progenitors are not precisely defined, being primarily studied as heterogeneous multipotent cell populations and termed mesenchymal stem cells (MSCs). Notably, select human pericytes can develop into bone-forming osteoblasts. Here, we sought to define the differentiation potential of CD146+ human pericytes from skeletal and soft tissue sources, with the underlying goal of defining cell surface markers that typify an osteoblastogenic pericyte. CD146+CD31-CD45- pericytes were derived by fluorescence-activated cell sorting from human periosteum, adipose, or dermal tissue. Periosteal CD146+CD31-CD45- cells retained canonical features of pericytes/MSC. Periosteal pericytes demonstrated a striking tendency to undergo osteoblastogenesis in vitro and skeletogenesis in vivo, while soft tissue pericytes did not readily. Transcriptome analysis revealed higher CXCR4 signaling among periosteal pericytes in comparison to their soft tissue counterparts, and CXCR4 chemical inhibition abrogated ectopic ossification by periosteal pericytes. Conversely, enrichment of CXCR4+ pericytes or stromal cells identified an osteoblastic/non-adipocytic precursor cell. In sum, human skeletal and soft tissue pericytes differ in their basal abilities to form bone. Diversity exists in soft tissue pericytes, however, and CXCR4+ pericytes represent an osteoblastogenic, non-adipocytic cell precursor. Indeed, enrichment for CXCR4-expressing stromal cells is a potential new tactic for skeletal tissue engineering.

12.
Am J Pathol ; 190(9): 1909-1920, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32533926

RESUMO

Perivascular mural cells surround capillaries and microvessels and have diverse regenerative or fibrotic functions after tissue injury. Subsynovial fibrosis is a well-known pathologic feature of osteoarthritis, yet transgenic animals for use in visualizing perivascular cell contribution to fibrosis during arthritic changes have not been developed. Here, inducible Pdgfra-CreERT2 reporter mice were subjected to joint-destabilization surgery to induce arthritic changes, and cell lineage was traced over an 8-week period with a focus on the joint-associated fat pad. Results showed that, at baseline, inducible Pdgfra reporter activity highlighted adventitial and, to a lesser extent, pericytic cells within the infrapatellar fat pad. Joint-destabilization surgery was associated with marked fibrosis of the infrapatellar fat pad, accompanied by an expansion of perivascular Pdgfra-expressing cellular descendants, many of which adopted α-smooth muscle actin expression. Gene expression analysis of microdissected infrapatellar fat pad confirmed enrichment in membrane-bound green fluorescent protein/Pdgfra-expressing cells, along with a gene signature that corresponded with injury-associated fibro-adipogenic progenitors. Our results highlight dynamic changes in joint-associated perivascular fibro-adipogenic progenitors during osteoarthritis.


Assuntos
Adipócitos/patologia , Fibroblastos/patologia , Osteoartrite/patologia , Tecido Adiposo/patologia , Animais , Linhagem da Célula , Articulação do Joelho/patologia , Camundongos , Camundongos Transgênicos , Células-Tronco
13.
Cells ; 9(5)2020 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397494

RESUMO

Microbial proteins have recently been found to have more benefits in clinical disease treatment because of their better-developed strategy and properties than traditional medicine. In this study, we investigated the effectiveness of a truncated peptide synthesized from the C-terminal sequence of pneumolysin, i.e., C70PLY4, in Streptococcus pneumoniae, in treating chronic inflammatory conditions. It has been shown that C70PLY4 significantly blocks the transendothelial migration of neutrophils and attenuates the formation of atherosclerotic plaque and the secretion of soluble forms of the intercellular adhesion molecule-1 (ICAM-1), the vascular cell adhesion molecule 1 (VCAM-1), and E-selectin in high-fat-diet/streptozotocin-induced inflammatory rats. The mechanism and the docking simulation analysis further indicated that C70PLY4 might serve as a Toll-like receptor 4 (TLR4) antagonist by competing for the binding site of MD2, an indispensable protein for lipopolysaccharide (LPS)-TLR4 interaction signaling, on the TLR4 structure. Moreover, compared to the full-length PLY, C70PLY4 seems to have no cytotoxicity in human vascular endothelial cells. Our study elucidated a possible therapeutic efficacy of C70PLY4 in reducing chronic inflammatory conditions and clarified the underlying mechanism. Thus, our findings identify a new drug candidate that, by blocking TLR4 activity, could be an effective treatment for patients with chronic inflammatory diseases.


Assuntos
Inflamação/tratamento farmacológico , Proteínas Mutantes/farmacologia , Proteínas Mutantes/uso terapêutico , Streptococcus pneumoniae/metabolismo , Estreptolisinas/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/farmacologia , Sítios de Ligação , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Dieta Hiperlipídica , Selectina E/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Lipopolissacarídeos , Camundongos , Simulação de Acoplamento Molecular , Proteínas Mutantes/química , NF-kappa B/metabolismo , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Solubilidade , Estreptolisinas/química , Estreptozocina , Receptor 4 Toll-Like/metabolismo , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Molécula 1 de Adesão de Célula Vascular/metabolismo
14.
Stem Cells Dev ; 29(15): 1007-1015, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32460636

RESUMO

Adipose-derived stem/stromal cells (ASCs) have been previously used for bone repair. However, significant cell heterogeneity exists within the ASC population, which has the potential to result in unreliable bone tissue formation and/or low efficacy. Although the use of cell sorting to lower cell heterogeneity is one method to improve bone formation, this is a technically sophisticated and costly process. In this study, we tried to find a simpler and more deployable solution-blocking antiosteogenic molecule Dickkopf-1 (DKK1) to improve osteogenic differentiation. Human adipose-derived stem cells were derived from = 5 samples of human lipoaspirate. In vitro, anti-DKK1 treatment, but not anti-sclerostin (SOST), promoted ASC osteogenic differentiation, assessed by alizarin red staining and real-time polymerase chain reaction (qPCR). Increased canonical Wnt signaling was confirmed after anti-DKK1 treatment. Expression levels of DKK1 peaked during early osteogenic differentiation (day 3). Concordantly, anti-DKK1 supplemented early (day 3 or before), but not later (day 7) during osteogenic differentiation positively regulated osteoblast formation. Finally, anti-DKK1 led to increased transcript abundance of the Wnt inhibitor SOST, potentially representing a compensatory cellular mechanism. In sum, DKK1 represents a targetable "molecular brake" on the osteogenic differentiation of human ASC. Moreover, release of this brake by neutralizing anti-DKK1 antibody treatment at least partially rescues the poor bone-forming efficacy of ASC.


Assuntos
Diferenciação Celular , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Mesenquimais/citologia , Osteogênese , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Regulação da Expressão Gênica , Humanos , Testes de Neutralização , Fatores de Tempo , Via de Sinalização Wnt/genética
15.
J Orthop Res ; 38(11): 2484-2494, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32134140

RESUMO

Pericytes ubiquitously surround capillaries and microvessels within vascularized tissues and have diverse functions after tissue injury. In addition to regulation of angiogenesis and tissue regeneration after injury, pericytes also contribute to organ fibrosis. Destabilization of the medial meniscus (DMM) phenocopies post-traumatic osteoarthritis, yet little is known regarding the impact of DMM surgery on knee joint-associated pericytes and their cellular descendants. Here, inducible platelet-derived growth factor receptor-ß (PDGFRß)-CreERT2 reporter mice were subjected to DMM surgery, and lineage tracing studies performed over an 8-week period. Results showed that at baseline PDGFRß reporter activity highlights abluminal perivascular cells within synovial and infrapatellar fat pad (IFP) tissues. DMM induces a temporospatially patterned increase in vascular density within synovial and subsynovial tissues. Marked vasculogenesis within IFP was accompanied by expansion of PDGFRß reporter+ perivascular cell numbers, detachment of mGFP+ descendants from vessel walls, and aberrant adoption of myofibroblastic markers among mGFP+ cells including α-SMA, ED-A, and TGF-ß1. At later timepoints, fibrotic changes and vascular maturation occurred within subsynovial tissues, with the redistribution of PDGFRß+ cellular descendants back to their perivascular niche. In sum, PDGFRß lineage tracing allows for tracing of perivascular cell fate within the diarthrodial joint. Further, destabilization of the joint induces vascular and fibrogenic changes of the IFP accompanied by perivascular to myofibroblast transdifferentiation.


Assuntos
Artrite Experimental/patologia , Transdiferenciação Celular , Articulações/patologia , Miofibroblastos/citologia , Osteoartrite/patologia , Pericitos/fisiologia , Animais , Linhagem da Célula , Feminino , Fibrose , Genes Reporter , Articulações/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
16.
Bone Res ; 7: 36, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31840004

RESUMO

Heterotopic ossification (HO) is a debilitating condition characterized by the pathologic formation of ectopic bone. HO occurs commonly following orthopedic surgeries, burns, and neurologic injuries. While surgical excision may provide palliation, the procedure is often burdened with significant intra-operative blood loss due to a more robust contribution of blood supply to the pathologic bone than to native bone. Based on these clinical observations, we set out to examine the role of vascular signaling in HO. Vascular endothelial growth factor A (VEGFA) has previously been shown to be a crucial pro-angiogenic and pro-osteogenic cue during normal bone development and homeostasis. Our findings, using a validated mouse model of HO, demonstrate that HO lesions are highly vascular, and that VEGFA is critical to ectopic bone formation, despite lacking a contribution of endothelial cells within the developing anlagen.

17.
Future Med Chem ; 11(16): 2131-2150, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31538520

RESUMO

Prodrug entrapment into nanocarriers for tumor delivery is a strategy to achieve a valid therapy with high efficiency. The prodrug contains anticancer agents conjugating with functional moieties or ligands so that the active component is released after metabolism in the body or tumor. The advantages of nanosystems for loading prodrugs include high loading, increased prodrug stability, improved bioavailability and enhanced targeting to tumor cells. In the present article, we introduce the prodrug delivery approaches according to nanomedicine and the recent advances in prodrug-loaded nanocarriers. First, we discuss the conceptional design of combined prodrugs and nanocarriers in response to the obstruction in anticancer therapy. Then we describe the cases of prodrug-loaded nanoparticles for cancer treatment during the past 5 years.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Pró-Fármacos/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanoconjugados/química , Nanomedicina/métodos , Nanotecnologia/métodos , Neoplasias/metabolismo , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Resultado do Tratamento
18.
Elife ; 82019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31482845

RESUMO

The vascular wall is a source of progenitor cells that are able to induce skeletal repair, primarily by paracrine mechanisms. Here, the paracrine role of extracellular vesicles (EVs) in bone healing was investigated. First, purified human perivascular stem cells (PSCs) were observed to induce mitogenic, pro-migratory, and pro-osteogenic effects on osteoprogenitor cells while in non-contact co-culture via elaboration of EVs. PSC-derived EVs shared mitogenic, pro-migratory, and pro-osteogenic properties of their parent cell. PSC-EV effects were dependent on surface-associated tetraspanins, as demonstrated by EV trypsinization, or neutralizing antibodies for CD9 or CD81. Moreover, shRNA knockdown in recipient cells demonstrated requirement for the CD9/CD81 binding partners IGSF8 and PTGFRN for EV bioactivity. Finally, PSC-EVs stimulated bone repair, and did so via stimulation of skeletal cell proliferation, migration, and osteodifferentiation. In sum, PSC-EVs mediate the same tissue repair effects of perivascular stem cells, and represent an 'off-the-shelf' alternative for bone tissue regeneration.


Assuntos
Vasos Sanguíneos/citologia , Vesículas Extracelulares/metabolismo , Osteócitos/efeitos dos fármacos , Osteócitos/fisiologia , Osteogênese , Células-Tronco/metabolismo , Células Cultivadas , Técnicas de Cocultura , Humanos
19.
Stem Cells Dev ; 28(18): 1214-1223, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31264500

RESUMO

Human perivascular progenitor cells, including pericytes, are well-described multipotent mesenchymal cells giving rise to mesenchymal stem cells in culture. Despite the unique location of pericytes, specific antigens to distinguish human pericytes from other cell types are few. Here, we employed a human tissue microarray (Human Protein Atlas) to identify proteins that are strongly and specifically expressed in a pericytic location within human adipose tissue. Next, these results were cross-referenced with RNA sequencing data from human adipose tissue pericytes, as defined as a fluorescence activated cell sorting (FACS) purified CD146+CD34-CD31-CD45- cell population. Results showed that from 105,532 core biopsies of soft tissue, 229 proteins showed strong and specific perivascular immunoreactivity, the majority of which (155) were present in the tunica intima. Next, cross-referencing with the transcriptome of FACS-derived CD146+ pericytes yielded 25 consistently expressed genes/proteins, including 18 novel antigens. A majority of these transcripts showed maintained expression after culture propagation (56% of genes). Interestingly, many novel antigens within pericytes are regulators of osteogenic differentiation. In sum, our study demonstrates the existence of novel pericyte markers, some of which are conserved in culture that may be useful for future efforts to typify, isolate, and characterize human pericytes.


Assuntos
Antígenos CD/genética , Pericitos/metabolismo , Transcriptoma , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Antígenos CD/metabolismo , Células Cultivadas , Citometria de Fluxo/métodos , Perfilação da Expressão Gênica/métodos , Humanos , Proteoma/genética , Proteoma/metabolismo , Software , Análise Serial de Tecidos/métodos
20.
Acta Biomater ; 90: 350-361, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30951898

RESUMO

Both phosphodiesterase (PDE4) inhibitors and omega-9 fatty acids show anti-inflammatory activity for treating inflamed skin diseases, but their efficacy remains low. Combinatorial agents are anticipated to offer an advanced strategy for efficient therapy. We prepared cilomilast-loaded oleic acid (OA) nanocarriers to test the inhibitory capability against human neutrophil stimulation and a murine psoriasis model. OA played dual roles in the nanocarriers as both the active ingredient and lipid matrix in the nanoparticulate core. OA nanoparticles but not free OA could restrain calcium mobilization in activated neutrophils. The inhibition level of superoxide anion and elastase by cilomilast-loaded OA nanocarriers approximated that of free forms. In the mouse model, the intradermal nanosystems reduced imiquimod-induced epidermal thickening from 230.4 to 63.1 µm. Transepidermal water loss was decreased from 30.2 to 11.3 g/m2/h by integrated nanocarriers. The nanosystems mitigated neutrophil infiltration and hyperproliferation in the psoriasiform lesion via decreased expression of cytokines and chemokines. STATEMENT OF SIGNIFICANCE: The long-term therapy for psoriasis is unsatisfactory due to the possible adverse effects and inefficiency after prolonged use. Both phosphodiesterase (PDE4) inhibitors and omega-9 fatty acids such as oleic acid (OA) show anti-inflammatory activity for treating inflamed skin diseases. Combinatorial agents are anticipated to offer an advanced strategy for efficient therapy. OA is also ideal for incorporation into nanoparticles to enhance particulate emulsification, drug entrapment, and biocompatibility. We prepared cilomilast-loaded oleic acid (OA) nanocarriers to test the inhibitory capability against human neutrophil stimulation and a murine psoriasis lesion. OA nanocarriers are indigenous to prevent neutrophil activation and the deterioration of psoriatic lesion. Cilomilast incorporation in OA nanocarriers could further mitigate the clinical score and suppressing proinflammatory mediators.


Assuntos
Ácidos Cicloexanocarboxílicos , Portadores de Fármacos , Nanopartículas , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/metabolismo , Nitrilas , Ácido Oleico , Inibidores da Fosfodiesterase 4 , Psoríase , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Ácidos Cicloexanocarboxílicos/química , Ácidos Cicloexanocarboxílicos/farmacocinética , Ácidos Cicloexanocarboxílicos/farmacologia , Modelos Animais de Doenças , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/uso terapêutico , Neutrófilos/patologia , Nitrilas/química , Nitrilas/farmacocinética , Nitrilas/farmacologia , Ácido Oleico/química , Ácido Oleico/farmacocinética , Ácido Oleico/farmacologia , Inibidores da Fosfodiesterase 4/química , Inibidores da Fosfodiesterase 4/farmacocinética , Inibidores da Fosfodiesterase 4/farmacologia , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Psoríase/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA