Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Plant Cell ; 36(3): 510-539, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38000896

RESUMO

A crucial step in functional genomics is identifying actively translated ORFs and linking them to biological functions. The challenge lies in identifying short ORFs, as their identification is greatly influenced by data quality and depth. Here, we improved the coverage of super-resolution Ribo-seq in Arabidopsis (Arabidopsis thaliana), revealing uncharacterized translation events for nuclear, chloroplastic, and mitochondrial genes. Assisted by a transcriptome assembly, we identified 7,751 unconventional translation events, comprising 6,996 upstream ORFs (uORFs) and 209 downstream ORFs on annotated protein-coding genes, as well as 546 ORFs in presumed noncoding RNAs. Proteomic data confirmed the production of stable proteins from some of these unannotated translation events. We present evidence of active translation from primary transcripts of trans-acting small interfering RNAs (TAS1-4) and microRNAs (pri-MIR163 and pri-MIR169) and periodic ribosome stalling supporting cotranslational decay. Additionally, we developed a method for identifying extremely short uORFs, including 370 minimum uORFs (AUG-stop), and 2,921 tiny uORFs (2 to 10 amino acids) and 681 uORFs that overlap with each other. Remarkably, these short uORFs exhibit strong translational repression as do longer uORFs. We also systematically discovered 594 uORFs regulated by alternative splicing, suggesting widespread isoform-specific translational control. Finally, these prevalent uORFs are associated with numerous important pathways. In summary, our improved Arabidopsis translational landscape provides valuable resources to study gene expression regulation.


Assuntos
Arabidopsis , MicroRNAs , Arabidopsis/genética , Arabidopsis/metabolismo , Biossíntese de Proteínas/genética , Perfil de Ribossomos , Fases de Leitura Aberta/genética , Proteômica , MicroRNAs/genética , MicroRNAs/metabolismo
2.
Plant Cell ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37437121

RESUMO

Translation is a crucial step in gene expression and plays a vital role in regulating various aspects of plant development and environmental responses. It is a dynamic and complex program that involves interactions between mRNAs, tRNAs, and the ribosome machinery, through both cis- and trans-regulation, while integrating internal and external signals. Translational control can act in a global (transcriptome-wide) or mRNA-specific manner. Recent advances in genome-wide techniques, particularly ribosome profiling and proteomics, have led to numerous exciting discoveries in both global and mRNA-specific translation. In this review, we aim to provide a 'primer' that introduces readers to this fascinating yet complex cellular process and provide a big picture of how essential components connect within the network. We begin with an overview of mRNA translation, followed by a discussion of the experimental approaches and recent findings in the field, focusing on unannotated translation events and translational control through cis-regulatory elements on mRNAs and trans-acting factors, as well as signaling networks through three conserved translational regulators TOR, SnRK1, and GCN2. Finally, we briefly touch on the spatial regulation of mRNAs in translational control. Here, we focus on cytosolic mRNAs, and translation in organelles and viruses is not covered in this review.

3.
Plant Methods ; 18(1): 115, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195920

RESUMO

BACKGROUND: Ribosome profiling, also known as Ribo-seq, is a powerful technique to study genome-wide mRNA translation. It reveals the precise positions and quantification of ribosomes on mRNAs through deep sequencing of ribosome footprints. We previously optimized the resolution of this technique in plants. However, several key reagents in our original method have been discontinued, and thus, there is an urgent need to establish an alternative protocol. RESULTS: Here we describe a step-by-step protocol that combines our optimized ribosome footprinting in plants with available custom library construction methods established in yeast and bacteria. We tested this protocol in 7-day-old Arabidopsis seedlings and evaluated the quality of the sequencing data regarding ribosome footprint length, mapped genomic features, and the periodic properties corresponding to actively translating ribosomes through open resource bioinformatic tools. We successfully generated high-quality Ribo-seq data comparable with our original method. CONCLUSIONS: We established a custom library construction method for super-resolution Ribo-seq in Arabidopsis. The experimental protocol and bioinformatic pipeline should be readily applicable to other plant tissues and species.

4.
Plant Cell ; 34(9): 3233-3260, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35666179

RESUMO

Long intergenic noncoding RNAs (lincRNAs) are a large yet enigmatic class of eukaryotic transcripts that can have critical biological functions. The wealth of RNA-sequencing (RNA-seq) data available for plants provides the opportunity to implement a harmonized identification and annotation effort for lincRNAs that enables cross-species functional and genomic comparisons as well as prioritization of functional candidates. In this study, we processed >24 Tera base pairs of RNA-seq data from >16,000 experiments to identify ∼130,000 lincRNAs in four Brassicaceae: Arabidopsis thaliana, Camelina sativa, Brassica rapa, and Eutrema salsugineum. We used nanopore RNA-seq, transcriptome-wide structural information, peptide data, and epigenomic data to characterize these lincRNAs and identify conserved motifs. We then used comparative genomic and transcriptomic approaches to highlight lincRNAs in our data set with sequence or transcriptional conservation. Finally, we used guilt-by-association analyses to assign putative functions to lincRNAs within our data set. We tested this approach on a subset of lincRNAs associated with germination and seed development, observing germination defects for Arabidopsis lines harboring T-DNA insertions at these loci. LincRNAs with Brassicaceae-conserved putative miRNA binding motifs, small open reading frames, or abiotic-stress modulated expression are a few of the annotations that will guide functional analyses into this cryptic portion of the transcriptome.


Assuntos
Arabidopsis , Brassicaceae , RNA Longo não Codificante , Genômica , Análise de Sequência de RNA , Transcriptoma
5.
Plant Methods ; 17(1): 124, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876166

RESUMO

BACKGROUND: Ribo-seq has revolutionized the study of genome-wide mRNA translation. High-quality Ribo-seq data display strong 3-nucleotide (nt) periodicity, which corresponds to translating ribosomes deciphering three nts at a time. While 3-nt periodicity has been widely used to study novel translation events such as upstream ORFs in 5' untranslated regions and small ORFs in presumed non-coding RNAs, tools that allow the visualization of these events remain underdeveloped. RESULTS: RiboPlotR is a visualization package written in R that presents both RNA-seq coverage and Ribo-seq reads in genomic coordinates for all annotated transcript isoforms of a gene. Specifically, for individual isoform models, RiboPlotR plots Ribo-seq data in the context of gene structures, including 5' and 3' untranslated regions and introns, and it presents the reads for all three reading frames in three different colors. The inclusion of gene structures and color-coding the reading frames facilitate observing new translation events and identifying potential regulatory mechanisms. CONCLUSIONS: RiboPlotR is freely available ( https://github.com/hsinyenwu/RiboPlotR and https://sourceforge.net/projects/riboplotr/ ) and allows the visualization of translated features identified in Ribo-seq data.

6.
Plant Physiol ; 181(1): 367-380, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31248964

RESUMO

Recent applications of translational control in Arabidopsis (Arabidopsis thaliana) highlight the potential power of manipulating mRNA translation for crop improvement. However, to what extent translational regulation is conserved between Arabidopsis and other species is largely unknown, and the translatome of most crops remains poorly studied. Here, we combined de novo transcriptome assembly and ribosome profiling to study global mRNA translation in tomato (Solanum lycopersicum) roots. Exploiting features corresponding to active translation, we discovered widespread unannotated translation events, including 1,329 upstream open reading frames (uORFs) within the 5' untranslated regions of annotated coding genes and 354 small ORFs (sORFs) among unannotated transcripts. uORFs may repress translation of their downstream main ORFs, whereas sORFs may encode signaling peptides. Besides evolutionarily conserved sORFs, we uncovered 96 Solanaceae-specific sORFs, revealing the importance of studying translatomes directly in crops. Proteomic analysis confirmed that some of the unannotated ORFs generate stable proteins in planta. In addition to defining the translatome, our results reveal the global regulation by uORFs and microRNAs. Despite diverging over 100 million years ago, many translational features are well conserved between Arabidopsis and tomato. Thus, our approach provides a high-throughput method to discover unannotated ORFs, elucidates evolutionarily conserved and unique translational features, and identifies regulatory mechanisms hidden in a crop genome.


Assuntos
Proteômica , Ribossomos/metabolismo , Solanum lycopersicum/genética , Transcriptoma , Regiões 5' não Traduzidas/genética , Solanum lycopersicum/metabolismo , Anotação de Sequência Molecular , Fases de Leitura Aberta/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
7.
Proteomics ; 18(17): e1800220, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30035338

RESUMO

A major challenge in the field of proteomics is obtaining high-quality peptides for comprehensive proteome profiling by LC-MS. Here, evaluation and modification of a range of sample preparation methods using photosynthetically active Arabidopsis leaf tissue are done. It was found that inclusion of filter-aided sample preparation (FASP) based on filter digestion improves all protein extraction methods tested. Ultimately, a detergent-free urea-FASP approach that enables deep and robust quantification of leaf and root proteomes is shown. For example, from 4-day-old leaf tissue, up to 11 690 proteins were profiled from a single sample replicate. This method should be broadly applicable to researchers working with difficult to process plant samples.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Proteoma/metabolismo , Manejo de Espécimes/métodos , Arabidopsis/crescimento & desenvolvimento , Detergentes/química , Filtração , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Proteoma/análise
8.
Proteomics ; 18(10): e1700038, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28759167

RESUMO

Peptides encoded by small open reading frames (sORFs, usually <100 codons) play critical regulatory roles in plant development and environmental responses. Despite their importance, only a small number of these peptides have been identified and characterized. Genomic studies have revealed that many plant genomes contain thousands of possible sORFs, which could potentially encode small peptides. The challenge is to distinguish translated sORFs from nontranslated ones. Here, we highlight advances in methodologies for identifying these hidden sORFs in plant genomes, including ribosome profiling and proteomics. We also examine the evidence for new peptides arising from sORFs and discuss their functions in plant development, environmental responses, and translational control.


Assuntos
Genoma de Planta , Fases de Leitura Aberta , Fragmentos de Peptídeos/metabolismo , Plantas/genética , Plantas/metabolismo , Genômica , Fragmentos de Peptídeos/genética , Proteômica , Ribossomos
9.
Plant Physiol ; 173(4): 2308-2322, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28254761

RESUMO

The circadian clock is a complex regulatory network that enhances plant growth and fitness in a constantly changing environment. In Arabidopsis (Arabidopsis thaliana), the clock is composed of numerous regulatory feedback loops in which REVEILLE8 (RVE8) and its homologs RVE4 and RVE6 act in a partially redundant manner to promote clock pace. Here, we report that the remaining members of the RVE8 clade, RVE3 and RVE5, play only minor roles in the regulation of clock function. However, we find that RVE8 clade proteins have unexpected functions in the modulation of light input to the clock and the control of plant growth at multiple stages of development. In seedlings, these proteins repress hypocotyl elongation in a daylength- and sucrose-dependent manner. Strikingly, adult rve4 6 8 and rve3 4 5 6 8 mutants are much larger than wild-type plants, with both increased leaf area and biomass. This size phenotype is associated with a faster growth rate and larger cell size and is not simply due to a delay in the transition to flowering. Gene expression and epistasis analysis reveal that the growth phenotypes of rve mutants are due to the misregulation of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 expression. Our results show that even small changes in PIF gene expression caused by the perturbation of clock gene function can have large effects on the growth of adult plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Família Multigênica , Mutação , Fatores de Transcrição/genética , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/classificação , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biomassa , Tamanho Celular , Relógios Circadianos/genética , Epistasia Genética/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Luz , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Plântula/genética , Plântula/crescimento & desenvolvimento , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Sacarose/metabolismo , Sacarose/farmacologia , Fatores de Transcrição/classificação
10.
Proc Natl Acad Sci U S A ; 113(45): E7126-E7135, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27791167

RESUMO

Deep sequencing of ribosome footprints (ribosome profiling) maps and quantifies mRNA translation. Because ribosomes decode mRNA every 3 nt, the periodic property of ribosome footprints could be used to identify novel translated ORFs. However, due to the limited resolution of existing methods, the 3-nt periodicity is observed mostly in a global analysis, but not in individual transcripts. Here, we report a protocol applied to Arabidopsis that maps over 90% of the footprints to the main reading frame and thus offers super-resolution profiles for individual transcripts to precisely define translated regions. The resulting data not only support many annotated and predicted noncanonical translation events but also uncover small ORFs in annotated noncoding RNAs and pseudogenes. A substantial number of these unannotated ORFs are evolutionarily conserved, and some produce stable proteins. Thus, our study provides a valuable resource for plant genomics and an efficient optimization strategy for ribosome profiling in other organisms.

11.
Methods Mol Biol ; 1158: 45-56, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24792043

RESUMO

Circadian rhythms are biological cycles with a period length of approximately 24 h that are generated by endogenous clocks. The application of microarrays for high-throughput transcriptome analysis has led to the insight that substantial portions of the transcriptomes of both humans and many model organisms are clock-regulated. In a typical circadian time course microarray experiment, samples are collected from organisms maintained in constant environmental conditions, gene expression at each time point is determined using microarrays, and finally clock-regulated transcripts are identified using statistical algorithms. Here, we describe how to design the experiment, process RNA, determine expression profiles using ATH1 microarrays, and use a nonparametric statistical algorithm named JTK_CYCLE in order to identify circadian-regulated transcripts in Arabidopsis. This basic procedure can be modified to identify clock-regulated transcripts in different organisms or using different expression analysis platforms.


Assuntos
Relógios Circadianos/genética , Perfilação da Expressão Gênica , Transcriptoma , Algoritmos , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos
12.
Trends Plant Sci ; 19(4): 240-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24373845

RESUMO

Circadian clocks integrate environmental signals with internal cues to coordinate diverse physiological outputs so that they occur at the most appropriate season or time of day. Recent studies using systems approaches, primarily in Arabidopsis, have expanded our understanding of the molecular regulation of the central circadian oscillator and its connections to input and output pathways. Similar approaches have also begun to reveal the importance of the clock for key agricultural traits in crop species. In this review, we discuss recent developments in the field, including a new understanding of the molecular architecture underlying the plant clock; mechanistic links between clock components and input and output pathways; and our growing understanding of the importance of clock genes for agronomically important traits.


Assuntos
Arabidopsis/metabolismo , Relógios Circadianos/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia
13.
Elife ; 2: e00473, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23638299

RESUMO

Transcriptional feedback loops are key to circadian clock function in many organisms. Current models of the Arabidopsis circadian network consist of several coupled feedback loops composed almost exclusively of transcriptional repressors. Indeed, a central regulatory mechanism is the repression of evening-phased clock genes via the binding of morning-phased Myb-like repressors to evening element (EE) promoter motifs. We now demonstrate that a related Myb-like protein, REVEILLE8 (RVE8), is a direct transcriptional activator of EE-containing clock and output genes. Loss of RVE8 and its close homologs causes a delay and reduction in levels of evening-phased clock gene transcripts and significant lengthening of clock pace. Our data suggest a substantially revised model of the circadian oscillator, with a clock-regulated activator essential both for clock progression and control of clock outputs. Further, our work suggests that the plant clock consists of a highly interconnected, complex regulatory network rather than of coupled morning and evening feedback loops. DOI:http://dx.doi.org/10.7554/eLife.00473.001.


Assuntos
Arabidopsis/fisiologia , Ritmo Circadiano , Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Genes de Plantas , Regiões Promotoras Genéticas , Fatores de Transcrição/fisiologia
14.
PLoS One ; 7(11): e49853, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185460

RESUMO

Circadian rhythms are physiological and behavioral cycles with a period of approximately 24 hours that are generated by an endogenous clock, or oscillator. Found in diverse organisms, they are precisely controlled and provide growth and fitness benefits. Numerous microarray studies examining circadian control of gene expression have reported that a substantial fraction of the genomes of many organisms is clock-controlled. Here we show that a long-period mutant in Arabidopsis, rve8-1, has a global alteration in phase of all clock-controlled genes. After several days in constant environmental conditions, at which point the mutant and control plants have very different circadian phases, we found 1557 genes to be differentially expressed in rve8-1, almost all of which are clock-regulated. However, after adjusting for this phase difference, only a handful show overall expression level differences between rve8-1 and wild type. Thus the apparent differential expression is mainly due to the phase difference between these two genotypes. These findings prompted us to examine the effect of phase on gene expression within a single genotype. Using samples of wild-type plants harvested at thirty-minute intervals, we demonstrated that even this small difference in circadian phase significantly influences the results of differential expression analysis. Our study demonstrates the robust influence of the circadian clock on the transcriptome and provides a cautionary note for all biologists performing genome-level expression analysis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos/genética , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Genótipo , Mutação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
15.
PLoS Genet ; 7(3): e1001350, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21483796

RESUMO

Circadian rhythms provide organisms with an adaptive advantage, allowing them to regulate physiological and developmental events so that they occur at the most appropriate time of day. In plants, as in other eukaryotes, multiple transcriptional feedback loops are central to clock function. In one such feedback loop, the Myb-like transcription factors CCA1 and LHY directly repress expression of the pseudoresponse regulator TOC1 by binding to an evening element (EE) in the TOC1 promoter. Another key regulatory circuit involves CCA1 and LHY and the TOC1 homologs PRR5, PRR7, and PRR9. Purification of EE-binding proteins from plant extracts followed by mass spectrometry led to the identification of RVE8, a homolog of CCA1 and LHY. Similar to these well-known clock genes, expression of RVE8 is circadian-regulated with a dawn phase of expression, and RVE8 binds specifically to the EE. However, whereas cca1 and lhy mutants have short period phenotypes and overexpression of either gene causes arrhythmia, rve8 mutants have long-period and RVE8-OX plants have short-period phenotypes. Light input to the clock is normal in rve8, but temperature compensation (a hallmark of circadian rhythms) is perturbed. RVE8 binds to the promoters of both TOC1 and PRR5 in the subjective afternoon, but surprisingly only PRR5 expression is perturbed by overexpression of RVE8. Together, our data indicate that RVE8 promotes expression of a subset of EE-containing clock genes towards the end of the subjective day and forms a negative feedback loop with PRR5. Thus RVE8 and its homologs CCA1 and LHY function close to the circadian oscillator but act via distinct molecular mechanisms.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Relógios Biológicos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retroalimentação Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA