Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(39): 19330-19335, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31501341

RESUMO

Sunlight drives the Earth's weather, climate, chemistry, and biosphere. Recent efforts to improve solar heating codes in climate models focused on more accurate treatment of the absorption spectrum or fractional clouds. A mostly forgotten assumption in climate models is that of a flat Earth atmosphere. Spherical atmospheres intercept 2.5 W⋅m-2 more sunlight and heat the climate by an additional 1.5 W⋅m-2 globally. Such a systematic shift, being comparable to the radiative forcing change from preindustrial to present, is likely to produce a discernible climate shift that would alter a model's skill in simulating current climate. Regional heating errors, particularly at high latitudes, are several times larger. Unlike flat atmospheres, constituents in a spherical atmosphere, such as clouds and aerosols, alter the total amount of energy received by the Earth. To calculate the net cooling of aerosols in a spherical framework, one must count the increases in both incident and reflected sunlight, thus reducing the aerosol effect by 10 to 14% relative to using just the increase in reflected. Simple fixes to the current flat Earth climate models can correct much of this oversight, although some inconsistencies will remain.

2.
J Geophys Res Atmos ; 120(11): 5693-5705, 2015 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-26900537

RESUMO

Nitrous oxide lifetime is computed empirically from MLS satellite dataEmpirical N2O lifetimes compared with models including interannual variabilityResults improve values for present anthropogenic and preindustrial emissions.

3.
Science ; 330(6006): 952-4, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21071666

RESUMO

Nitrous oxide (N(2)O) and methane (CH(4)) are chemically reactive greenhouse gases with well-documented atmospheric concentration increases that are attributable to anthropogenic activities. We quantified the link between N(2)O and CH(4) emissions through the coupled chemistries of the stratosphere and troposphere. Specifically, we simulated the coupled perturbations of increased N(2)O abundance, leading to stratospheric ozone (O(3)) depletion, altered solar ultraviolet radiation, altered stratosphere-to-troposphere O(3) flux, increased tropospheric hydroxyl radical concentration, and finally lower concentrations of CH(4). The ratio of CH(4) per N(2)O change, -36% by mole fraction, offsets a fraction of the greenhouse effect attributable to N(2)O emissions. These CH(4) decreases are tied to the 108-year chemical mode of N(2)O, which is nine times longer than the residence time of direct CH(4) emissions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA