RESUMO
Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5-7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.
Assuntos
Evolução Molecular , Genes de Plantas , Genômica , Magnoliopsida , Filogenia , Fósseis , Genes de Plantas/genética , Magnoliopsida/genética , Magnoliopsida/classificação , Proteínas Nucleares/genéticaRESUMO
Orchids constitute one of the most spectacular radiations of flowering plants. However, their origin, spread across the globe, and hotspots of speciation remain uncertain due to the lack of an up-to-date phylogeographic analysis. We present a new Orchidaceae phylogeny based on combined high-throughput and Sanger sequencing data, covering all five subfamilies, 17/22 tribes, 40/49 subtribes, 285/736 genera, and c. 7% (1921) of the 29 524 accepted species, and use it to infer geographic range evolution, diversity, and speciation patterns by adding curated geographical distributions from the World Checklist of Vascular Plants. The orchids' most recent common ancestor is inferred to have lived in Late Cretaceous Laurasia. The modern range of Apostasioideae, which comprises two genera with 16 species from India to northern Australia, is interpreted as relictual, similar to that of numerous other groups that went extinct at higher latitudes following the global climate cooling during the Oligocene. Despite their ancient origin, modern orchid species diversity mainly originated over the last 5 Ma, with the highest speciation rates in Panama and Costa Rica. These results alter our understanding of the geographic origin of orchids, previously proposed as Australian, and pinpoint Central America as a region of recent, explosive speciation.
Assuntos
Clima , Orchidaceae , Austrália , Filogenia , Filogeografia , Orchidaceae/genéticaRESUMO
Evolutionary slowdowns in diversification have been inferred in various plant and animal lineages. Investigation based on diversification models integrated with environmental factors and key characters could provide critical insights into this diversification trend. We evaluate diversification rates in the Cirrhopetalum alliance (Bulbophyllum, Orchidaceae subfam. Epidendroideae) using a time-calibrated phylogeny and assess the role of Crassulacean acid metabolism (CAM) as a hypothesised key innovation promoting the spectacular diversity of orchids, especially those with an epiphytic habit. An explosive early speciation in the Cirrhopetalum alliance is evident, with the origin of CAM providing a short-term advantage under the low atmospheric CO2 concentrations (pCO2) associated with cooling and aridification in the late Miocene. A subsequent slowdown of diversification in the Cirrhopetalum alliance is possibly explained by a failure to keep pace with pCO2 dynamics. We further demonstrate that extinction rates in strong CAM lineages are ten times higher than those of C3 lineages, with CAM not as evolutionarily labile as previously assumed. These results challenge the role of CAM as a "key innovation" in the diversification of epiphytic orchids.
RESUMO
With c. 2,000 species, Euphorbia is one of the largest angiosperm genera, yet a lack of chloroplast genome (plastome) resources impedes a better understanding of its evolution. In this study, we assembled and annotated 28 plastomes from Euphorbiaceae, of which 15 were newly sequenced. Phylogenomic and comparative analyses of 22 plastome sequences from all four recognized subgenera within Euphorbia revealed that plastome length in Euphorbia is labile, presenting a range of variation c. 42 kb. Large-scale expansions of the inverted repeat (IR) region were identified, and at the extreme opposite, the near-complete loss of the IR region (with only 355 bp left) was detected for the first time in Euphorbiaceae. Other structural variations, including gene inversion and duplication, and gene loss/pseudogenization, were also observed. We screened the most promising molecular markers from both intergenic and coding regions for phylogeny-based utilities, and estimated maximum likelihood and Bayesian phylogenies from four datasets including whole plastome sequences. The monophyly of Euphorbia is supported, and its four subgenera are recovered in a successive sister relationship. Our study constitutes the first comprehensive investigation on the plastome structural variation in Euphorbia and it provides resources for phylogenetic research in the genus, facilitating further studies on its taxonomy, evolution, and conservation.
RESUMO
BACKGROUND: With currently 1980 described species, the mega-diverse Begonia is now perhaps the 5th largest flowering plant genus, expanding rapidly from ca. 900 species in 1997 to its current size in merely two decades. In continuation of our studies of Asian Begonia, we report six additional new species from Guangxi, the region/province harboring the second richest Begonia flora of China. RESULTS: Based on morphological and molecular data, the new species B. aurora belongs to Begonia sect. Platycentrum, while the other five new species (viz. B. larvata, B. longiornithophylla, B. lui, B. scabrifolia, and B. zhuoyuniae) are members of Sect. Coelocentrum. Somatic chromosome numbers of B. longiornithophylla and B. zhuoyuniae at metaphase were counted as 2n = 30, consistent with previously reports for Sect. Coelocentrum. CONCLUSIONS: With the addition of the six new species, the total number of Begonia species in Guangxi increases from 86 to 92. Detailed description, line drawings, and color plates are provided to aid in identification.
RESUMO
The Cirrhopetalum alliance is a loosely circumscribed species-rich group within the mega-diverse genus Bulbophyllum (Orchidaceae). The monophyletic status of the alliance has been challenged by previous studies, although established sectional classifications have yet to be tested in a phylogenetic context. We used maximum likelihood and Bayesian analyses of DNA sequence data (cpDNA: matK and psbA-trnH; nrDNA: ITS and Xdh; 3509 aligned characters; 117 taxa), including all sections putatively associated with the Cirrhopetalum alliance, to reconstruct the phylogeny. We mapped 11 selected categorical floral characters onto the phylogeny to identify synapomorphies and assess potential evolutionary transitions across major clades. Our results unequivocally support the recognition of an amended Cirrhopetalum alliance as a well-supported monophyletic group characterized by clear synapomorphies, following the inclusion of sect. Desmosanthes and the exclusion of five putative Cirrhopetalum-allied sections. Most sections within the Cirrhopetalum alliance are demonstrated to be polyphyletic or paraphyletic, necessitating a new sectional classification. The inclusion of sect. Desmosanthes revolutionizes our understanding of the alliance, with significant evolutionary transitions in floral characters detected. We further investigated six continuously variable characters of the sepals and labellum, and detect phylogenetic conservatism in labellum width and the evolutionary lability of lateral sepal length, which can partly be explained by the different functional roles they play in pollination and pollinator trapping.
Assuntos
Evolução Molecular , Orchidaceae/classificação , Teorema de Bayes , DNA de Plantas/química , DNA de Plantas/genética , Flores/anatomia & histologia , Flores/classificação , Flores/genética , Orchidaceae/anatomia & histologia , Orchidaceae/genética , Filogenia , Polinização , Análise de Sequência de DNARESUMO
Vegetative propagation (clonal growth) conveys several evolutionary advantages that positively affect life history fitness and is a widespread phenomenon among angiosperms that also reproduce sexually. However, a bias towards clonality can interfere with sexual reproduction and lead to sexual extinction, although a dearth of effective genetic tools and mathematical models for clonal plants has hampered assessment of these impacts. Using the endangered tropical epiphytic or lithophytic orchid Bulbophyllum bicolor as a model, we integrated an examination of breeding system with 12 microsatellite loci and models valid for clonal species to test for the "loss of sex" and infer likely consequences for long-term reproductive dynamics. Bagging experiments and field observations revealed B. bicolor to be self-incompatible and pollinator-dependent, with an absence of fruit-set over 4 years. Challenging the assumptions that clonal populations can be as genotypically diverse as sexually reproducing ones and that clonality does not greatly influence genetic structure, just 22 multilocus genotypes were confirmed among all 15 extant natural populations, 12 of the populations were found to be monoclonal, and all three multiclonal ones exhibited a distinct phalanx clonal architecture. Our results suggest that all B. bicolor populations depend overwhelmingly on clonal growth for persistence, with a concomitant loss of sex due to an absence of pollinators and a lack of mating opportunities at virtually all sites, both of which are further entrenched by habitat fragmentation. Such cryptic life history impacts, potentially contributing to extinction debt, could be widespread among similarly fragmented, outcrossing tropical epiphytes, demanding urgent conservation attention.
Assuntos
Orchidaceae/genética , Orchidaceae/fisiologia , Evolução Biológica , Genética Populacional , Genótipo , Repetições de Microssatélites , Reprodução , Autoincompatibilidade em AngiospermasRESUMO
Allopregnanolone is one of the most important neurosteroids in the brain. We studied the effect and mechanism of allopregnanolone on spontaneous and evoked glutamate release in the medial prefrontal cortex using electrophysiological and biochemical methods combined with pharmacological approaches. The results showed that allopregnanolone had no effects on the frequency of miniature excitatory postsynaptic current (mEPSCs), but inhibited the depolarizing agent veratridine-evoked increase in the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and inhibited the first of the two responses evoked by a pair of electrical pulses more effectively than the second, resulting in increased paired-pulse facilitation (PPF) and thus suggesting a presynaptic inhibitory effect on electrical pulse-evoked glutamate release. A similar effect was also obtained for the effect of allopregnanolone on protein kinase A (PKA) activation, an upstream event of presynaptic glutamate release. Interestingly, allopregnanolone had none of these effects in the striatum. In the study of the upstream mechanism of the PKA inhibition by allopregnanolone, we found that allopregnanolone inhibited extracellular calcium influx-evoked PKA activation, but had no effects on intracellular calcium store release-evoked PKA activation; L-type calcium channel antagonists, but not N- and P/Q-type calcium channel antagonist, blocked the effect of allopregnanolone; allopregnanolone inhibited L-type calcium channel agonist-evoked increase in the PKA activity, intrasynaptosomal calcium concentration and frequency of sEPSCs. These results suggest that allopregnanolone inhibits evoked glutamate release via the inhibition of L-type calcium channels in the medial prefrontal cortex, but does not in the striatum.