Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Int Immunopharmacol ; 142(Pt A): 112948, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39217884

RESUMO

The inflammatory microenvironment, polarization of macrophages towards the M1 phenotype, and consequent matrix degradation and senescence of chondrocytes are primary contributors to the degeneration of knee joint cartilage, further exacerbating the progression of osteoarthritis (OA). Kongensin A (KA) is a recently identified natural plant extract exhibiting anti-necrotic apoptosis and anti-inflammatory properties, but the potential efficacy in alleviating OA remains uncertain. The current research lucubrated the effect of KA on the inflammatory microenvironment and macrophage polarization, as well as its regulatory function in extracellular matrix (ECM) metabolism and chondrocyte senescence. Our findings demonstrated that KA can suppress inflammatory signaling, maintain homeostasis between ECM anabolism and catabolism, and suppress chondrocytes senescence. Further investigation elucidated that the mechanism involves the suppression of the PI3K/AKT/NF-κB axis in chondrocytes under inflammatory conditions. Moreover, KA impeded M1 polarization of macrophages via inhibiting PI3K/AKT/NF-κB axis. Subsequently, we treated chondrocytes with macrophages-derived conditioned medium (CM) and revealed that KA can promote ECM anabolism and alleviate chondrocytes senescence by reprogramming macrophage polarization. Consistent with in vitro experiments, in vivo administration of KA demonstrated alleviated cartilage degeneration and delayed progression of OA. Collectively, through obstructing the PI3K/AKT/NF-κB axis, KA can reprogram macrophage polarization, promote matrix metabolism equilibrium, and alleviate chondrocytes senescence, thereby attenuating the pathology of OA. In conclusion, KA may emerge as a promising therapy for OA.

2.
Acta Radiol ; 65(6): 645-653, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38449078

RESUMO

BACKGROUND: Gliomas differ from meningiomas in their margins, most of which are not separated from the surrounding tissue by a distinct interface. PURPOSE: To characterize the margins of gliomas quantitatively based on the margin sharpness coefficient (MSC) is significant for clinical judgment and invasive analysis of gliomas. MATERIAL AND METHODS: The data for this study used magnetic resonance image (MRI) data from 67 local patients and 15 open patients to quantify the intensity of changes in the glioma margins of the brain using MSC. The accuracy of MSC was assessed by consistency analysis and Bland-Altman test analysis, as well as invasive correlations using receiver operating characteristic (ROC) and Spearman correlation coefficients for subjects. RESULTS: In grading the tumors, the mean MSC values were significantly lower for high-grade gliomas (HGG) than for low-grade gliomas (LGG). The concordance correlation between the measured gradient and the actual gradient was high (HGG: 0.981; LGG: 0.993), and the Bland-Altman mean difference at the 95% confidence interval (HGG: -0.576; LGG: 0.254) and the limits of concordance (HGG: 5.580; LGG: 5.436) indicated no statistical difference. The correlation between MSC and invasion based on the margins of gliomas showed an AUC of 0.903 and 0.911 for HGG and LGG, respectively. The mean Spearman correlation coefficient of the MSC versus the actual distance of invasion was -0.631 in gliomas. CONCLUSION: The relatively low MSC on the blurred margins and irregular shape of gliomas may help in benign-malignant differentiation and invasion prediction of gliomas and has potential application for clinical judgment.


Assuntos
Neoplasias Encefálicas , Glioma , Imageamento por Ressonância Magnética , Humanos , Glioma/diagnóstico por imagem , Glioma/patologia , Imageamento por Ressonância Magnética/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Adulto , Idoso , Gradação de Tumores , Adulto Jovem , Adolescente , Estudos Retrospectivos , Idoso de 80 Anos ou mais
3.
Int Immunopharmacol ; 129: 111661, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38359662

RESUMO

Low back pain (LBP) is most commonly caused by intervertebral disc degeneration (IVDD). Pyroptosis, apoptosis, and necroptosis are crucial in IVDD pathogenesis; however, possible simultaneous occurrence in IVDD and co-regulation between the pathways and the regulatory mechanisms have not been investigated. PANoptosis is a regulated cell death (RCD) pathway with the key characteristics of pyroptosis, apoptosis, and necroptosis. This study revealed that tert-butyl hydroperoxide (TBHP) altered the expression of key proteins involved in PANoptosis in nucleus pulposus cells (NPCs). Furthermore, the natural product Kongensin A (KA), which has potential anti-necrotic and anti-inflammatory properties, inhibited PANoptosis. TAK1, often referred to as mitogen-activated protein kinase kinase kinase 7 (Map3k7), is a key regulator of innate immunity, cell death, inflammation, and cellular homeostasis; however, the physiological roles and regulatory mechanisms underlying IVDD remain unclear. In this study, we discovered that KA can upregulate TAK1 expression in NPCs, -which inhibits PANoptosis by suppressing oxidative stress. In conclusion, our results suggest that KA inhibits PANoptosis and delays IVDD progression in NPCs by upregulating TAK1 expression to maintain mitochondrial redox balance. Consequently, targeting TAK1 may be a promising therapeutic approach for IVDD therapy.


Assuntos
Diterpenos , Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Degeneração do Disco Intervertebral/tratamento farmacológico , Apoptose , Estresse Oxidativo , Disco Intervertebral/patologia
4.
Int Immunopharmacol ; 127: 111262, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38101216

RESUMO

Intervertebral disc (IVD) degeneration (IDD), an age-related degenerative disease, is accompanied by the accumulation of senescent nucleus pulposus (NP) cells and extracellular matrix (ECM) degradation. The current study aims to clarify the role of M1 macrophages in the senescence of NP cells, and further explores whether bardoxolone methyl (CDDO-Me) can alleviate the pathological changes induced by M1 macrophages and relieve IDD. On the one hand, conditioned medium (CM) of M1 macrophages (M1CM) triggered senescence of NP cells and ECM degradation in a time-dependent manner. On the other hand, CM of senescent NP cells (S-NPCM) was collected to treat macrophages and we found that S-NPCM promoted the migration and M1-polarization of macrophages. However, both of the above effects can be partially blocked by CDDO-Me. We further explored the mechanism and found that M1CM promoted the expression level of STING and nuclear translocation of P65 in NP cells, while being restrained by CDDO-Me and STING inhibitor H151. In addition, the employment of Nrf2 inhibitor ML385 facilitated the expression level of STING and nuclear translocation of P65, thereby blocking the effects of CDDO-Me on suppressing senescence of NP cells and ECM degradation. In vivo, the injection of CDDO-Me into the disc decreased the infiltration of M1 macrophages and ameliorated degenerative manifestations in the puncture-induced rat IDD model. In conclusion, CDDO-Me was proved to break the vicious cycle between M1 macrophages and senescent NP cells through the Nrf2/STING/NF-κB pathway, thereby attenuating the progression of IDD.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Ácido Oleanólico , Ratos , Animais , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleanólico/farmacologia , Ácido Oleanólico/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo
5.
Am J Pathol ; 193(7): 960-976, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37088454

RESUMO

Intervertebral disc (IVD) degeneration (IVDD) is usually accompanied by nucleus pulposus (NP) fibrosis and pathologic angiogenesis, which are possibly associated with macrophage infiltration. Previous research indicates a destructive role of macrophages and the protective effect of inhibiting heat shock protein 90 (HSP90) in IVDD. Herein, the effects of inhibiting HSP90 on NP fibrosis and pathologic angiogenesis induced by macrophages were investigated further. Single-cell RNA-sequencing analysis was used to classify fibrotic NP cell (NPC) clusters and healthy NPC clusters in human NP tissues. The fibrotic NPC clusters were possibly associated with angiogenesis-related biological processes. Immunostaining showed the spatial association between blood vessel ingrowth and macrophage infiltration, as well as elevated levels of cell migration-inducing protein (CEMIP) and vascular endothelial growth factor A in severely degenerated human IVD tissues. Particularly, HSP90 inhibitor tanespimycin (17-AAG) ameliorated macrophage-induced fibrotic phenotype of NPCs via inhibiting CEMIP. M2, but not M1, macrophages promoted the pro-angiogenic ability of endothelial cells, which was attenuated by 17-AAG or HSP90 siRNA. Reversing the fibrotic phenotype of NPCs by Cemip siRNA also mitigated the pro-angiogenic effects of M2-conditioned medium-treated NPCs. Moreover, the murine IVDD model supported the 17-AAG-induced amelioration of NP fibrosis and endothelial cell invasion in IVD tissues. In conclusion, inhibiting HSP90 attenuated two interrelated pathologic processes, NP fibrosis and pathologic angiogenesis, induced by macrophages via down-regulating CEMIP.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Camundongos , Animais , Núcleo Pulposo/metabolismo , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Movimento Celular , Proteínas de Choque Térmico , Neovascularização Patológica/patologia , Macrófagos/metabolismo , Fibrose , RNA Interferente Pequeno/metabolismo
6.
Cell Tissue Res ; 390(1): 1-22, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35792910

RESUMO

Intervertebral disc (IVD) degeneration (IVDD) is the most common spinal disorder, which can lead to the symptoms of neck pain or low back pain. In healthy mature IVD tissues, extracellular matrix (ECM) complex possesses favorable biochemical and biomechanical properties, withstanding compression and torsion forces. IVD cells and ECM associate with each other to form a coordinated functional system. IVD cells are the main producers of ECM components, while ECM could modulate the viability and phenotype of IVD cells via direct interactions or indirect regulations. However, with the process of IVDD and ageing, ECM of IVD undergoes content loss and structure degeneration. Moreover, the accumulation of catabolic products may further deteriorate the IVD microenvironment. A better understanding of the physiology and the pathology of ECM within the IVD provides new insight into potential IVD regeneration strategies. Natural ECM components, functional motifs, or mimetic peptides are widely used in IVD repair by not only restoring structural support but also regulating cell fate and tissue microenvironment. Herein, we reviewed recent advances in the involvement of ECM in IVD health and disease, with an emphasis on ECM composition and organization, cell-matrix interactions, pathological ECM degradation, and promising matrix-based biomaterials for IVD regeneration.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Dor Lombar , Materiais Biocompatíveis , Matriz Extracelular/metabolismo , Humanos , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/patologia , Dor Lombar/patologia
7.
Cell Mol Life Sci ; 79(8): 427, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842562

RESUMO

The epithelial-to-mesenchymal transition (EMT) is a reversible process that may interact with tumour immunity through multiple approaches. There is increasing evidence demonstrating the interconnections among EMT-related processes, the tumour microenvironment, and immune activity, as well as its potential influence on the immunotherapy response. Long non-coding RNAs (lncRNAs) are emerging as critical modulators of gene expression. They play fundamental roles in tumour immunity and act as promising biomarkers of immunotherapy response. However, the potential roles of lncRNA in the crosstalk of EMT and tumour immunity are still unclear in sarcoma. We obtained multi-omics profiling of 1440 pan-sarcoma patients from 19 datasets. Through an unsupervised consensus clustering approach, we categorised EMT molecular subtypes. We subsequently identified 26 EMT molecular subtype and tumour immune-related lncRNAs (EILncRNA) across pan-sarcoma types and developed an EILncRNA signature-based weighted scoring model (EILncSig). The EILncSig exhibited favourable performance in predicting the prognosis of sarcoma, and a high-EILncSig was associated with exclusive tumour microenvironment (TME) characteristics with desert-like infiltration of immune cells. Multiple altered pathways, somatically-mutated genes and recurrent CNV regions associated with EILncSig were identified. Notably, the EILncSig was associated with the efficacy of immune checkpoint inhibition (ICI) therapy. Using a computational drug-genomic approach, we identified compounds, such as Irinotecan that may have the potential to convert the EILncSig phenotype. By integrative analysis on multi-omics profiling, our findings provide a comprehensive resource for understanding the functional role of lncRNA-mediated immune regulation in sarcomas, which may advance the understanding of tumour immune response and the development of lncRNA-based immunotherapeutic strategies for sarcoma.


Assuntos
RNA Longo não Codificante , Sarcoma , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoterapia , RNA Longo não Codificante/genética , Sarcoma/genética , Sarcoma/terapia , Microambiente Tumoral/genética
8.
Oxid Med Cell Longev ; 2022: 7531788, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450408

RESUMO

Intervertebral disc (IVD) degeneration (IDD), the leading cause of low back pain (LBP), remains intractable due to a lack of effective therapeutic strategies. Several lines of studies have documented that nucleus pulposus cell (NPC) death induced by excessive oxidative stress is a crucial contributor to IDD. However, the concrete role and regulation mechanisms have not been fully clarified. Selenium (Se), a vital prosthetic group of antioxidant enzymes, is indispensable for maintaining redox homeostasis and promoting cell survival. However, no light was shed on the role of Se on IDD progression, especially regulation on mitochondrial dynamics and homeostasis. To fill this research gap, the current study focuses on the effects of Se, including sodium selenite (SS) and selenomethionine (Se-Met), on IDD progression and the underlying mechanisms. In vitro, we found that both SS and Se-Met alleviated tert-butyl hydroperoxide- (TBHP-) induced oxidative stress, protected mitochondrial function, and inhibited apoptosis of NPCs. Further experiments indicated that Se suppressed TBHP-induced mitochondrial fission and rescued the imbalance of mitochondrial dynamics. Promoting mitochondrial fission by carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) partially counteracted the cytoprotective effects of Se. Moreover, blocking nuclear factor erythroid 2-related factor 2 (Nrf2) with ML385 proved that the effect of Se on regulating mitochondrial dynamics was attributed to the activation of the Nrf2 pathway. In the puncture-induced rat IDD model, a supplement of Se-Met ameliorated degenerative manifestations. Taken together, our results demonstrated that Se suppressed TBHP-induced oxidative stress and mitochondrial fission by activating the Nrf2 pathway, thereby inhibiting the apoptosis of NPCs and ameliorating IDD. Regulation of mitochondrial dynamics by Se may have a potential application value in attenuating the pathological process of IDD.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Selênio , Animais , Antioxidantes/metabolismo , Apoptose , Degeneração do Disco Intervertebral/patologia , Dinâmica Mitocondrial , Fator 2 Relacionado a NF-E2/metabolismo , Núcleo Pulposo/patologia , Ratos , Selênio/uso terapêutico
9.
Exp Mol Med ; 54(3): 309-323, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35338257

RESUMO

Compression-induced apoptosis of nucleus pulposus (NP) cells plays a pivotal role in the pathogenesis of intervertebral disc degeneration (IVDD). Recent studies have shown that the dysregulation of mitochondrial fission and fusion is implicated in the pathogenesis of a variety of diseases. However, its role in and regulatory effects on compression-induced apoptosis of NP cells have not yet been fully elucidated. Heat shock protein 70 (HSP70) is a major cytoprotective heat shock protein, but its physiological role in IVDD, especially its effect on mitochondrial fission and fusion, is still unknown. Herein, we found that compression could induce mitochondrial fission, which ultimately trigger apoptosis of NP cells via the mitochondrial apoptotic pathway. In addition, we identified the cytoprotective effects of HSP70 on NP cells, and we found that promoting the expression of HSP70 could protect NP cells from abnormal mechanical loading in vitro and in vivo. Finally, we showed that HSP70 inhibited compression-induced mitochondrial fission by promoting SIRT3 expression, thereby attenuating mitochondrial dysfunction and the production of reactive oxygen species and ultimately inhibiting the mitochondrial apoptotic pathway in NP cells. In conclusion, our results demonstrated that HSP70 could attenuate compression-induced apoptosis of NP cells by suppressing mitochondrial fission via upregulating SIRT3 expression. Promoting the expression of HSP70 might be a novel strategy for the treatment of IVDD.


Assuntos
Núcleo Pulposo , Sirtuína 3 , Apoptose , Proteínas de Choque Térmico HSP70/genética , Dinâmica Mitocondrial , Núcleo Pulposo/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo
10.
Mol Oncol ; 16(11): 2174-2194, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34894177

RESUMO

Osteosarcoma (OS) is the most common primary malignancy of bone. Epigenetic regulation plays a pivotal role in cancer development in various aspects, including immune response. In this study, we studied the potential association of alterations in the DNA methylation and transcription of immune-related genes with changes in the tumor microenvironment (TME) and tumor prognosis of OS. We obtained multi-omics data for OS patients from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Gene Expression Omnibus (GEO) databases. By referring to curated immune signatures and using a consensus clustering method, we categorized patients based on immune-related DNA methylation patterns (IMPs), and evaluated prognosis and TME characteristics of the resulting patient subgroups. Subsequently, we used a machine-learning approach to construct an IMP-associated prognostic risk model incorporating the expression of a six-gene signature (MYC, COL13A1, UHRF2, MT1A, ACTB, and GBP1), which was then validated in an independent patient cohort. Furthermore, we evaluated TME patterns, transcriptional variation in biological pathways, somatic copy number alteration, anticancer drug sensitivity, and potential responsiveness to immune checkpoint inhibitor therapy with regard to our IMP-associated signature scoring model. By integrative IMP and transcriptomic analysis, we uncovered distinct prognosis and TME patterns in OS. Finally, we constructed a classifying model, which may aid in prognosis prediction and provide a potential rationale for targeted- and immune checkpoint inhibitor therapy in OS.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Neoplasias Ósseas/genética , Neoplasias Ósseas/imunologia , Bases de Dados Genéticas , Epigênese Genética , Humanos , Inibidores de Checkpoint Imunológico , Osteossarcoma/genética , Osteossarcoma/imunologia , Transcriptoma/genética , Microambiente Tumoral/genética
11.
Front Psychol ; 12: 775227, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917001

RESUMO

Farmers have been very precious for societies for ages. Their active experiments, valuable knowledge about their surroundings, environment, and crops' requirements have been a vital part of society. However, the psychological perspectives have been a hole in the loop of farming. Hence, this study has investigated the antecedents of entrepreneurial behaviors of farmers with the mediating risk of their entrepreneurial self-efficacy (ESE). The population chosen for this study was the farming community of suburbs of China, and a sample size of 300 was selected for the data collection. This is a survey study, where a structured questionnaire was adapted on a five-point Likert scale. The data were collected from the farming community to know their psychological and behavioral preferences about their profession. This study has produced interesting results that education, training, and intrinsic motivation play a vital role in farmers' ESE, affecting their entrepreneurial behaviors. This study will add to the body of knowledge and provide an eminent path for emerging entrepreneurs to find more mentorship opportunities to overcome the limitations in upcoming endeavors influencing education and training.

12.
Front Cell Dev Biol ; 9: 652300, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277600

RESUMO

Due to the rarity and heterogeneity, it is challenging to explore and develop new therapeutic targets for patients with sarcoma. Recently, immune cell infiltration in the tumor microenvironment (TME) was widely studied, which provided a novel potential approach for cancer treatment. The competing endogenous RNA (ceRNA) regulatory network has been reported as a critical molecular mechanism of tumor development. However, the role of the ceRNA regulatory network in the TME of sarcoma remains unclear. In this study, gene expression data and clinical information were obtained from The Cancer Genome Atlas (TCGA) sarcoma datasets, and an immune infiltration-related ceRNA network was constructed, which comprised 14 lncRNAs, 13 miRNAs, and 23 mRNAs. Afterward, we constructed an immune infiltration-related risk score model based on the expression of IRF1, MFNG, hsa-miR-940, and hsa-miR-378a-5p, presenting a promising performance in predicting the prognosis of patients with sarcoma.

13.
FASEB J ; 35(3): e21414, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33583095

RESUMO

Low back pain (LBP) is a major clinical problem that lacks effective treatments. The sensory innervation in porous vertebral endplates and anxiety contributes to spinal hyperalgesia. We hypothesized that SIRT1 activator resveratrol alleviates LBP and anxiety via promotion of osteogenesis in the porous endplates. The hyperalgesia and anxiety-related behaviors; sensory innervation, inflammation and porosity of endplates; and osteogenic/osteoclastic factors expression were measured following resveratrol treatment after lumbar spine instability (LSI) surgery. To explore whether resveratrol promotes endplates osteogenesis and thus alleviates LBP through activation of SIRT1 in the osteoprogenitor cells of endplates, SIRT1OSX-/- mice were employed. Additionally, the levels of inflammation markers, phosphorylation of cAMP response element-binding protein (pCREB), and brain-derived neurotrophic factor (BDNF) in hippocampus were evaluated. After 4 or 8 weeks LSI surgery, the mice suffered from hyperalgesia and anxiety, which were efficiently attenuated by resveratrol at 8 weeks. Resveratrol treatment-enhanced osteogenesis and decreased endplates porosities accompanied with the reduction of TNFα, IL-1ß, and COX2 levels and CGRP+ nerve fibers innervation in porous endplates. Resveratrol-mediated endplates osteogenesis, decreased endplates porosities, and analgesic and antianxiety effects were abrogated in SIRT1OSX-/- mice. Furthermore, resveratrol relieved inflammation and increased pCREB and BDNF expression in the hippocampus after 8 weeks, which alleviate anxiety-related behaviors. This study provides that resveratrol-mediated porous endplates osteogenesis via the activation of SIRT1 markedly blocked sensory innervation and inflammation in endplates, therefore, alleviating LSI surgery-induced LBP and hippocampus-related anxiety.


Assuntos
Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Dor Lombar/tratamento farmacológico , Osteogênese/efeitos dos fármacos , Resveratrol/farmacologia , Sirtuína 1/efeitos dos fármacos , Animais , Ansiolíticos/farmacologia , Ansiedade/metabolismo , Comportamento Animal/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Dor Lombar/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo
14.
J Cell Mol Med ; 25(6): 2750-2763, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33550701

RESUMO

c-Jun activation domain-binding protein-1 (Jab1) is aberrantly overexpressed in multiple cancers and plays an oncogenic role in cancer progression. We examined the association between Jab1 expression and prognosis in patients with cancer by conducting a meta-analysis. A comprehensive search strategy was performed using the PubMed, Web of Science, Ovid and EMBASE in July 2020. Eligible studies were enrolled according to definite criteria. Twenty-seven studies involving 2609 patients were enrolled in this meta-analysis. A significant association between high Jab1 expression and poor overall survival (pooled hazard ratio [HR] 2.344, 95% confidence interval [CI]: 2.037-2.696) was observed. Subgroup analyses of the type of cancer, sample size, follow-up period, Jab1 detection method and preoperative treatment did not alter the significance. On pooling data from Cox multivariate analyses, high Jab1 expression was found to be an independent prognostic indicator for overall survival. In addition, high Jab1 expression was found to be associated with advanced clinicopathological features such as clinical stage, lymphatic metastasis, histological grade and distant metastasis in cancers. Our meta-analysis is the first to demonstrate that high Jab1 expression may be a promising indicator of poor prognosis and has an independent prognostic value for overall survival in patients with cancer.


Assuntos
Complexo do Signalossomo COP9/genética , Complexo do Signalossomo COP9/metabolismo , Suscetibilidade a Doenças , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Humanos , Estadiamento de Neoplasias , Neoplasias/mortalidade , Neoplasias/patologia , Prognóstico , Modelos de Riscos Proporcionais , Viés de Publicação
15.
Mol Cell Biochem ; 476(5): 1979-1994, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33511552

RESUMO

The endogenous repair failure of degenerated intervertebral disk (IVD) is highly related to the exhaustion of nucleus pulposus stem cells (NPSCs). Excessive oxidative stress could induce apoptosis and senescence of NPSCs, thus, declining the quantity and quality of NPSCs. Heat shock protein 70 (HSP70) is a family of cytoprotective and antioxidative proteins. However, there is no report on the protective effects of HSP70 on oxidative stress-induced NPSC impairments and underlying mechanisms. In the present study, we treated NPSCs with tert-butyl hydroperoxide (t-BHP) in vitro to simulate an oxidative stress condition. HSP70 inducer TRC051384 was used to evaluate the cytoprotective effects of HSP70. The results suggested that HSP70 impeded t-BHP-mediated cell viability loss and protected the ultrastructure of NPSCs. Moreover, t-BHP could induce mitochondrial apoptosis and p53/p21-mediated senescence of NPSCs, both of which were significantly inhibited in HSP70 activation groups. Excessive oxidative stress and mitochondrial dysfunction reinforced each other and contributed to the cellular damage processes. HSP70 decreased reactive oxygen species (ROS) production, rescued mitochondrial membrane potential (MMP) collapse, and blocked ATP depletion. Finally, our data showed that HSP70 downregulated the JNK/c-Jun pathway. Taken together, activation of HSP70 could protect against t-BHP-induced NPSC apoptosis and senescence, thus, improving the quantity and quality of NPSCs. Therefore, HSP70 may be a promising therapeutic target for IVD degeneration.


Assuntos
Apoptose/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , MAP Quinase Quinase 4/metabolismo , Núcleo Pulposo/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/metabolismo , terc-Butil Hidroperóxido/farmacologia , Células Cultivadas , Humanos
16.
Orthop Surg ; 13(2): 376-383, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33480185

RESUMO

Wrist reconstruction after en bloc resection of bone tumors of the distal radius has been a great challenge. Although many techniques have been used for the reconstruction of long bone defects following en bloc resection of the distal radius, the optimal reconstruction method remains controversial. This is the first review to systematically describe various reconstruction techniques. We not only discuss the indications, functional outcomes, and complications of these reconstruction techniques but also review the technical refinement strategies for improving the stability of the wrist joint. En bloc resection should be performed for Campanacci grade III giant cell tumors (GCT) as well as malignant tumors of the distal radius. However, wrist reconstruction after en bloc resection of the distal radius represents a great challenge. Although several surgical techniques, either achieving a stable wrist by arthrodesis or reconstructing a flexible wrist by arthroplasty, have been reported, the optimal reconstruction procedure remains controversial. The purpose of this review was to investigate which reconstruction methods might be the best option by analyzing the indications, techniques, limitations, and problems of different reconstruction methods. With the advancement of imaging, surgical techniques and materials, some reconstruction techniques have been further refined. Each of the techniques discussed in this review has its advantages and disadvantages. Wrist arthrodesis seems to be preferred over wrist arthroplasty in terms of grip strength and long-term complications, while wrist arthroplasty seems to be superior to wrist arthrodesis in terms of wrist motion. All things considered, wrist arthroplasty with a vascularized fibular head autograft might be a good option because of better wrist function, acceptable grip strength, and a relatively lower complication rate. Moreover, wrist arthrodesis is still an option if the fibular head autograft reconstruction fails. Orthopaedic oncologists should familiarize themselves with the characteristics of each technique to select the most appropriate reconstruction method depending on each patient's situation.


Assuntos
Neoplasias Ósseas/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Rádio (Anatomia)/cirurgia , Articulação do Punho/cirurgia , Humanos
17.
Clin Rheumatol ; 40(8): 3053-3065, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33432451

RESUMO

To assess the efficacy and safety of interleukin (IL)-17A inhibitors in patients with ankylosing spondylitis (AS). PubMed, EMBASE, and Web of Science were searched up to 5 February 2020 for randomized controlled trials (RCTs) that assessed the efficacy and safety of IL-17A inhibitors in patients with AS. We used a meta-analytic approach to perform a random effects analysis or fixed effects analysis according to heterogeneity. Subgroup analyses between studies included medication, time to primary endpoint, and data source. Odds ratios (ORs) or mean differences (MDs) were used to assess the efficacy and safety of IL-17A inhibitors in AS. A total of ten RCTs with 2613 patients were eligible for inclusion in the analysis (six for secukinumab, two for ixekizumab, one for netakimab, and one for bimekizumab). Compared to placebo, IL-17A inhibitors improved ASAS20 response rate (OR = 2.58; p < 0.01) and ASAS40 response rate (OR = 2.80; p < 0.01), and significantly increased the risk of AEs (OR = 1.23; p = 0.03) and nasopharyngitis (OR = 1.72; p < 0.01), but not SAEs (OR = 0.87; p = 0.60). IL-17A inhibitors demonstrated better efficacy in patients with AS in several evaluation indicators. However, the safety of IL-17A inhibitors remains to be further studied in studies with larger sample size and longer follow-up times.


Assuntos
Interleucina-17 , Espondilite Anquilosante , Anticorpos Monoclonais , Humanos , Imunossupressores , Ensaios Clínicos Controlados Aleatórios como Assunto , Espondilite Anquilosante/tratamento farmacológico , Resultado do Tratamento
18.
Front Cell Dev Biol ; 9: 796974, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35059401

RESUMO

Overactivated inflammation and catabolism induced by proinflammatory macrophages are involved in the pathological processes of intervertebral disc (IVD) degeneration (IVDD). Our previous study suggested the protective role of inhibiting heat shock protein 90 (HSP90) in IVDD, while the underlying mechanisms need advanced research. The current study investigated the effects of HSP90 inhibitor 17-AAG on nucleus pulposus (NP) inflammation and catabolism induced by M1-polarized macrophages. Immunohistochemical staining of degenerated human IVD samples showed massive infiltration of macrophages, especially M1 phenotype, as well as elevated levels of interleukin (IL)-1ß, tumor necrosis factor (TNF)-α and matrix metalloproteinase (MMP)13. The conditioned medium (CM) of inflamed NP cells (NPCs) enhanced M1 polarization of macrophages, while the CM of M1 macrophages but not M2 macrophages promoted the expression of inflammatory factors and matrix proteases in NPCs. Additionally, we found that 17-AAG could represent anti-inflammatory and anti-catabolic effects by modulating both macrophages and NPCs. On the one hand, 17-AAG attenuated the pro-inflammatory activity of M1 macrophages via inhibiting nuclear factor-κB (NF-κB) pathway and mitogen-activated protein kinase (MAPK) pathways. On the other hand, 17-AAG dampened M1-CM-induced inflammation and catabolism in NPCs by upregulating HSP70 and suppressing the Janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) pathway. Moreover, both in vitro IVD culture models and murine disc puncture models supported that 17-AAG treatment decreased the levels of inflammatory factors and matrix proteases in IVD tissues. In conclusion, HSP90 inhibitor 17-AAG attenuates NP inflammation and catabolism induced by M1 macrophages, suggesting 17-AAG as a promising candidate for IVDD treatment.

19.
Front Cell Dev Biol ; 8: 864, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015049

RESUMO

The goal of treating articular cartilage (AC) injury is to regenerate cartilage tissue and to integrate the neo-cartilage with surrounding host cartilage. However, most current studies tend to focus on engineering cartilage; interface integration has been somewhat neglected. An endogenous regenerative strategy that simultaneously increases the recruitment of bone marrow mesenchymal stem cells (BMSCs) and chondrocytes may improve interface integration and cartilage regeneration. In this study, a novel functionalized self-assembling peptide hydrogel (KLD-12/KLD-12-LPP, KLPP) containing link protein N-peptide (LPP) was designed to optimize cartilage repair. KLPP hydrogel was characterized using transmission electron microscopy (TEM) and rheometry. KLPP hydrogel shared a similar microstructure to KLD-12 hydrogel which possesses a nanostructure with a fiber diameter of 25-35 nm. In vitro experiments showed that KLPP hydrogel had little cytotoxicity, and significantly induced chondrocyte migration and increased BMSC migration compared to KLD-12 hydrogel. In vivo results showed that defects treated with KLPP hydrogel had higher overall International Cartilage Repair Society (ICRS) scores, Safranin-O staining scores and cumulative histology scores than untreated defects or defects treated with KLD-12 hydrogel, although defects treated with KLD-12 and KLPP hydrogels received similar type II collagen immunostaining scores. All these findings indicated that the simple injectable functionalized self-assembling peptide hydrogel KLPP facilitated simultaneous recruitment of endogenous chondrocytes and BMSCs to promote interface integration and improve cartilage regeneration, holding great potential as a one-step surgery strategy for endogenous cartilage repair.

20.
Front Cell Dev Biol ; 8: 685, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850811

RESUMO

Nucleus pulposus-derived stem/progenitor cells (NPSCs) provide novel prospects for the regeneration of degenerated intervertebral disc (IVD). Nevertheless, with aging and degeneration of IVD, the frequency of NPSCs markedly decreases. Excessive cell death could be the main reason for declined frequency of NPSCs, however, the exact mechanisms remain elusive. Thus, the present study was undertaken to explore the mechanisms of compression-induced NPSCs death, and the effects of heat shock protein 90 (HSP90) on NPSCs survival. Here, we found that compression could trigger receptor-interacting protein kinase 1 (RIPK1)/receptor-interacting protein kinase 3 (RIPK3)/mixed lineage kinase domain-like protein (MLKL)-mediated necroptosis of NPSCs. Furthermore, we found that elevated expression of HSP90 was involved in compression-induced NPSCs death, and inhibiting HSP90 could dramatically attenuate compression-induced necroptosis of NPSCs via regulating the expression and activity of RIPK1/RIPK3/MLKL, and alleviating the mitochondrial dysfunction (mitochondrial membrane potential loss and ATP depletion) and oxidative stress [production of mitochondrial reactive oxygen species (ROS), cellular total ROS and malondialdehyde, and downregulation of superoxide dismutase 2]. Besides necroptosis, compression-induced apoptosis of NPSCs was also attenuated by HSP90 inhibition. In addition, we found that enhanced expression of HSP70 contributed to the cytoprotective effects of inhibiting HSP90. More encouragingly, our results demonstrated that inhibiting HSP90 could also mitigate the exhaustion of NPSCs in vivo. In conclusion, RIPK1/RIPK3/MLKL-mediated necroptosis participates in compression-induced NPSCs death. Furthermore, targeting HSP90 to simultaneously inhibit necroptosis and apoptosis of NPSCs might be an efficient strategy for preventing the death of NPSCs, thus rescuing the endogenous repair capacity of NP tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA