Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Nano Lett ; 23(23): 10821-10831, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38050812

RESUMO

Anisotropic optoelectronics based on low-symmetry two-dimensional (2D) materials hold immense potential for enabling multidimensional visual perception with improved miniaturization and integration capabilities, which has attracted extensive interest in optical communication, high-gain photoswitching circuits, and polarization imaging fields. However, the reported in-plane anisotropic photocurrent and polarized dichroic ratios are limited, hindering the achievement of high-performance anisotropic optoelectronics. In this study, we introduce novel low-symmetry violet phosphorus (VP) with a unique tubular cross-linked structure into this realm, and the corresponding anisotropic optical and optoelectronic properties are investigated both experimentally and theoretically for the first time. Remarkably, our prepared VP-based van der Waals phototransistor exhibits significant optoelectronic anisotropies with a giant in-plane anisotropic photocurrent ratio exceeding 10 and a comparable polarized dichroic ratio of 2.16, which is superior to those of most reported 2D counterparts. Our findings establish VP as an exceptional candidate for anisotropic optoelectronics, paving the way for future multifunctional applications.

2.
Langmuir ; 39(45): 16128-16137, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37916685

RESUMO

The Gram-negative bacteria Marinomonas primoryensis secrete an ice-binding protein (MpIBP), which is a vital bacterial adhesin facilitating the adaptation and survival of the bacteria in the harsh Antarctic environment. The C-terminal region of MpIBP, known as region V (RV), is the first domain to be exported into the Ca2+-rich extracellular environment and acts as a folding nucleus for the entire adhesin. However, the mechanisms underlying the secretion and folding of RV remain poorly understood. Here, we used optical tweezers (OT) to investigate the secretion and folding mechanisms of RV at the single-molecule level. In the absence of Ca2+, apo-RV remains unstructured, while Ca2+-bound RV folds into a mechanically stable structure. The folding of RV could occur via the formation of an intermediate state. Even though this folding intermediate is "hidden" during the folding process of wild type RV in vitro, it likely forms in vivo and plays an important role in facilitating protein secretion. Additionally, our results revealed that the N-terminal part of the RV can significantly stabilize its C-terminal structure. Our study paves the way for further investigations into the structure and functions of MpIBP that help bacteria survive in challenging environments.


Assuntos
Proteínas de Transporte , Gelo , Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Bactérias , Análise Espectral , Dobramento de Proteína
3.
Nat Commun ; 14(1): 6739, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875483

RESUMO

Birefringence is at the heart of photonic applications. Layered van der Waals materials inherently support considerable out-of-plane birefringence. However, funnelling light into their small nanoscale area parallel to its out-of-plane optical axis remains challenging. Thus far, the lack of large in-plane birefringence has been a major roadblock hindering their applications. Here, we introduce the presence of broadband, low-loss, giant birefringence in a biaxial van der Waals materials Ta2NiS5, spanning an ultrawide-band from visible to mid-infrared wavelengths of 0.3-16 µm. The in-plane birefringence Δn ≈ 2 and 0.5 in the visible and mid-infrared ranges is one of the highest among van der Waals materials known to date. Meanwhile, the real-space propagating waveguide modes in Ta2NiS5 show strong in-plane anisotropy with a long propagation length (>20 µm) in the mid-infrared range. Our work may promote next-generation broadband and ultracompact integrated photonics based on van der Waals materials.

4.
Opt Express ; 31(17): 27520-27528, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710825

RESUMO

In recent years, microsphere-assisted microscopy (MAM) and atomic force microscope (AFM) have been rapidly developed to meet the measurement needs of microstructures. However, the positioning of microspheres, the inability of AFM to touch the underlying sample through the transparent insulating layer, and the challenge of AFM fast positioning limit their use in practical measurements. In this paper, we propose a method that combines MAM with AFM by adhering the microsphere to the cantilever. This method allows MAM and AFM to work in parallel, and their imaging positions can correspond with each other. We use this method to measure memory devices, and the results show that MAM and AFM yield complementary advantages. This approach provides a new tool for analyzing complex structures in devices and has potential for wide application.

5.
ACS Nano ; 17(18): 17751-17760, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37695313

RESUMO

The nontrivial and rigorous Heaviside phase jump behavior of phase singularities (PSs) empowers exotic topological modes and widely divergent nature compared to neighboring points, which has attracted great attention in condensed matter physics as well as applications in photonics and ultrasensitive sensors. Here we demonstrate the universal existence of a family of topologically protected PSs generated from exciton resonances of single-atom layers. We obtain the PSs by coating the transition metal dichalcogenide (TMDC) monolayers on a nonabsorptive semi-infinite substrate without surface plasmon effect or other assisted resonators, which exploits the benefits of both exciton-dominated enhancement and peculiarities of the singular phase. We show that a refractive indices matched transparent substrate enables TMDC monolayers to exhibit topologically protected zero reflection accompanied by a perfect Heaviside π-phase jump at strong light adsorptions, which can be utilized to radically reduce the thickness of PS-based devices to a single atomic layer. By using the TMDC monolayer-based PSs for refractive index biosensors, we demonstrate its superior phase sensitivity at a level of 104 degrees per refractive index unit and detection of bioactive bacteria, respectively, which is comparable to the cutting-edge surface plasmon and Fabry-Perot resonance sensors. Our proof-of-concept results offer experimental and theoretical insights into a single atomic playground for flat singular optics and label-free biosensing technologies.

6.
Nature ; 619(7971): 828-836, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438524

RESUMO

Splice-switching antisense oligonucleotides (ASOs) could be used to treat a subset of individuals with genetic diseases1, but the systematic identification of such individuals remains a challenge. Here we performed whole-genome sequencing analyses to characterize genetic variation in 235 individuals (from 209 families) with ataxia-telangiectasia, a severely debilitating and life-threatening recessive genetic disorder2,3, yielding a complete molecular diagnosis in almost all individuals. We developed a predictive taxonomy to assess the amenability of each individual to splice-switching ASO intervention; 9% and 6% of the individuals had variants that were 'probably' or 'possibly' amenable to ASO splice modulation, respectively. Most amenable variants were in deep intronic regions that are inaccessible to exon-targeted sequencing. We developed ASOs that successfully rescued mis-splicing and ATM cellular signalling in patient fibroblasts for two recurrent variants. In a pilot clinical study, one of these ASOs was used to treat a child who had been diagnosed with ataxia-telangiectasia soon after birth, and showed good tolerability without serious adverse events for three years. Our study provides a framework for the prospective identification of individuals with genetic diseases who might benefit from a therapeutic approach involving splice-switching ASOs.


Assuntos
Ataxia Telangiectasia , Splicing de RNA , Criança , Humanos , Ataxia Telangiectasia/tratamento farmacológico , Ataxia Telangiectasia/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Estudos Prospectivos , Splicing de RNA/efeitos dos fármacos , Splicing de RNA/genética , Sequenciamento Completo do Genoma , Íntrons , Éxons , Medicina de Precisão , Projetos Piloto
7.
Opt Express ; 31(8): 12397-12409, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37157400

RESUMO

High-precision axial localization measurement is an important part of micro-nanometer optical measurement, but there have been issues such as low calibration efficiency, poor accuracy, and cumbersome measurement, especially in reflected light illumination systems, where the lack of clarity of imaging details leads to the low accuracy of commonly used methods. Herein, we develop a trained residual neural network coupled with a convenient data acquisition strategy to address this challenge. Our method improves the axial localization precision of microspheres in both reflective illumination systems and transmission illumination systems. Using this new localization method, the reference position of the trapped microsphere can be extracted from the identification results, namely the "positioning point" among the experimental groups. This point relies on the unique signal characteristics of each sample measurement, eliminates systematic repeatability errors when performing identification across samples, and improves the localization precision of different samples. This method has been verified on both transmission and reflected illumination optical tweezers platforms. We will bring greater convenience to measurements in solution environments and will provide higher-order guarantees for force spectroscopy measurements in scenarios such as microsphere-based super-resolution microscopy and the surface mechanical properties of adherent flexible materials and cells.

8.
Artigo em Inglês | MEDLINE | ID: mdl-36498207

RESUMO

The relationship between the tourism economy and the ecosystem service value (ESV) is crucial for sustainable regional development. This study takes southern Jiangsu as a research object. Firstly, the development level of the tourism economy and ecosystem service value in southern Jiangsu from 2000 to 2020 are evaluated with the entropy method, ecosystem service value is estimated and the dynamic degree of land use is computed. Secondly, the coupling coordination degree model is used to explore the coupling coordination degree between the two systems. Finally, the interaction mechanism between the tourism economy and ecosystem service function is elaborated. The result shows that: (1) There are disparities in the levels of a comprehensive tourism economy in different cities, and the overall development level of the tourism economy in southern Jiangsu shows a cyclical fluctuation pattern. (2) Spatial variation of ecosystem service value exists in different cities in southern Jiangsu, with an overall trend of increasing in the beginning followed by a decline. (3) The coupling coordination degree between the tourism economic system and ecosystem service functions in southern Jiangsu demonstrates an inverted U-shaped development pattern from 2000 to 2020, evolving from mild disorder to intermediate coordination and then back to mild disorder, and the development of two subsystems is unstable and imbalanced. Within the region, Nanjing, Suzhou and Zhenjiang have experienced a rise in coupling coordination degree followed by a decline. This study also reveals the coupling mechanism between ecological service functions and the tourism economic system, and provides suggestions for ecological preservation and sustainable development of tourism industry in southern Jiangsu. This research can be a reference for tourism and regional development in southern Jiangsu and the whole Yangtze Delta region.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Conservação dos Recursos Naturais/métodos , Cidades , Desenvolvimento Sustentável , Desenvolvimento Econômico , China
9.
Artigo em Inglês | MEDLINE | ID: mdl-36498259

RESUMO

Ecological security is crucial for regional sustainable development; however, as modern urbanization highlights ecological security challenges, major challenges have arisen. In this paper, we take the ecological region around Taihu Lake, China, as a typical research site, extract important ecological sources and key nodes using morphological spatial pattern analysis (MSPA) and circuit theory, and propose a regulatory framework for the ecological security pattern (ESP) of the ecological region based on the spatial characteristics of sources, corridors, and nodes. We obtained the following results: (1) The ESP includes 20 ecological sources, 37 ecological corridors, 36 critical ecological protection nodes, and 24 key ecological restoration nodes. (2) Most ecological sources are large and concentrated in western Zhejiang and west of Taihu Lake, which are both important ecological sources and ecological resistance surfaces. (3) The ecological corridors spread east, west, and south from Taihu Lake, with high network connectivity. (4) Shanghai serves as the central node, with the Su-Xi-Chang town cluster and the Qiantang River town cluster serving as the extension axes for the ecological resistance hot-spot area. The center of the elliptical ecological resistance surface (standard deviation) lies in Suzhou City, located on the east shore of Taihu Lake. (5) Ecological nodes were mostly located in ecological corridors or junctions. A "four zones and one belt" pattern is suggested in order to make the land around Taihu Lake more connected and stable ecologically. This study can be used as a guide for building and improving an ecological safety network.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , China , Urbanização , Cidades , Ecologia
10.
ACS Nano ; 16(10): 16271-16280, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36205574

RESUMO

Two-dimensional (2D) material bubbles, as a straightforward method to induce strain, represent a potentially powerful platform for the modulation of different properties of 2D materials and the exploration of their strain-related applications. Here, we prepare ReS2/graphene heterojunction bubbles (ReS2/gr heterobubbles) and investigate their strain and interference synergistically modulated optical and electrical properties. We perform Raman and photoluminescence (PL) spectra to verify the continuously varying strain and the microcavity induced optical interference in ReS2/gr heterobubbles. Kelvin probe force microscopy (KPFM) is carried out to explore the photogenerated carrier transfer behavior in both strained ReS2/gr heterobubbles and ReS2/gr interfaces, as well as the oscillation of surface potential caused by optical interference under illumination conditions. Moreover, the switching of in-plane crystal orientation and the modulation of optical anisotropy of ReS2/gr heterobubbles are observed by azimuth-dependent reflectance difference microscopy (ADRDM), which can be attributed to the action of both strain effect and interference. Our study proves that the optical and electrical properties can be effectively modulated by the synergistical effect of strain and interference in a 2D material bubble.

11.
Opt Express ; 30(22): 39417-39430, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36298895

RESUMO

In the past decade, microsphere-assisted nanoscopy has been developed rapidly to overcome the diffraction limit. However, due to the limited size and high surface curvature of microspheres, the magnified imaging still suffers from problems like limited view scope, imaging distortion, and low contrast. In this paper, we specialize in the imaging mechanism of microspheres and find irradiance as the key factor for microsphere imaging quality. Utilizing a modified optical tweezer system, we achieve precise manipulation of microspheres and further propose a high-quality large-field magnified imaging scheme. The results show that the imaging area of 5 µm microspheres can reach 16×12 µm2 with the minimum identifiable feature of 137 nm. This scheme provides a new solution for extending the measuring scope of microsphere-assisted nanoscope, and will certainly promote the application of this technology in practice.


Assuntos
Diagnóstico por Imagem , Pinças Ópticas , Microesferas
12.
Adv Mater ; 34(42): e2204621, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36043902

RESUMO

The electromagnetic spectrum between microwave and infrared light is termed the "terahertz (THz) gap," of which there is an urgent lack of feasible and efficient room-temperature (RT) THz detectors. Type-II Weyl semimetals (WSMs) have been predicted to host significant RT topological photoresponses in low-frequency regions, especially in the THz gap, well addressing the shortcomings of THz detectors. However, such devices have not been experimentally realized yet. Herein, a type-II WSM (NbIrTe4 ) is selected to fabricate THz detector, which exhibits a photoresponsivity of 5.7 × 104  V W-1 and a one-year air stability at RT. Such excellent THz-detection performance can be attributed to the topological effect of type-II WSM in which the effective mass of photogenerated electrons can be reduced by the large tilting angle of Weyl nodes to further improve mobility and photoresponsivity. Impressively, this device shows a giant intrinsic anisotropic conductance (σmax /σmin  = 339) and THz response (Iph-max /Iph-min  = 40.9), both of which are record values known. The findings open a new avenue for the realization of uncooled and highly sensitive THz detectors by exploring type-II WSM-based devices.

13.
Micromachines (Basel) ; 13(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35457912

RESUMO

The highly focused laser beam is capable of confining micro-sized particle in its focus. This is widely known as optical trapping. The Janus particle is composed of two hemispheres with different refractive indexes. In a linearly polarized optical trap, the Janus particle tends to align itself to an orientation where the interface of the two hemispheres is parallel to the laser propagation as well as the polarization direction. This enables a controllable approach that rotates the trapped particle with fine accuracy and could be used in partial measurement. However, due to the complexity of the interaction of the optical field and refractive index distribution, the trapping trajectory of the Janus particle in the linearly polarized optical trap is still uncovered. In this paper, we focus on the dynamic trapping process and the steady position and orientation of the Janus particle in the optical trap from both simulation and experimental aspects. The trapping process recorded by a high speed camera coincides with the simulation result calculated using the T-matrix model, which not only reveals the trapping trajectory, but also provides a practical simulation solution for more complicated structures and trapping motions.

14.
Adv Mater ; 34(22): e2105665, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34622516

RESUMO

The ability to detect light in photodetectors is central to practical optoelectronic applications, which has been demonstrated in inorganic semiconductor devices. However, so far, the study of polarization-sensitive organic photodetectors, which have unique applications in flexible and wearable electronics, has not received much attention. Herein, the construction of polarization-sensitive photodetectors based on the single crystals of a superior optoelectronic organic semiconductor, 2,6-diphenyl anthracene (DPA), is demonstrated. The systematic characterization of two-dimensionally grown DPA crystals with various techniques definitely show their strong anisotropy in molecular vibration, optical reflectance and optical absorption. In terms of polarization sensitivity, DPA-crystal based photodetectors exhibit a linear dichroic ratio up to ≈1.9. Theoretical calculations confirm that intrinsic linear dichroism, originated from the anisotropic in-plane crystal structure, is responsible for the polarization sensitivity of DPA crystals. This work opens up a new door for exploiting organic semiconductors for developing highly compact polarization photodetectors and providing new functionalities in novel flexible optical and optoelectronic applications.

15.
Adv Mater ; 33(35): e2102541, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34302398

RESUMO

Due to their low-symmetry lattice characteristics and intrinsic in-plane anisotropy, 2D pentagonal materials, a new class of 2D materials composed entirely of pentagonal atomic rings, are attracting increasing research attention. However, the existence of these 2D materials has not been proven experimentally until the recent discovery of PdSe2 . Herein, penta-PdPSe, a new 2D pentagonal material with a novel low-symmetry puckered pentagonal structure, is introduced to the 2D family. Interestingly, a peculiar polyanion of [SePPSe]4- is discovered in this material, which is the biggest polyanion in 2D materials yet discovered. Strong intrinsic in-plane anisotropic behavior endows penta-PdPSe with highly anisotropic optical, electronic, and optoelectronic properties. Impressively, few-layer penta-PdPSe-based phototransistor not only achieves excellent electronic performances, a moderate electron mobility of 21.37 cm2 V-1 s-1 and a high on/off ratio of up to 108 , but it also has a high photoresponsivity of ≈5.07 × 103 A W-1 at 635 nm, which is ascribed to the photogating effect. More importantly, penta-PdPSe also exhibits a large anisotropic conductance (σmax /σmax  = 3.85) and responsivity (Rmax /Rmin  = 6.17 at 808 nm), superior to most 2D anisotropic materials. These findings make penta-PdPSe an ideal material for the design of next-generation anisotropic devices.

16.
Biochem Biophys Res Commun ; 556: 59-64, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33839415

RESUMO

Acquiring events massively from single-molecule force spectroscopy (SMFS) experiments, which is crucial for revealing important biophysical information, is usually not straightforward. A significant amount of human labor is usually required to identify events in the measured force spectrum during measuring or before performing further data analysis. This prevents the experiment from being done in a fully-automated manner or scaling with the throughput of the measuring setup. In this work, we attempt to tackle this problem with a deep learning approach. A deep neural network model is developed to infer the occurrence of the events using the data stream from the measuring setup. We demonstrated that the proposed method could achieve high accuracy with force spectrums of a variety of samples from both optical tweezers and AFMs by learning from user-given samples instead of complicated manual algorithm designing or parameter tuning. Furthermore, we found that the trained model can be used to perform event detection on datasets measured from a different optical tweezer setup, showing the potential of being leveraged in more complex deep learning schemes.


Assuntos
Aprendizado Profundo , Imagem Individual de Molécula/métodos , Automação , Microscopia de Força Atômica , Pinças Ópticas
17.
Small ; 17(21): e2100457, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33890405

RESUMO

Birefringence and dichroism are very important properties in optical anisotropy. Understanding the intrinsic birefringence and dichroism of a material can provide great help to utilize its optical anisotropy. But the direct experimental investigation of birefringence in nanoscale materials is rarely reported. As typical anisotropic transition metals trichalcogenides (TMTCs) materials with quasi-1D structure, TiS3 and ZrS3 have attracted extensive attention due to their special crystal structure and optical anisotropy characteristics. Here, the optical anisotropy properties such as birefringence and dichroism of two kinds of quasi-1D TMTCs, TiS3 and ZrS3 , are theoretically and experimentally studied. In experimental results, the anisotropic refraction and anisotropic reflection of TiS3 and ZrS3 are studied by polarization-resolved optical microscopy and azimuth-dependent reflectance difference microscopy, respectively. In addition, the birefringence and dichroism of ZrS3 nanoribbon in experiment are directly measured by spectrometric ellipsometry measurements, and a reasonable result is obtained. This work provides the basic optical anisotropy information of TiS3 and ZrS3 . It lays a foundation for the further study of the optical anisotropy of these two materials and provides a feasible method for the study of birefringence and dichroism of other nanomaterials in the future.

18.
Opt Express ; 29(3): 3114-3122, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770917

RESUMO

The yield of a large-area ultra-thin display panel depends on the realization of designed thickness of multilayer films of all pixels. Measuring the thicknesses of multilayer films of a single pixel is crucial to the accurate manufacture. However, the thinnest layer is reaching the sub-20nm level, and different layers feature remarkable divergence in thickness with similar optical constants. This turns to a key obstruction to the thickness characterization by optical spectroscopy. Based on the tiny differences in absorptivity, a fast method for measuring the film thickness in a single pixel is proposed which combines the layer number reducing model and micro-area differential reflectance spectroscopy. The lower layers can be considered as semi-infinite in the corresponding spectral range whose thickness is infinite in the fitting algorithm. Hence, the thickness of the upper layer is fitted in a simplified layer structure. For demonstration, a multilayer silicon microstructure in a single pixel, p-Si/a-Si/n-Si (10nm/950nm/50nm) on complex substrate, is measured. The light spot diameter is about 60 microns with measuring-time in 2 seconds. The measurement deviation is 3% compared by a commercial ellipsometer. To conclude, the proposed method realizes the layer number reduction for fitting multilayer thickness with large thickness difference and similar optical constants, which provides a powerful approach for multilayer microstructure characterizations.

19.
Small ; 17(18): e2008078, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33760364

RESUMO

2D ternary materials exhibit great promise in the field of polarization-sensitive photodetectors due to the low-symmetry crystal structure. However, the realization of ternary material growth is still a huge challenge because of the complex reaction process. Here, for the first time, 2D ternary In2 SnS4 flakes are obtained via synergistic additive of salt and molecular sieve-assisted chemical vapor deposition. Raman vibration mode of In2 SnS4 flakes exhibits polarization-dependent properties. The polarization-resolved absorption spectroscopy and azimuth-dependent reflectance difference microscopy further confirm its anisotropy of in-plane optical absorption and reflection. Besides, the In2 SnS4 flake based device on mica shows ultrafast rising and decay rates of ≈20 and 20 µs. Impressively, In2 SnS4 flake based phototransistor demonstrates giant gate-tunable polarization-sensitive photoresponse: the dichroic ratio can be adjusted in the range of 1.13-1.70 with gate voltage varying from -35-35 V. This work provides an effective means for modulating the polarization-sensitive photoresponse, which may significantly promote the research progress of polarization-sensitive photodetectors.

20.
Nanoscale Adv ; 3(1): 279-286, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36131882

RESUMO

Utilizing droplets as micro-tools has become a valuable method in biology and chemistry. In previous work, we have demonstrated a novel droplet generation-manipulation method in a conventional optical tweezer system. Here, a further study of the droplet composition and its formation principle is performed. First, it is proved through Raman spectra that the principal component of the droplets is HPO4 2- solution. Considering that the generated droplet size is at the µm level, we have adopted a variety of methods in experiments to reduce external interference. Second, using a confocal microscopic video camera, the growth process of the droplet is completely recorded in a common glass-based chamber. The finite element simulations help us to further understand that the droplet generation process using optical tweezers can be divided into two stages: "capture" caused by optical force field and "aggregation" induced by a photothermal phenomenon and thermal acceleration. Through these studies, the nature of the optical tweezer-generated droplets is revealed. As a general principle for the droplet generation, this method will provide inspiration and prospects in the fields of microfluidics and biophysics-chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA