Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Life Sci ; 336: 122327, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061536

RESUMO

INTRODUCTION: Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, often accompanied by obesity, diabetes, and increased risks of depression and anxiety. Currently, there are no FDA-approved drugs to treat NAFLD and its related systemic symptoms. Previously, we identified a new barbituric acid derivative (BA-5) that expressed effectiveness against fibrosis and drug-resistant hepatocellular carcinoma. AIMS: This study investigated the potential of BA-5 against high-fat diet (HFD)-induced NAFLD and mood disorders in mice. MAIN METHODS: Six-weeks-old male C57BL/6 mice were fed with a 45 % HFD for 8 weeks to induce NAFLD and associated metabolic disorders. Mice were treated with a BA-5 and the therapeutic effects and the underlying molecular mechanisms were investigated. KEY FINDINGS: Administration of BA-5 significantly reduced serum levels of alanine aminotransferase (ALT), low-density lipoprotein (LDL), fatty acids (FA), and triglycerides (TG) in HFD-fed mice. BA-5 treatment decreased expressions of hepatic lipogenesis-related markers (acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and ATP-citrate lyase (ACLY)), increased fatty acid oxidation markers (carnitine palmitoyltransferase 1A (CPT1A) and acyl-CoA oxidase 1 (ACOX1)), and attenuated hepatic fat accumulation in HFD-fed mice. Moreover, HFD-induced adipocyte size enlargement and activation of lipolysis markers such as phosphorylated (p)-hormone-sensitive lipase (HSL) 565, p-HSL 660, and perilipin were inhibited in BA-5-treated mice. Notably, HFD-induced anxiety- and depression-like behaviors significantly improved in the BA-5 treated group through enhanced anti-inflammatory responses in the hippocampus. SIGNIFICANCE: This study provides new insights into clinical therapeutic strategies of barbituric acid derivatives for HFD-induced NAFLD and associated mood disturbances.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos
2.
Bioengineering (Basel) ; 10(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37892843

RESUMO

Skeletal muscle growth in livestock impacts meat quantity and quality. Concerns arise because certain feed additives, like beta-agonists, may affect food safety. Skeletal muscle is a specialized tissue consisting of nondividing and multinucleated muscle fibers. Myostatin (MSTN), a protein specific to skeletal muscle, is secreted and functions as a negative regulator of muscle mass by inhibiting the proliferation and differentiation of myoblasts. To enhance livestock muscle growth, phytogenic feed additives could be an alternative as they inhibit MSTN activity. The objective of this study was to establish a systematic screening platform using MSTN activity to evaluate phytogenics, providing scientific evidence of their assessment and potency. In this study, we established a screening platform to monitor myostatin promoter activity in rat L8 myoblasts. Extract of Glycyrrhiza uralensis (GUE), an oriental herbal medicine, was identified through this screening platform, and the active fractions of GUE were identified using a process-scale liquid column chromatography system. For in vivo study, GUE as a feed additive was investigated in growth-finishing pigs. The results showed that GUE significantly increased body weight, carcass weight, and lean content in pigs. Microbiota analysis indicated that GUE did not affect the composition of gut microbiota in pigs. In summary, this established rodent myoblast screening platform was used to identify a myogenesis-related phytogenic, GUE, and further demonstrated that the active fractions and compounds inhibited MSTN expression. These findings suggest a novel application for GUE in growth performance enhancement through modulation of MSTN expression. Moreover, this well-established screening platform holds significant potential for identifying and assessing a diverse range of phytogenics that contribute to the process of myogenesis.

3.
Bioengineering (Basel) ; 10(9)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37760177

RESUMO

The increased proliferation and activation of hepatic stellate cells (HSCs) are associated with liver fibrosis development. To date, there are no FDA-approved drugs for the treatment of liver cirrhosis. Augmentation of HSCs apoptosis is one of the resolutions for liver fibrosis. In this study, we extracted α-mangostin (1,3,6-trihydroxy-7-methoxy-2,8-bis(3-methyl-2-butenyl)-9H-xanthen-9-one) from the fruit waste components of mangosteen pericarp. The isolated α-mangostin structure was determined and characterized with nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS) and compared with those known compounds. The intracellular signaling pathway activities of α-mangostin on Transforming growth factors-beta 1 (TGF-ß1) or Platelet-derived growth factor subunit B (PDGF-BB) induced HSCs activation and were analyzed via Western blot and Real-time Quantitative Polymerase Chain Reaction (Q-PCR). α-Mangostin-induced mitochondrial dysfunction and apoptosis in HSCs were measured by seahorse assay and caspase-dependent cleavage. The in vivo anti-fibrotic effect of α-mangostin was assessed by carbon tetrachloride (CCl4) treatment mouse model. The data showed that α-mangostin treatment inhibited TGF-ß1-induced Smad2/3 phosphorylation and alpha-smooth muscle actin (α-SMA) expression in HSCs in a dose-dependent manner. Regarding the PDGF-BB-induced HSCs proliferation signaling pathways, α-mangostin pretreatment suppressed the phosphorylation of extracellular-signal-regulated kinase (ERK) and p38. The activation of caspase-dependent apoptosis and dysfunction of mitochondrial respiration (such as oxygen consumption rate, ATP production, and maximal respiratory capacity) were observed in α-mangostin-treated HSCs. The CCl4-induced liver fibrosis mouse model showed that the administration of α-mangostin significantly decreased the expression of the fibrosis markers (α-SMA, collagen-a2 (col1a2), desmin and matrix metalloproteinase-2 (MMP-2)) as well as attenuated hepatic collagen deposition and liver damage. In conclusion, this study demonstrates that α-mangostin attenuates the progression of liver fibrosis through inhibiting the proliferation of HSCs and triggering apoptosis signals. Thus, α-mangostin may be used as a potential novel therapeutic agent against liver fibrosis.

4.
Mol Cancer Ther ; 21(2): 257-270, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34789561

RESUMO

α-Mangostin (aMan) and Paeonol (Pae) have shown anticancer and anti-inflammatory properties. However, these two natural compounds have no clinical value because of their low solubility and low membrane permeability. In this study, we screened chemically synthesized derivatives from these two natural compounds as potential novel chemicals that increase cancer cell cytotoxicity over nontransformed human cells. We found that two derivative compounds, named α-Mangostin-1 (aMan1) and Paeonol-1 (Pae1) more efficiently and more specifically induced cytotoxicity in HCT116, HT29, and SW48 colorectal cancer cell lines than the parental compounds. Both aMan1 and Pae1 arrested HCT116 cells in the G1 phase and HT29 and SW48 cells in the G2-M phase of the cell cycle. Both aMan1 and Pae1 induced apoptosis in human colorectal cancer cells, through a caspase-dependent mechanism. aMan1 and Pae1 induced selective transcriptional responses in colorectal cancer cells involving genes related to metabolic stress and DNA damage response signaling pathways. Finally, experiments on primary colon organoids showed that both derivatives were able to kill cancer-derived organoids without affecting the viability of organoids derived from healthy tissue, where the parental compounds and the currently used chemotherapeutic drug irinotecan failed. In conclusion, our findings expand the knowledge of natural compound derivatives as anticancer agents and open new avenues of research in the derivation of lead compounds aimed at developing novel chemotherapeutic drugs for colorectal cancer treatment that selectively target cancer, but not healthy cells.


Assuntos
Acetofenonas/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Xantonas/uso terapêutico , Acetofenonas/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Proliferação de Células , Humanos , Inibidores de Proteínas Quinases/farmacologia , Xantonas/farmacologia
5.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360814

RESUMO

This study aimed to develop a novel magnetic resonance imaging (MRI)-detectable boron (B)-containing nanoassemblies and evaluate their potential for boron neutron capture therapy (BNCT). Starting from the citrate-coated gold nanoparticles (AuNPs) (23.9 ± 10.2 nm), the diameter of poly (D, L-lactide-co-glycolide) AuNPs (PLGA-AuNPs) increased approximately 110 nm after the encapsulation of the PLGA polymer. Among various B drugs, the self-produced B cages had the highest loading efficiency. The average diameter of gadolinium (Gd)- and B-loaded NPs (PLGA-Gd/B-AuNPs) was 160.6 ± 50.6 nm with a B encapsulation efficiency of 28.7 ± 2.3%. In vitro MR images showed that the signal intensity of PLGA-Gd/B-AuNPs in T1-weighted images was proportional to its Gd concentration, and there exists a significantly positive relationship between Gd and B concentrations (R2 = 0.74, p < 0.005). The hyperintensity of either 250 ± 50 mm3 (larger) or 100 ± 50 mm3 (smaller) N87 xenograft was clearly visualized at 1 h after intravenous injection of PLGA-Gd/B-AuNPs. However, PLGA-Gd/B-AuNPs stayed at the periphery of the larger xenograft while located near the center of the smaller one. The tumor-to-muscle ratios of B content, determined by inductively coupled plasma mass spectrometry, in smaller- and larger-sized tumors were 4.17 ± 1.42 and 1.99 ± 0.55, respectively. In summary, we successfully developed theranostic B- and Gd-containing AuNPs for BNCT in this study.


Assuntos
Terapia por Captura de Nêutron de Boro/métodos , Boro/farmacologia , Gadolínio/farmacologia , Ouro/farmacologia , Nanopartículas Metálicas/uso terapêutico , Neoplasias/radioterapia , Nanomedicina Teranóstica/métodos , Animais , Linhagem Celular Tumoral , Humanos , Camundongos
6.
Biosens Bioelectron ; 183: 113213, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33857754

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the cells through the binding of its spike protein (S-protein) to the cell surface-expressing angiotensin-converting enzyme 2 (ACE2). Thus, inhibition of S-protein-ACE2 binding may impede SARS-CoV-2 cell entry and attenuate the progression of Coronavirus disease 2019 (COVID-19). In this study, an electrochemical impedance spectroscopy-based biosensing platform consisting of a recombinant ACE2-coated palladium nano-thin-film electrode as the core sensing element was fabricated for the screening of potential inhibitors against S-protein-ACE2 binding. The platform could detect interference of small analytes against S-protein-ACE2 binding at low analyte concentration and small volume (0.1 µg/mL and ~1 µL, estimated total analyte consumption < 4 pg) within 21 min. Thus, a few potential inhibitors of S-protein-ACE2 binding were identified. This includes (2S,3aS,6aS)-1-((S)-N-((S)-1-Carboxy-3-phenylpropyl)alanyl)tetrahydrocyclopenta[b] pyrrole-2-carboxylic acid (ramiprilat) and (2S,3aS,7aS)-1-[(2S)-2-[[(2S)-1-Carboxybutyl]amino]propanoyl]-2,3,3a,4,5,6,7,7a-octahydroindole-2-carboxylic acid (perindoprilat) that reduced the binding affinity of S-protein to ACE2 by 72% and 67%; and SARS-CoV-2 in vitro infectivity to the ACE2-expressing human oral cavity squamous carcinoma cells (OEC-M1) by 36.4 and 20.1%, respectively, compared to the PBS control. These findings demonstrated the usefulness of the developed biosensing platform for the rapid screening of modulators for S-protein-ACE2 binding.


Assuntos
Técnicas Biossensoriais , COVID-19 , Espectroscopia Dielétrica , Humanos , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
7.
J Org Chem ; 85(15): 9835-9843, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32615761

RESUMO

A three-component annulation reaction was developed for the synthesis of pyrroles, a class of compounds with various properties valuable to biomedical and polymer industries. Treatment of α-silylaryl triflates, Schiff bases, and alkynes generated polysubstituted pyrroles in good yields (61-86%) with regioselectivity. This domino reaction involved completion of five sequential steps in a single flask, which comprised aryne formation through 1,2-elimination, their alkylation by Schiff bases through 1,2-addition, 1,4-intramolecular proton transfer, Hüisgen 1,3-dipolar cycloaddition, and dehydrogenative aromatization. It was then successfully applied as the key step in the synthesis of the natural product lamellarin R. This new reaction represents an efficient, sustainable process for the production of chemical materials.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis , Pirróis , Catálise , Estrutura Molecular
8.
Molecules ; 25(12)2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575795

RESUMO

Hepatocellular carcinoma (HCC) is a common cause of cancer death worldwide. Sorafenib, a multikinase inhibitor, is the first-line drug approved by the Food and Drug Administration (FDA) for the treatment of patients with advanced HCC. However, most patients who continuously receive sorafenib may acquire resistance to this drug. Therefore, it is important to develop a new compound to treat liver cancer and sorafenib-resistant liver cancer. Barbituric acid derivatives have been used as antiasthmatic drugs in the clinic. We previously reported that a novel barbituric acid derivative inhibited carbon tetrachloride-induced liver fibrosis in mice, but its effects on liver cancer remain unknown. Thus, the purpose of this study was to investigate the antitumor effect of barbituric acid derivatives on HCC cells and sorafenib-resistant HCC cells (HCC-SRs). Our findings reveal that one of the barbituric acid derivatives, BA-5, significantly inhibited HCC and HCC-SR cell viability in a dose- and time-dependent manner. Therefore, compound BA-5 was selected for further experiments. Western blot data revealed that BA-5 treatment decreased the phosphorylation of AKT/p70s6k without affecting the MAPK pathway and increased cleaved PARP and cleaved caspase-7 in both HCC and HCC-SR cells. Since epithelial-mesenchymal transition plays a significant role in regulating cancer invasion and migration, we used the wound healing assay to evaluate the antimigratory effect of compound BA-5. The results showed that BA-5 treatment inhibited HCC and HCC-SR cell migration and reduced Vimentin protein expression. These results were confirmed by microarray analysis showing that BA-5 treatment influenced cancer cell motility and growth-related pathways. In the xenograft mouse model experiment, BA-5 administration significantly inhibited HCC cancer cell growth in mice. Furthermore, the combination of BA-5 with a low dose of regorafenib synergistically inhibited HCC-SR cell proliferation. In conclusion, our study showed that the barbituric acid derivative BA-5 is a new candidate for HCC and sorafenib-resistant HCC therapy.


Assuntos
Antineoplásicos/farmacologia , Barbitúricos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Sorafenibe/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose/efeitos dos fármacos , Barbitúricos/administração & dosagem , Barbitúricos/química , Carcinoma Hepatocelular/patologia , Caspase 7/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Perfilação da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Compostos de Fenilureia/administração & dosagem , Poli(ADP-Ribose) Polimerase-1/metabolismo , Piridinas/administração & dosagem , Vimentina/metabolismo , Cicatrização/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Front Pharmacol ; 11: 388, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32296336

RESUMO

Hepatic stellate cells (HSCs) are the major profibrogenic cells that promote the pathogenesis of liver fibrosis. The crosstalk between transforming growth factor-ß1 (TGF-ß1) signaling and lipopolysaccharide (LPS)-induced NF-κB signaling plays a critical role in accelerating liver fibrogenesis. Until now, there have been no FDA-approved drug treatments for liver fibrosis. Barbituric acid derivatives have been used as antiasthmatic drugs in the clinic; however, the effect of barbituric acid derivatives in treating liver fibrosis remains unknown. In this study, we synthesized a series of six barbituric acid (BA) derivatives, and one of the compounds, BA-5, exhibited the best ability to ameliorate TGF-ß1-induced HSC activation without overt cytotoxic effects. Then, we treated HSCs and RAW264.7 macrophages with BA-5 to analyze the cross-talk of anti-fibrotic and anti-inflammatory effects. Carbon tetrachloride (CCl4)-induced liver fibrosis mouse model was used to evaluate the therapeutic effects of BA-5. Treatment with BA-5 inhibited TGF-ß1-induced α-SMA, collagen1a2, and phosphorylated smad2/3 expression in HSCs. Furthermore, BA-5 treatment reversed the LPS-induced reduction in BAMBI protein and decreased IκBα and NF-κB phosphorylation in HSCs. NF-κB nuclear translocation, MCP-1 secretion, and ICAM-1 expression were also inhibited in BA-5-treated HSCs. Conditioned medium collected from BA-5-treated HSCs showed a reduced ability to activate RAW264.7 macrophages by inhibiting the MAPK pathway. In the mouse model, BA-5 administration reduced CCl4-induced liver damage, liver fibrosis, and F4/80 expression without any adverse effects. In conclusion, our study showed that the barbituric acid derivative BA-5 inhibits HSCs activation and liver fibrosis by blocking both the TGF-ß1 and LPS-induced NF-κB signaling pathways and further inhibits macrophages recruitment and activation.

10.
Bioorg Chem ; 98: 103729, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32179284

RESUMO

Leucettamine B is a natural product found in marine sponge Leucetta microraphis. Several of analogs of its family, such as aplysinopsine and clathridine, are medicinally active molecules which have applications in many pharmaceuticals and healthcare products; however, thus far, leucettamine B has not been studied. In this report, we describe the synthesis of a new class of analogs of leucettamine B obtained by Knoevenagel condensation using a microwave reactor. The 25 newly synthesized compounds were tested against MDA-MB-468, SW480, and Mahlavu cell lines for anticancer activity. Among them, the carborane-based compound (Z)-5-(benzo[d][1,3]dioxol-5-ylmethylene)-3-(1-closo-carboranyl)-2-thioxo -thiazolidin-4-one (49) and (Z)-5-(benzo[d][1,3]dioxol-5-ylmethylene)-3-(2-(pyrrolidin-1-yl)ethyl)-2-thioxothiazolidin-4-one (31) derivatives were found to have the most potential for use against tumor cells. The carborane derivative 49 had the lowest IC50 value against the SW480 cell line (4.7 µM) and the Mahlavu (6.6 µM) cell line. Furthermore, compound 31 also had a low IC50 value against SW480 (7.5 µM). Our research shows that leucettamine B analogs might have potential for use in cancer chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Boranos/farmacologia , Desenho de Fármacos , Imidazóis/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Boranos/síntese química , Boranos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazóis/síntese química , Imidazóis/química , Estrutura Molecular , Relação Estrutura-Atividade , Células Vero
11.
Sci Rep ; 9(1): 17259, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754201

RESUMO

Hepatocellular carcinoma (HCC) is a major cause of cancer-related death worldwide. Currently, sorafenib is the standard first-line drug for patients with advanced HCC. However, long-term exposure to sorafenib often results in reduced sensitivity of tumour cells to the drug, leading to acquired resistance. Therefore, developing new compounds to treat sorafenib resistance is urgently needed. Although benzimidazole and its derivatives have been reported to exert antimicrobial and antitumour effects, the anti-drug resistance potential of these molecules is still unknown. In this study, we established sorafenib-resistant (SR) cell lines and an acquired sorafenib resistance xenograft model. We showed that treatment with a benzimidazole derivative bearing a pyrrolidine side chain (compound 9a) inhibited the proliferation of SR cells by blocking the phosphorylation of AKT, p70S6 and the downstream molecule RPS6. In addition, caspase 3/PARP-dependent apoptotic signals were induced in 9a-treated cells. Regarding epithelial-mesenchymal transition (EMT) activities, 9a treatment significantly suppressed the migration of SR cells. In particular, the levels of EMT-related transcription factors (snail, slug and twist) and mesenchymal markers (vimentin and N-cadherin) were downregulated. In the acquired sorafenib resistance xenograft model, compound 9a administration decreased the growth of tumours with acquired sorafenib resistance and the expression of the HCC markers α-fetoprotein, glypican 3 and survivin. In conclusion, treatment with this compound may be a novel therapeutic strategy for patients with sorafenib resistance.


Assuntos
Benzimidazóis/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Pirrolidinas/farmacologia , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos NOD , Sorafenibe/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Molecules ; 24(18)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31500191

RESUMO

Numerous reports have shown that conjugated benzimidazole derivatives possess various kinds of biological activities, including anticancer properties. In this report, we designed and synthesized 24 new molecules comprising a benzimidazole ring, arene, and alkyl chain-bearing cyclic moieties. The results showed that the N-substituted benzimidazole derivatives bearing an alkyl chain and a nitrogen-containing 5- or 6-membered ring enhanced the cytotoxic effects on human breast adenocarcinoma (MCF-7) and human ovarian carcinoma (OVCAR-3) cell lines. Among the 24 synthesized compounds, (2E)-1-(1-(3-morpholinopropyl)-1H-benzimidazol-2 -yl)-3-phenyl-2-propen-1-one) (23a) reduced the proliferation of MCF-7 and OVCAR-3 cell lines demonstrating superior outcomes to those of cisplatin.


Assuntos
Benzimidazóis/farmacologia , Neoplasias da Mama/tratamento farmacológico , Chalconas/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Benzimidazóis/síntese química , Benzimidazóis/química , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chalconas/síntese química , Chalconas/química , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Células MCF-7 , Estrutura Molecular , Neoplasias Ovarianas/patologia , Relação Estrutura-Atividade
13.
Colloids Surf B Biointerfaces ; 183: 110387, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31394419

RESUMO

Successful boron neutron capture therapy (BNCT) requires sufficient and specific delivery of boron atoms to malignant cells. Gold nanoparticles (AuNPs) have been used as a useful delivery system for selectively releasing cytotoxic payloads in the tumor. However, studies demonstrating the in vivo distribution or pharmacokinetics of boron-containing AuNPs via noninvasive imaging are lacking. This study aims to develop theranostic AuNP-boron cage assemblies (B-AuNPs) and evaluate its feasibility for BNCT. The commercial citrate-coated AuNPs were subjected to PEGylation, azide addition, and carborane modification on the surface. To further arm the AuNPs, we conjugated anti-HER2 antibody (61 IgG) with boron-containing PEGylated AuNPs to form 61-B-AuNPs. The diameter and radiolabeling efficiency of boron-containing AuNPs were determined by dynamic light scattering (DLS) and radio thin-layer chromatography (radio TLC), respectively. Noninvasive single-photon emission computed tomography (SPECT)/computed tomography (CT) imaging was performed to determine the pharmacokinetics of radioiodinated AuNPs in N87 gastric cancer xenografts, and the content of boron in tumor and muscle was assessed by inductively coupled plasma mass spectrometry (ICP-MS). After the 3-step modification, the diameter of B-AuNPs increased by ˜25 nm, and antibody conjugation did not affect the diameter of AuNPs. Radioactive iodine (I-123) was introduced in AuNPs by Click chemistry under copper catalysis. The radiolabeling efficiency of 123I-B-AuNPs and 123I-61-B-AuNPs was approximately 60 ± 5%. After purification, the radiochemical purity (RCP) of these NPs was greater than 90%. MicroSPECT/CT imaging showed that the tumor-to-muscle (T/M) ratio of 123I-B-AuNP-injected mice reached 1.91 ± 0.17 at 12 h post-injection, while that of 123I-61-B-AuNP-injected mice was 12.02 ± 0.94. However, the increased uptake of AuNPs by the thyroid was observed at 36 h after the administration of 123I-61-B-AuNPs, indicating antibody-mediated phagocytosis. The T/M ratio, assessed by ICP-MS, of B-AuNP- and 61-B-AuNP-injected mice was 4.91 ± 2.75 and 41.05 ± 11.15, respectively. We successfully developed detectable HER2-targeting boron-containing AuNPs with high RCP and an acceptable yield. Noninvasive imaging could be a valuable tool for the noninvasive determination of the pharmacokinetics of AuNPs and measurement of boron concentration in the tumor.


Assuntos
Terapia por Captura de Nêutron de Boro/métodos , Boro/farmacologia , Nanopartículas Metálicas/administração & dosagem , Neoplasias Gástricas/tratamento farmacológico , Nanomedicina Teranóstica/métodos , Animais , Boro/química , Linhagem Celular Tumoral , Ouro/química , Humanos , Radioisótopos do Iodo/química , Radioisótopos do Iodo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Polietilenoglicóis/química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Eur J Pharmacol ; 832: 104-113, 2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-29782859

RESUMO

Previous studies have indicated that paeonol inhibits RANKL-induced osteoclastogenesis by inhibiting the ERK, p38, and NF-κB pathway. We modified paeonol to form a new compound, YPH-PA3, and found that it promoted osteoclastogenesis rather than inhibited it the way paeonol does. The aim of this study is to investigate the mechanisms involved in YPH-PA3-promoted osteoclastogenesis. YPH-PA3-promoted differentiation of RAW264.7 cells (human monocytes) into osteoclasts is activated through ERK/p38/JNK phosphorylation, affecting c-FOS, NF-κB, and NFATc2. Real-time quantitative PCR and western blot revealed an increased expression of autophagy-related markers during YPH-PA3-induced osteoclastogenesis. We also demonstrated the relationship between p62/LC3 localization and F-actin ring formation by double-labeling immunofluorescence. Knockdown of p62 small-interfering RNA (siRNA) attenuated YPH-PA3-induced expression of autophagy-related genes. Our study results indicated that p62 may play a role in YPH-PA3-induced autophagy and osteoclastogenesis, which may help to develop a novel therapeutic strategy against osteoclastogenesis-related diseases.


Assuntos
Acetofenonas/farmacologia , Autofagia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Macrófagos/citologia , Monócitos/citologia , Osteoblastos/citologia , Acetofenonas/química , Animais , Reabsorção Óssea/induzido quimicamente , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Monócitos/efeitos dos fármacos , NF-kappa B/metabolismo , Osteoblastos/efeitos dos fármacos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
15.
Lab Anim ; 52(2): 186-195, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28691600

RESUMO

Traditional serological enzyme-linked immunosorbent assay (ELISA) is routinely used to monitor pathogens during quarantine in most animal facilities to prevent possible infection. However, the ELISA platform is a single-target assay, and screening all targeted pathogens is time-consuming and laborious. In this study, to increase sensitivity and to reduce diagnosis time for high-throughput processes, multiplex PCR and DNA biochip techniques were combined to develop a multi-pathogen diagnostic method for use instead of routine ELISA. Eight primer sets were designed for multiplex PCR to detect genes from seven targeted bacterial and viral pathogens. DNA-DNA hybridization was conducted on a biochip following the multiple PCR analysis. Using this method, a total of 24 clinical samples were tested, and the result showed that not only single infection but also co-infection by multi-pathogens can be detected. In conclusion, multiplex PCR coupled with a DNA biochip is an efficient method for detecting multi-pathogens in a reaction. This platform is a useful tool for quarantine services and disease prevention in animal facilities.


Assuntos
Animais de Laboratório , Bactérias/isolamento & purificação , Infecções Bacterianas/diagnóstico , Reação em Cadeia da Polimerase Multiplex/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Doenças dos Roedores/diagnóstico , Fosfatase Alcalina/química , Animais , Infecções Bacterianas/microbiologia , Biotinilação , Conjugação Genética , Sondas de DNA , Medições Luminescentes , Doenças dos Roedores/microbiologia , Sensibilidade e Especificidade , Estreptavidina/química
16.
Molecules ; 22(10)2017 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-28946699

RESUMO

Paeonol is a key phenolic compound in the root bark of Moutan Cortex Radicis that has been used in traditional Chinese Medicine to ameliorate inflammation. A series of aminothiazole-paeonol derivatives (APDs) were synthesized in this work and subjected to preliminary evaluation in cells followed by verification in animals. Quantification of monocyte chemotactic protein-1 (MCP-1) and interleukin-6 (IL-6) in culture media of LPS-activated A549 cells, a lung epithelial adenocarcinoma cell line, were used to investigate the anti-inflammatory capability of APDs. ALI-bearing rats were employed to verify therapeutic efficacy of APDs according to observations of total cells, protein amounts, MCP-1 and IL-6 in bronchoalveolar lavage fluid (BALF). Histopathological examinations of lung tissues were consequently applied for validation of APDs. Among these compounds, 2-(2-aminothiazol-4-yl)-5-methoxyphenol (4) had the most potent activity, showing comparable inhibition of MCP-1/IL-6 and superior elimination of neutrophil infiltration and protein exudation in lungs compared to others as well as dexamethasone. This study demonstrated a comprehensive strategy to evaluate APDs through integration of cell-based screening and animal-based verification. In order to fulfill unmet needs of treating acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), APDs introduced in this work could be promising lead compounds to develop high potent anti-inflammation agents.


Assuntos
Acetofenonas/química , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Tiazóis/química , Acetofenonas/uso terapêutico , Lesão Pulmonar Aguda/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Líquido da Lavagem Broncoalveolar , Quimiocina CCL2/metabolismo , Interleucina-6/metabolismo , Masculino , Infiltração de Neutrófilos/efeitos dos fármacos , Ratos , Tiazóis/uso terapêutico
17.
Proc Natl Acad Sci U S A ; 113(48): E7798-E7807, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27856749

RESUMO

Cancer progression is associated with the development of antitumor autoantibodies in patients' sera. Although passive treatment with antitumor antibodies has exhibited remarkable therapeutic efficacy, inhibitory effects on tumor progression by endogenous antitumor autoantibodies (EAAs) have been limited. In this study, we show that P4N, a derivative of the plant lignan nordihydroguaiaretic acid (NDGA), enhanced the production of EAAs and inhibited tumor growth at low noncytotoxic concentrations via its immunoregulatory activity. Intratumoral injection of P4N improved the quantity and quality of EAAs, and passive transfer of P4N-induced EAAs dramatically suppressed lung metastasis formation and prolonged the survival of mice inoculated with metastatic CT26 tumor cells. P4N-induced EAAs specifically recognized two surface antigens, 78-kDa glucose-regulated protein (GRP78) and F1F0 ATP synthase, on the plasma membrane of cancer cells. Additionally, P4N treatment led to B-cell proliferation, differentiation to plasma cells, and high titers of autoantibody production. By serial induction of autocrine and paracrine signals in monocytes, P4N increased B-cell proliferation and antibody production via the leukotriene A4 hydrolase (LTA4H)/activin A/B-cell activating factor (BAFF) pathway. This mechanism provides a useful platform for studying and seeking a novel immunomodulator that can be applied in targeting therapy by improving the quantity and quality of the EAAs.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Fatores Imunológicos/administração & dosagem , Éteres Fenílicos/administração & dosagem , Piperidinas/administração & dosagem , Transdução de Sinais , Ativinas/genética , Ativinas/metabolismo , Animais , Anticorpos Antineoplásicos/sangue , Autoanticorpos/sangue , Fator Ativador de Células B/genética , Fator Ativador de Células B/metabolismo , Linfócitos B/efeitos dos fármacos , Linfócitos B/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Chaperona BiP do Retículo Endoplasmático , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Feminino , Expressão Gênica , Imunidade Humoral/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Carga Tumoral
18.
Molecules ; 21(2)2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26901180

RESUMO

A series of new conjugated compounds with a -SCH2- linkage were synthesized by chemical methods from imidazole and coumarin derivatives. The experimental results indicate that of the twenty newly synthesized imidazole-coumarin conjugates, three of them exhibited appealing EC50 values (5.1-8.4 µM) and selective indices >20 against hepatitis C virus. Their potency and selectivity were increased substantially by modification of their structure with two factors: imidazole nucleus with a hydrogen atom at the N(1) position and coumarin nucleus with a substituent, such as Cl, F, Br, Me, and OMe. These guidelines provide valuable information for further development of conjugated compounds as anti-viral agents.


Assuntos
Cumarínicos/síntese química , Hepacivirus/efeitos dos fármacos , Imidazóis/síntese química , Antivirais/síntese química , Antivirais/química , Antivirais/farmacologia , Cumarínicos/química , Cumarínicos/farmacologia , Hepacivirus/fisiologia , Imidazóis/química , Imidazóis/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
19.
Molecules ; 21(2): 145, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26821004

RESUMO

In this study, novel aminothiazole-paeonol derivatives were synthesized and characterized using ¹H-NMR, (13)C-NMR, IR, mass spectroscopy, and high performance liquid chromatography. All the new synthesized compounds were evaluated according to their anticancer effect on seven cancer cell lines. The experimental results indicated that these compounds possess high anticancer potential regarding human gastric adenocarcinoma (AGS cells) and human colorectal adenocarcinoma (HT-29 cells). Among these compounds, N-[4-(2-hydroxy-4-methoxyphenyl)thiazol-2-yl]-4-methoxybenzenesulfonamide (13c) had the most potent inhibitory activity, with IC50 values of 4.0 µM to AGS, 4.4 µM to HT-29 cells and 5.8 µM to HeLa cells. The 4-fluoro-N-[4-(2-hydroxy-4-methoxyphenyl)thiazol-2-yl]benzenesulfonamide (13d) was the second potent compound, showing IC50 values of 7.2, 11.2 and 13.8 µM to AGS , HT-29 and HeLa cells, respectively. These compounds are superior to 5-fluorouracil (5-FU) for relatively higher potency against AGS and HT-29 human cancer cell lines along with lower cytotoxicity to fibroblasts. Novel aminothiazole-paeonol derivatives in this work might be a series of promising lead compounds to develop anticancer agents for treating gastrointestinal adenocarcinoma.


Assuntos
Acetofenonas/síntese química , Acetofenonas/farmacologia , Tiadiazóis/síntese química , Tiadiazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HT29 , Células HeLa , Humanos , Estrutura Molecular
20.
Arch Toxicol ; 90(1): 181-90, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25270622

RESUMO

Di-(2-ethylhexyl) phthalate (DEHP) is associated with atherosclerosis-related cardiovascular disease complications, but we lack direct evidence of its unfavorable effect on atherogenesis. In this study, we aimed to clarify in vivo and in vitro the contribution of DEHP to the development of atherosclerosis and its underlying mechanisms. Apolipoprotein E-deficient (apoE(-/-)) mice chronically treated with DEHP for 4 weeks showed exacerbated hyperlipidemia, systemic inflammation, and atherosclerosis. In addition, DEHP promoted low-density lipoprotein (LDL) oxidation, which led to inflammation in endothelial cells as evidenced by increased protein expression of pro-inflammatory mediators. Furthermore, chronic DEHP treatment increased hepatic cholesterol accumulation by downregulating the protein expression of key regulators in cholesterol clearance including LDL receptor, cholesterol 7α-hydrolase, ATP-binding cassette transporter G5 and G8, and liver X receptor α. Moreover, the adiposity and inflammation of white adipose tissues were promoted in DEHP-treated apoE(-/-) mice. In conclusion, DEHP may disturb cholesterol homeostasis and deregulate the inflammatory response, thus leading to accelerated atherosclerosis.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/induzido quimicamente , Dietilexilftalato/toxicidade , Plastificantes/toxicidade , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Apolipoproteínas E/genética , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/patologia , Linhagem Celular , Colesterol/sangue , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Predisposição Genética para Doença , Humanos , Mediadores da Inflamação/sangue , Lipoproteínas LDL/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Knockout , Fenótipo , Medição de Risco , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA