Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 1154, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608554

RESUMO

Two-dimensional (2D) transition metal dichalcogenides (TMDs) with tantalizing layer-dependent electronic and optical properties have emerged as a paradigm for integrated flat opto-electronic devices, but their widespread applications are hampered by challenges in deterministic fabrication with demanded shapes and thicknesses, as well as light field manipulation in such atomic-thick layers with negligible thicknesses compared to the wavelength. Here we demonstrate ultra-sensitive light field manipulation in full visible ranges based on MoS2 laser prints exfoliated with nanometric precisions. The nontrivial interfacial phase shifts stemming from the unique dispersion of MoS2 layers integrated on the metallic substrate empower an ultra-sensitive resonance manipulation up to 13.95 nm per MoS2 layer across the entire visible bands, which is up to one-order-of-magnitude larger than their counterparts. The interlayer van der Waals interactions and the anisotropic thermal conductivity of layered MoS2 films endow a laser exfoliation method for on-demand patterning MoS2 with atomic thickness precision and subwavelength feature sizes. With this, nanometric flat color prints and further amplitude-modulated diffractive components for binocular stereoscopic images can be realized in a facile and lithography-free fashion. Our results with demonstrated practicality unlock the potentials of, and pave the way for, widespread applications of emerging 2D flat optics.

2.
Nat Commun ; 12(1): 32, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33398030

RESUMO

The emerging monolayer transition metal dichalcogenides have provided an unprecedented material platform for miniaturized opto-electronic devices with integrated functionalities. Although excitonic light-matter interactions associated with their direct bandgaps have received tremendous research efforts, wavefront engineering is less appreciated due to the suppressed phase accumulation effects resulting from the vanishingly small thicknesses. By introducing loss-assisted singular phase behaviour near the critical coupling point, we demonstrate that integration of monolayer MoS2 on a planar ZnO/Si substrate, approaching the physical thickness limit of the material, enables a π phase jump. Moreover, highly dispersive extinctions of MoS2 further empowers broadband phase regulation and enables binary phase-modulated supercritical lenses manifesting constant sub-diffraction-limited focal spots of 0.7 Airy units (AU) from the blue to yellow wavelength range. Our demonstrations downscaling optical elements to atomic thicknesses open new routes for ultra-compact opto-electronic systems harnessing two-dimensional semiconductor platforms with integrated functionalities.

3.
Nano Lett ; 20(11): 7811-7818, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-32833464

RESUMO

Owing to its good air stability and high refractive index, two-dimensional (2D) noble metal dichalcogenide shows intriguing potential for versatile flat optics applications. However, light field manipulation at the atomic scale is conventionally considered unattainable because the small thickness and intrinsic losses of 2D materials completely suppress both resonances and phase accumulation effects. Here, we demonstrate that losses of structured atomically thick PtSe2 films integrated on top of a uniform substrate can be utilized to create the spots of critical coupling, enabling singular phase behaviors with a remarkable π phase jump. This finding enables the experimental demonstration of atomically thick binary meta-optics that allows an angle-robust and high unit thickness diffraction efficiency of 0.96%/nm in visible frequencies (given its thickness of merely 4.3 nm). Our results unlock the potential of a new class of 2D flat optics for light field manipulation at an atomic thickness.

4.
Nanomaterials (Basel) ; 9(4)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003409

RESUMO

Light manipulation at the nanoscale is the vanguard of plasmonics. Controlling light radiation into a desired direction in parallel with high optical signal enhancement is still a challenge for designing ultracompact nanoantennas far below subwavelength dimensions. Here, we theoretically demonstrate the unidirectional emissions from a local nanoemitter coupled to a hybrid nanoantenna consisting of a plasmonic dipole antenna and an individual silicon nanorod. The emitter near-field was coupled to the dipolar antenna plasmon resonance to achieve a strong radiative decay rate modification, and the emitting plasmon pumped the multipoles within the silicon nanorod for efficient emission redirection. The hybrid antenna sustained a high forward directivity (i.e., a front-to-back ratio of 30 dB) with broadband operating wavelengths in the visible range (i.e., a spectral bandwidth of 240 nm). This facilitated a large library of plasmonic nanostructures to be incorporated, from single element dipole antennas to gap antennas. The proposed hybrid optical nanorouter with ultracompact structural dimensions of 0.08 λ2 was capable of spectrally sorting the emission from the local point source into distinct far-field directions, as well as possessing large emission gains introduced by the nanogap. The distinct features of antenna designs hold potential in the areas of novel nanoscale light sources, biosensing, and optical routing.

5.
Nanoscale ; 10(46): 21910-21917, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30431628

RESUMO

Reversible tuning of localized plasmon resonance that is supported by nanometric-sized metal particles holds potentially huge benefits in terms of manipulating light for widespread photonic applications. Although the practice of altering the frequency and the amplitude of plasmon resonance on gold nanoparticles is relatively well established, dynamic tuning by all-optical approaches for coloration has long been hindered due to limited implementation approaches with which gold nanomaterials can be photosynthetically manipulated. Here, we develop a wavelength-switched photoredox approach and demonstrate bidirectional tuning of the plasmonic resonance of crystalline gold nanoparticles for reversible surface-plasmon-resonance-based coloration. The reversible plasmonic resonance control is achieved by a combination of photoreduction of gold ions and photooxidation of gold nanorods by switching the illumination between UV and near-UV-Vis light, respectively. As one example, the plasmon resonance peak of gold nanorods is reversibly tuned between 630 and 660 nm by switching the light wavelengths. Utilizing wavelength-switchable photoredox reactions, we demonstrate reversible color patterning by mask illuminating a gold nanorod sample solution. This approach offers not only an easy-to-implement method for realizing non-contact modulating plasmon-resonance based colors, but also new opportunities for reversibly tuning local plasmon resonance by all-optically shaping single nanoparticles. This holds great potential for a wide range of applications, including active-substrate-based surface-enhanced Raman scattering (SERS), erasable optical data storage and dynamic laser color printing, among others.

6.
ACS Nano ; 12(9): 9233-9239, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30169016

RESUMO

Planar optics constructed from subwavelength artificial atoms have been suggested as a route to the physical realization of steganography with controlled intrinsic redundancy at single-pixel levels. Unfortunately, two-dimensional geometries with uniform flat profiles offer limited structural redundancy and make it difficult to create advanced crypto-information in multiplexed physical divisions. Here, we reveal that splashing three-dimensional (3D) plasmonic nanovolcanoes could allow for a steganographic strategy in angular anisotropy, with high resolution, full coloration, and transient control of structural profiles. Highly reproducible 3D morphologies of volcanic nanosplashes are demonstrated by creating a standardized recipe of laser parameters. Such single nanovolcanoes can be well controlled individually at different splashing stages and thus provide a lithography-free fashion to access various spectral responses of angularly coordinated transverse and vertical modes, leading to the full-range coloration. This chip-scale demonstration of steganographic color images in angular anisotropy unfolds a long-ignored scheme for structured metasurfaces and thereby provides a paradigm for information security and anticounterfeiting.

7.
Nanoscale ; 9(39): 14929-14936, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-28952636

RESUMO

The feasibility of a localized surface plasmon resonance (LSPR) enhanced sensor based on raspberry-like nanosphere functionalized silica microfibers has been proposed and experimentally demonstrated. The extinction of single Ag (or Au) nanoparticles usually occurs at visible wavelengths. Nevertheless, a LSPR enhancement at near infrared wavelengths has been achieved by constructing raspberry-like meso-SiO2 nanospheres with noble metal nanoparticle cluster coating. The nanosphere coating captures γ-amino-butyric acid (GABA) targets through size selectivity and enhances the sensitivity by the LSPR effect. The gathering of GABA on the sensor surface translates the concentration signal to the information of refractive index (RI). Silica microfiber perceives the RI change and translates it to optical signal. The LSPR effect enhances the optical sensitivity by enhancing the evanescent field on the microfiber surface. This combination presents the lowest limit of detection (LOD) of 10-15 M (three orders lower than that without LSPR enhancement). It could fully afford the detection of ultra-low GABA concentration fluctuation (which is important for determining a variety of neurological and psychiatric disorders). The inherent advantages of the proposed sensors, including their ultra-sensitivity, low cost, light weight, small size and remote operation ability, provide the potential to fully incorporate them into various biomedical applications.

8.
Opt Express ; 24(5): 5243-5252, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29092349

RESUMO

Tip-enhanced Raman spectroscopy (TERS) is a powerful scanning probe technique for Raman detections in nanotechnology to date. However, limited by the physical principles of a nanosize tapered metal (or metal-coated) probe used in a TERS device, only far-field without near-field Raman signal can be collected by the TERS with the metal probe. This makes conventional TERS lower in efficiency and cannot be a real near-field Raman microscopy. In this paper, we propose a simple and realizable optoplasmonic probe model, which is composed of a dielectric microsphere and a metal nanobowtie, to realize an ideal scanning near-field Raman microscopy (SNRM). Using finite-difference time-domain (FDTD) method, calculation results of electric field distributions of the proposed probe demonstrate that the probe provides three outstanding characteristics, including strong enhancement of local electric field, nanoscale distributions of the produced electric filed, and collection enhancement of emitted energy with wide wavelength range in near field. These characteristics of the probe resolve the detecting restrictions of metal probes and provide a real near-field scanning method. Therefore, a potentially novel SNRM can be expected to extend Raman application range greatly.

9.
Opt Express ; 23(14): 17675-86, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26191829

RESUMO

A plasmonic molecule showing strong magnetic resonance modes and flexible tunability is proposed. The molecule is composed of two elements, a crescent shaped metallic disk and a smaller one embedded in the cavity of the larger one. The cavity and gap formed by these two elements enable the molecule to support magnetic resonances in the visible and near infrared spectral region, while electric resonances are much weaker to be detected. We show that by changing the relative orientation angle of these two meta-atoms, the resonance wavelength can be changed from the visible to near infrared without modification of the size of the molecule. Anti-crossings and crossings of resonance energy levels, which stem from the coupling effect, are analyzed. When resonating magnetically, the local electric field enhancement at the crescent tip can reach up to hundreds of times with high spatial confinement, which renders the molecule promising applications in many fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA