Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Polymers (Basel) ; 16(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38475376

RESUMO

Oil/water separation processes have garnered significant global attention due to the quick growth in industrial development, recurring chemical leakages, and oil spills. Hence, there is a significant demand for the development of inexpensive superwetting materials in an eco-friendly manner to separate oil/water mixtures and emulsions. In this study, a superwetting melamine sponge (SMS) with switchable wettabilities was prepared by modifying melamine sponge (MS) with sodium dodecanoate. The as-prepared SMS exhibited superhydrophobicity, superoleophilicity, underwater superoleophobicity, and underoil superhydrophobicity. The SMS can be utilized in treating both light and heavy oil/water mixtures through the prewetting process. It demonstrated fast permeation fluxes (reaching 108,600 L m-2 h-1 for a light oil/water mixture and 147,700 L m-2 h-1 for a heavy oil/water mixture) and exhibited good separation efficiency (exceeding 99.56%). The compressed SMS was employed in separating surfactant-stabilized water-in-oil emulsions (SWOEs), as well as surfactant-stabilized oil-in-water emulsions (SOWEs), giving high permeation fluxes (reaching 7210 and 5054 L m-2 h-1, respectively). The oil purity for SWOEs' filtrates surpassed 99.98 wt% and the separation efficiencies of SOWEs exceeded 98.84%. Owing to their remarkable capability for separating oil/water mixtures and emulsions, eco-friendly fabrication method, and feasibility for large-scale production, our SMS has a promising potential for practical applications.

2.
Int J Biol Macromol ; 232: 123423, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36716833

RESUMO

Hybrid eco-friendly nanocomposite films were fabricated by blending high-methoxyl pectin, gelatin, TiO2, and curcumin through the solution casting method. Various concentrations (0-5 wt%) of TiO2 nanoparticles (TNPs) and curcumin as an organic filler were added to the blend solutions. A high TNP concentration affected the surface morphology, roughness, and compactness of the films. Additionally, 3D mapping revealed the nanoparticle distribution in the film layers. Moisture content, water solubility, and light transmittance reduced dramatically with increasing TNP content, in accordance with the water vapor and oxygen permeabilities. X-ray diffraction revealed that the films were semicrystalline nanocomposites, and the thermal properties of the films increased when 5 wt% of TNPs was incorporated into the blend solution. Fourier-transform infrared and Raman analyses revealed interactions among biopolymers, nanoparticles, and organic fillers through hydrogen bonding. The shelf life of fresh salmon fillets was prolonged to six days for all groups, revealed by total viable counts and psychrotrophic bacteria counts, and the pH of the salmon fillets could be extended until the sixth day for all groups. Biodegradation assays demonstrated a significant weight loss in the nanocomposite films. Therefore, a nanocomposite film with 5 wt% TNPs could potentially be cytotoxic to NIH 3T3 cells.


Assuntos
Curcumina , Nanocompostos , Animais , Camundongos , Pectinas , Gelatina/química , Salmão , Embalagem de Alimentos , Nanocompostos/química
3.
J Hazard Mater ; 439: 129567, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36104894

RESUMO

The separation of oily wastewater, specifically emulsions, is a crucial global issue. Possible strategies for the efficient separation of emulsified oil/water mixtures through sustainable and environmentally friendly materials have recently drawn considerable attention. In our study, we prepared superwetting water caltrop shell biochar (WCSB) via a top-lit-updraft carbonization procedure. The as-prepared WCSB was characterized by superhydrophilicity, underwater superoleophobicity, underoil superhydrophilicity, and underoil water adsorption ability. Because of its superwetting properties, WCSB was used for the separation of both surfactant-stabilized oil-in-water emulsions (SOIWEs) and surfactant-stabilized water-in-oil emulsions (SWIOEs) with very high fluxes (up to 74,700 and 241,000 L m-2 h-1 bar-1 for SOIWE and SWIOE, respectively). The separation performances were excellent, with oil contents in all SOIWE filtrates lower than 10 ppm and oil purities in all SWIOE filtrates higher than 99.99 wt%. Moreover, WCSB was applied to separate dye-spiked emulsions. Due to their high emulsion separation ability, sustainability, good biocompatibility, and ease of mass production, the as-prepared WCSBs have notable potential for utilitarian applications.


Assuntos
Óleos , Águas Residuárias , Carvão Vegetal , Emulsões , Tensoativos
4.
Macromol Rapid Commun ; 42(23): e2100492, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34553802

RESUMO

The formation of Tröger's Base (TB) configuration is a useful approach to synthesize polymers of intrinsic microporosity (PIM). Herein, the V-shaped TB scaffold is incorporated to prepare electrochromic (EC) polyamide with electroactive triphenylamine (TPA) moiety. The presence of intrinsic microporosity derived from inefficient packing of TB scaffolds can facilitate the counterions diffusion between electroactive species and electrolytes. Consequently, the resulting TB-based polyamide exhibits enhanced EC behaviors, such as a lower driving potential, reduced the difference of redox potentials ΔE, and shorter switching response time compared to the corresponding EC counterpart polyamide.


Assuntos
Nylons , Polímeros , Aminas , Eletrólitos
5.
Membranes (Basel) ; 11(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071537

RESUMO

Zeolitic imidazole framework (ZIF-8) was incorporated into poly(ether-block-amide) (Pebax-1657) in differing ratios to prepare mixed matrix membranes (MMMs) for gas separation. As ZIF-8 loading is increased, gas separation selectivity also gradually increases. For economic considerations, the proportion of the increase in selectivity to the amount of MOF loaded per unit was calculated. The results show that mixing 5% MOF gives the best unit performance. With this, a variety of MOFs (UiO-66, UiO-66-NH2, A520, MIL-68(Al) and MIL-100(Fe)) were mixed with PEBAX at 5 loading to prepare MMMs. In this work, metal-organic frameworks (MOFs) were processed using the dry-free method, where in the synthesized MOF was not dried prior to incorporation. The gas separation performance test carried out shows the highest separation performance was exhibited by P-UiO-66, wherein the CO2/N2 gas selectivity was 85.94, and the permeability was 189.77 (Barrer), which was higher than Robeson's Upper bound in 2008, and obtained a high permeability and selectivity among mixed matrix membranes. In the preparation of high quality MMMs for gas separation, details regarding the interface phenomenon were assessed.

6.
ACS Macro Lett ; 10(10): 1210-1215, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-35549038

RESUMO

The electrochromic (EC) polyamides (Ether-PentiTPA1 and Ether-PentiTPA8) from the electroactive pentiptycene-derived triphenylaminediamine monomers (PentiTPA1 and PentiTPA8) were designed and prepared via polycondensation. The incorporation of rigid and contorted H-shaped pentiptycene scaffolds could restrain polymer chains from close packing and further form intrinsic microporosity in the polymer matrix which could be confirmed by the measurements of WXRD, BET, and PALS. With the existence of intrinsic microporosity, the diffusion rate of counterions between the electroactive polymer film and electrolyte can be promoted during the electrochemical procedure. Therefore, the prepared polyamide Ether-PentiTPA1 exhibits enhanced EC behaviors, such as lower driving potential (1.11 V), smaller redox potential difference ΔE (0.24 V), and shorter switching response time (3.6/5.2 s for coloring/bleaching). Consequently, the formation of intrinsic microporosity can be a useful approach for the enhancement of EC response performance.

7.
RSC Adv ; 11(16): 9638-9663, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35423415

RESUMO

With rapid advancement in water filtration materials, several efforts have been made to fabricate electrospun nanofiber membranes (ENMs). ENMs play a crucial role in different areas of water treatment due to their several advantageous properties such as high specific surface area, high interconnected porosity, controllable thickness, mechanical robustness, and wettability. In the broad field of water purification, ENMs have shown tremendous potential in terms of permeability, rejection, energy efficiency, resistance to fouling, reusability and mechanical robustness as compared to the traditional phase inversion membranes. Upon various chemical and physical modifications of ENMs, they have exhibited great potential for emerging applications in environment, energy and health sectors. This review firstly presents an overview of the limiting factors influencing the morphology of electrospun nanofibers. Secondly, it presents recent advancements in electrospinning processes, which helps to not only overcome drawbacks associated with the conventional electrospinning but also to produce nanofibers of different morphology and orientation with an increased rate of production. Thirdly, it presents a brief discussion about the recent progress of the ENMs for removal of various pollutants from aqueous system through major areas of membrane separation. Finally, this review concludes with the challenges and future directions in this vast and fast growing area.

8.
Mater Sci Eng C Mater Biol Appl ; 110: 110676, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204104

RESUMO

Obesity and type 2 diabetes have become serious health problems in 21st century. Development of non-invasive treatment to treat obesity and type-2 diabetes is still unmet needs. For targeting on this, one of the promising treatments is to implant an intestine sleeve in the gastrointestinal tract for limitation of food absorption. In this context, biodegradable polymer intestine sleeve was composed of polycaprolactone (PCL), poly-DL-lactic acid (PDLLA) and disk-shape nano-clay (Laponite®), and fabricated as an implantable device. Here, Laponite® as a rheological additive to improve the compatibility of PCL and PDLLA, and the polymers/clay composites were also evaluated by scanning electron microscopy SEM analysis and mechanical measurements. The mass ratio 90/10/1 of PCL/PDLLA/Laponite® composite was selected for fabrication of intestine sleeve, because of the highest toughness and flexibility, which are tensile strength of 91.9 N/mm2 and tensile strain of 448% at the failure point. The prepared intestine sleeve was implanted and deployed at the duodenum in type2 diabetic rats, providing significant benefits in control of the body weight and blood glucose, while compared with the non-implanted type 2 diabetic rats. More importantly, the food intake records and histopathological section reports presented that the implanted rats still have normal appetites and no noticeable acute symptoms of inflammation in the end of the test. These appreciable performances suggested the implantation of biocompatible polymer composites has a highly potential treatment for obesity and type 2 diabetes.


Assuntos
Argila/química , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/terapia , Intestinos/cirurgia , Nanocompostos/química , Obesidade/terapia , Polímeros/química , Próteses e Implantes , Animais , Diabetes Mellitus Tipo 2/patologia , Intestinos/diagnóstico por imagem , Nanocompostos/ultraestrutura , Obesidade/patologia , Poliésteres/química , Implantação de Prótese , Ratos Sprague-Dawley , Resistência à Tração
9.
Polymers (Basel) ; 11(12)2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817775

RESUMO

A crucial polymer intermediate, 4-[1-(4-hydroxyphenyl)cyclopentyl]-phenol (bisphenol CP), was developed from dicyclopentadiene (DCPD), a key byproduct of the C5 fraction in petrochemicals. On the basis of bisphenol CP, a diamine, 4,4'-((cyclopentane-1,1-diylbis(4,1-phenylene))bis(oxy))-dianiline (cyclopentyl diamine; CPDA) was subsequently obtained through a nucleophilic substitution of bisphenol CP, followed by the hydrogenation process. By using the CPDA diamine, a series of polyimides with cyclopentyl (cardo) units on the backbone were prepared along with a reference polyimide (API-6F) based on 4,4'-(4,4'-(propane-2,2-diyl)bis(4,1-phenylene))bis(oxy)dianiline (BPAA), and 4,4'-(hexafluoroisopropylidene)-diphthalic anhydride (6FDA) for the exploration of structure-properties relationship. Thanks to the presence of cyclopentyl units, this type of cardo polyimides exhibited comparable tensile properties, especially a large elongation (25.4%). It is also worth noting that CPI-6F exhibited better solubility in organic solvents, such as NMP, DMAc, THF, and chloroform, than the other PIs. Gas separation properties were also evaluated for these cardo-type polyimides.

10.
Polymers (Basel) ; 11(7)2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31337137

RESUMO

Superhydrophobic materials have immense applications in the fields of industry and research. However, their durability is still a cause for concern. A facile method for preparing durable superhydrophobic films from carbon nanotubes (CNTs) and the main-chain type polybenzoxazine precursors is reported herein. We used probe ultrasonicator to prepare CNT/polybenzoxazine coatings. Compared with the general sonicating dispersion process, the dispersion time was greatly reduced from a few hours to 5 minutes and the prepared suspension exhibited film-forming characteristics well. The CNT/polybenzoxazine films, which do not contain any fluorinated compounds, exhibit remarkable durability against thermal treatment, organic solvents, corrosive liquids, and sandpaper abrasion, while retaining their superhydrophobicity. Furthermore, these CNT/polybenzoxazine films also showed durable superhydrophobicity after ultraviolet (UV) irradiation for 100 h. This CNT/polybenzoxazine film can be readily used for practical applications to make durable superhydrophobic coatings.

11.
ACS Omega ; 4(26): 22082-22088, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31891088

RESUMO

In this work, a novel thermoresponsive switching transistor is developed through the rational design of active materials based on the typical field-effect transistor (FET) device configuration, where the active material is composed of a blend of a thermal expansion polymer and a polymeric semiconductor. Herein, polyethylene (PE) is employed as the thermal expansion polymer because of its high volume expansion coefficient near its melting point (90-130 °C), which similarly corresponds to the overheating point that would cause damage or cause fire in the devices. It is revealed that owing to the thermistor property of PE, the FET characteristics of the derived device will be largely decreased at high temperatures (100-120 °C). It is because the high volume expansion of PE at such high temperature (near its T m) effectively increases the distance of the crystalline domains of poly(3-hexylthiophene-2,5-diyl) to result in a great inhibition of current. Besides, the performance of this device will recover back to its original value after cooling from 120 to 30 °C owing to the volume contraction of PE. The reversible FET characteristics with temperature manifest the good thermal sensitivity of the PE-based device. Our results demonstrate a facile and promising approach for the development of next-generation overheating shutdown switches for electrical circuits.

12.
Polymers (Basel) ; 9(10)2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-30965808

RESUMO

Membrane support properties influence the performance of thin-film composite nanofiltration membranes. We fabricated several polysulfone (PSf) supports. The physicochemical properties of PSf were altered by adding polyethylene glycol (PEG) of varying molecular weights (200⁻35,000 g/mol). This alteration facilitated the formation of a thin polyamide layer on the PSf surface during the interfacial polymerization reaction involving an aqueous solution of piperazine containing 4-aminobenzoic acid and an organic solution of trimesoyl chloride. Attenuated total reflectance-Fourier transform infrared validated the presence of PEG in the membrane support. Scanning electron microscopy and atomic force microscopy illustrated that the thin-film polyamide layer morphology transformed from a rough to a smooth surface. A cross-flow filtration test indicated that a thin-film composite polyamide membrane comprising a PSf support (TFC-PEG20k) with a low surface porosity, small pore size, and suitable hydrophilicity delivered the highest water flux and separation efficiency (J = 81.1 ± 6.4 L·m-2·h-1, RNa2SO4 = 91.1% ± 1.8%, and RNaCl = 35.7% ± 3.1% at 0.60 MPa). This membrane had a molecular weight cutoff of 292 g/mol and also a high rejection for negatively charged dyes. Therefore, a PSf support exhibiting suitable physicochemical properties endowed a thin-film composite polyamide membrane with high performance.

13.
Environ Sci Technol ; 50(21): 11935-11942, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27690128

RESUMO

A thermoresponsive chitosan derivative was synthesized by reacting chitosan (CS) with butyl glycidyl ether (BGE) to break the inter- and intramolecular hydrogen bonds of the polymer. An aqueous solution of the thermoresponsive CS derivative exhibits a lower critical solution temperature (LCST) than CS, and it undergoes a phase transition separation when the temperature changes. Successful incorporation of BGE into the CS was confirmed by FTIR and XPS analyses. Varying the BGE content and the concentration of the aqueous solution produced different LCST ranges, as shown by transmittance vs temperature curves. The particle size was observed by scanning electron microscopy, which revealed that the particles were smaller and well dispersed at 15 °C, whereas the particles became larger and tended to aggregate at 60 °C. A similar trend was observed with the mean particle size measured using dynamic light scattering. Positron annihilation lifetime spectroscopy data also revealed the reversibility of the particle properties as a function of temperature. Microstructure analysis showed that the particles had larger free-volume sizes at 15 °C than at 60 °C. The particles were also found to be nontoxic with 92% cell survival. A simple forward osmosis (FO) test for dye dehydration revealed the potential use of the thermoresponsive chitosan derivative as a draw solute with a flux of 8.6 L/m2 h and rejection of 99.8%.


Assuntos
Quitosana/análogos & derivados , Osmose , Quitosana/química , Tamanho da Partícula , Polímeros/química , Soluções
14.
Chem Commun (Camb) ; 51(64): 12760-3, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26166203

RESUMO

This work demonstrates a new class of thermosetting resins, based on Meldrum's acid (MA) derivatives, which have high fractions of free volume and inherently low k values of about 2.0 at 1 MHz. Thermal decomposition of the MA groups evolves CO2 and acetone to create air-trapped cavities so as to reduce the dielectric constants.

15.
Materials (Basel) ; 7(8): 5617-5632, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28788150

RESUMO

Granular tapioca was thermally blended with poly(lactic acid) (PLA). All blends were prepared using a plasti-corder and characterized for tensile properties, thermal properties and morphology. Scanning electron micrographs showed that phase separation occurred, leading to poor tensile properties. Therefore, methylenediphenyl diisocyanate (MDI) was used as an interfacial compatibilizer to improve the mechanical properties of PLA/tapioca blends. The addition of MDI could improve the tensile strength of the blend with 60 wt% tapioca, from 19.8 to 42.6 MPa. In addition, because PLA lacked toughness, acetyl tributyl citrate (ATBC) was added as a plasticizer to improve the ductility of PLA. A significant decrease in the melting point and glass-transition temperature was observed on the basis of differential scanning calorimetry, which indicated that the PLA structure was not dense after ATBC was added. As such, the brittleness was improved, and the elongation at break was extended to several hundred percent. Therefore, mixing ATBC with PLA/tapioca/MDI blends did exhibit the effect of plasticization and biodegradation. The results also revealed that excessive plasticizer would cause the migration of ATBC and decrease the tensile properties.

16.
Dalton Trans ; 42(43): 15332-42, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24002544

RESUMO

Six new alkaline-earth metal carboxyphosphonates [Mg(H2O)(H2PMIDA)] (1), [Sr(H2O)(H2PMIDA)] (2), [Sr2(H2O)(PMIDA)] (3), [Sr2(HPO4)(H2PMIDA)] (4), [Ba2(HPO4)(H2PMIDA)] (5), and [Ba2(H2O)(H2PMIDA)2] (6) (H4PMIDA = N-(phosphonomethyl)iminodiacetic acid) have been synthesized solvothermally in order to study the coordination behavior of H4PMIDA towards alkaline-earth metal ions (Mg(2+), Sr(2+), and Ba(2+)) and the structural features of the resulting polymeric compounds. The newly synthesized compounds have been characterized by elemental analysis, UV-Vis spectrometry, IR spectroscopy, thermogravimetry analysis, solid state (31)P MAS NMR, powder X-ray diffraction analysis and single crystal X-ray diffraction techniques. The single crystal structure analysis revealed structural variability of the prepared compounds. Compounds 1, 2, 4 and 5 are three-dimensional with the H2PMIDA skeletons connecting the inorganic parts to each other, whereas compound has a layered structure. Compounds 2, 4 and 5 contain helical structural motifs. In addition, the extrinsic luminescent properties of Eu(III)- and Tb(III)-doped compounds 1, 4 and 5 have also been studied.

17.
Nanoscale ; 5(19): 9081-8, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23900571

RESUMO

A technique of layer-by-layer (LbL) self-assembly was used to prepare transparent multilayered gas barrier films consisting of graphene oxide (GO)/branched poly(ethylenimine) (BPEI) on a poly(ethylene terephthalate) substrate. The effect of the GO suspension pH on the nanostructure and oxygen barrier properties of the GO/BPEI film was investigated. The oxygen barrier properties of the assemblies were shown to be highly dependent on the pH. It was demonstrated that the film assemblies prepared using a GO suspension with a pH of 3.5 exhibited very dense and ordered structures and delivered very low oxygen transmission rates (the lowest was <0.05 cm(3) m(-2) day(-1)). The assemblies were characterized with ultraviolet-visible spectroscopy and ellipsometry to identify the film growth mechanism, and the result indicated a linear growth behavior. To analyze the nanostructure of the films, atomic force microscopy, transmission electronic microscopy, and grazing incidence wide-angle X-ray diffraction were used.


Assuntos
Gases/química , Grafite/química , Nanoestruturas/química , Concentração de Íons de Hidrogênio , Óxidos/química , Oxigênio/química , Polietilenotereftalatos/química , Polietilenoimina/química
18.
ACS Appl Mater Interfaces ; 5(12): 5563-8, 2013 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-23731366

RESUMO

Interfacial polymerization of four aqueous phase monomers, diethylenetriamine (DETA), m-phenylenediamine (mPD), melamine (Mela), and piperazine (PIP), and two organic phase monomers, trimethyl chloride (TMC) and cyanuric chloride (CC), produce a thin-film composite membrane of polymerized polyamide layer capable of O2/N2 separation. To achieve maximum efficiency in gas permeance and O2/N2 permselectivity, the concentrations of monomers, time of interfacial polymerization, number of reactive groups in monomers, and the structure of monomers need to be optimized. By controlling the aqueous/organic monomer ratio between 1.9 and 2.7, we were able to obtain a uniformly interfacial polymerized layer. To achieve a highly cross-linked layer, three reactive groups in both the aqueous and organic phase monomers are required; however, if the monomers were arranged in a planar structure, the likelihood of structural defects also increased. On the contrary, linear polymers are less likely to result in structural defects, and can also produce polymer layers with moderate O2/N2 selectivity. To minimize structural defects while maximizing O2/N2 selectivity, the planar monomer, TMC, containing 3 reactive groups, was reacted with the semirigid monomer, PIP, containing 2 reactive groups to produce a membrane with an adequate gas permeance of 7.72 × 10(-6) cm(3) (STP) s(-1) cm(-2) cm Hg(-1) and a high O2/N2 selectivity of 10.43, allowing us to exceed the upper-bound limit of conventional thin-film composite membranes.


Assuntos
Resinas Acrílicas/química , Membranas Artificiais , Compostos Orgânicos/química , Oxigênio/química , Povidona/química , Aminas/química , Cloretos/química , Modelos Químicos , Nitrogênio/química , Oxigênio/análise , Permeabilidade , Polimerização
19.
J Phys Chem B ; 115(12): 2947-58, 2011 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-21375225

RESUMO

Micron-sized zeolite particles were incorporated into a polyurethane (PU) matrix to prepare ethylbenzene-selective membranes. The resulting composite membranes were used in the pervaporation (PV) of ethylbenzene/styrene (EB/ST) mixtures. The sorption, diffusion, and PV permeation behaviors as a result of zeolite addition were elucidated. Zeolite is less chemically compatible with organic solvents than PU and the PU-zeolite composites, which exhibited suppressed solvent solubilities compared with pristine PU. However, these membranes favor EB transport by diffusion selectivity. The diffusivity and permeation flux increases in parallel with the enlarged radius of the free-volume hole size (R(4) increasing from 3.46 to 3.64 Å using positron annihilation lifetime spectroscopy analysis) by increasing the zeolite content from 0 to 23%. The enlarged free volume at a zeolite loading of 23% promoted pure solvent diffusivities by 10% higher than that of the unfilled film. During the PV operation on the EB/ST mixture, a significant diffusion-coupling was observed, and the permeant diffusion coefficients from the binary mixture exceeded the pure solvent diffusivity. The permeation flux was greatly improved (up to 0.72 kg/m(2)·h) by zeolite addition without any detrimental effect on the separation efficiency.

20.
Langmuir ; 26(6): 4392-9, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20214398

RESUMO

A thin SiO(x) selective surface layer was formed on a series of cross-linked poly(dimethylsiloxane) (PDMS) membranes by exposure to ultraviolet light at room temperature in the presence of ozone. The conversion of the cross-linked polysiloxane to SiO(x) was monitored by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray (EDX) microanalysis, contact angle analysis, and atomic force microscopy (AFM). The conversion of the cross-linked polysiloxane to SiO(x) increased with UV-ozone exposure time and cross-linking agent content, and the surface possesses highest conversion. The formation of a SiO(x) layer increased surface roughness, but it decreased water contact angle. Gas permeation measurements on the UV-ozone exposure PDMS membranes documented interesting gas separation properties: the O(2) permeability of the cross-linked PDMS membrane before UV-ozone exposure was 777 barrer, and the O(2)/N(2) selectivity was 1.9; after UV-ozone exposure, the permeability decreased to 127 barrer while the selectivity increased to 5.4. The free volume depth profile of the SiO(x) layer was investigated by novel slow positron beam. The results show that free volume size increased with the depth, yet the degree of siloxane conversion to SiO(x) does not affect the amount of free volume.


Assuntos
Dimetilpolisiloxanos , Gases , Membranas Artificiais , Ozônio/química , Raios Ultravioleta , Microscopia de Força Atômica , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA