Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Oecologia ; 199(3): 711-724, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35739283

RESUMO

Alder (Alnus spp.) and Pacific salmon (Oncorhynchus spp.) provide key nutrient subsidies to freshwater systems. In southwestern Alaska, alder-derived nutrients (ADNs) are increasing as alder cover expands in response to climate warming, while climate change and habitat degradation are reducing marine-derived nutrients (MDNs) in salmon-spawning habitats. To assess the relative influences of ADN and MDN on aquatic microbial community structure and function, we analyzed lake chemistry, bacterial community structure, and microbial metabolism in 13 lakes with varying alder cover and salmon abundance in southwestern Alaska. We conducted bioassays to determine microbial nutrient limitation and physical factors modulating microbial response to nutrient inputs (+N, +P and +NP treatments). Seasonal shifts in bacterial community structure (F = 7.47, P < 0.01) coincided with changes in lake nitrogen (N) and phosphorus (P) concentrations (r2 = 0.19 and 0.16, both P < 0.05), and putrescine degradation (r2 = 0.13, P = 0.06), suggesting the influx and microbial use of MDN. Higher microbial metabolism occurred in summer than spring, coinciding with salmon runs. Increased microbial metabolism occurred in lakes where more salmon spawned. Microbial metabolic activity was unrelated to alder cover, likely because ADN provides less resource diversity than MDN. When nutrients were added to spring samples, there was greater substrate use by microbial communities from lakes with elevated Chl a concentrations and large relative catchment areas (ß estimates for all treatments > 0.56, all P < 0.07). Thus, physical watershed and lake features mediate the effects of nutrient subsidies on aquatic microbial metabolic activity.


Assuntos
Alnus , Microbiota , Animais , Ecossistema , Lagos , Nutrientes , Salmão/metabolismo
2.
Sci Total Environ ; 806(Pt 4): 151482, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742811

RESUMO

Fire disturbance has increased in some tundra ecosystems due to anthropogenic climate change, with important ramifications for terrestrial carbon cycling. Assessment of the potential impact of fire-regime change on tundra carbon stocks requires long-term perspectives because tundra fires have been rare historically. Here we integrated the process-based Dynamic Organic Soil version of the Terrestrial Ecosystem Model with paleo-fire records to evaluate the responses of tundra carbon stocks to changes in fire return interval (FRI). Paleorecords reveal that mean FRIs of tundra ecosystems in Alaska ranged from centennial to millennial timescales (200-6000 years) during the late Quaternary, but projected FRIs by 2100 decrease to a few hundred years to several decades (70-660 years). Our simulations indicate threshold effects of changing FRIs on tundra carbon stocks. Shortening FRI from 5000 to 1000 years results in minimal carbon release (<5%) from Alaskan tundra ecosystems. Rapid carbon stock loss occurs when FRI declines below 800 years trigger sustained mobilization of ancient carbon stocks from permafrost soils. However, substantial spatial heterogeneity in the resilience/sensitivity of tundra carbon stocks to FRI change exists, largely attributable to vegetation types. We identified the carbon stocks in shrub tundra as the most vulnerable to decreasing FRI because shrub tundra stores a large share of carbon in combustible biomass and organic soils. Moreover, our results suggest that ecosystems characterized by large carbon stocks and relatively long FRIs (e.g. Brooks Foothills) may transition towards hotspots of permafrost carbon emission as a response to crossing FRI thresholds in the coming decades. These findings combined imply that fire disturbance may play an increasingly important role in future carbon balance of tundra ecosystems, but the net outcome may be strongly modulated by vegetation composition.


Assuntos
Ecossistema , Incêndios , Regiões Árticas , Carbono , Ciclo do Carbono , Mudança Climática , Solo , Tundra
3.
Glob Chang Biol ; 27(3): 652-663, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33216446

RESUMO

The expansion of shrubs across the Arctic tundra may fundamentally modify land-atmosphere interactions. However, it remains unclear how shrub expansion pattern is linked with key environmental drivers, such as climate change and fire disturbance. Here we used 40+ years of high-resolution (~1.0 m) aerial and satellite imagery to estimate shrub-cover change in 114 study sites across four burned and unburned upland (ice-poor) and lowland (ice-rich) tundra ecosystems in northern Alaska. Validated with data from four additional upland and lowland tundra fires, our results reveal that summer precipitation was the most important climatic driver (r = 0.67, p < 0.001), responsible for 30.8% of shrub expansion in the upland tundra between 1971 and 2016. Shrub expansion in the uplands was largely enhanced by wildfire (p < 0.001) and it exhibited positive correlation with fire severity (r = 0.83, p < 0.001). Three decades after fire disturbance, the upland shrub cover increased by 1077.2 ± 83.6 m2  ha-1 , ~7 times the amount identified in adjacent unburned upland tundra (155.1 ± 55.4 m2  ha-1 ). In contrast, shrub cover markedly decreased in lowland tundra after fire disturbance, which triggered thermokarst-associated water impounding and resulted in 52.4% loss of shrub cover over three decades. No correlation was found between lowland shrub cover with fire severity (r = 0.01). Mean summer air temperature (MSAT) was the principal factor driving lowland shrub-cover dynamics between 1951 and 2007. Warmer MSAT facilitated shrub expansion in unburned lowlands (r = 0.78, p < 0.001), but accelerated shrub-cover losses in burned lowlands (r = -0.82, p < 0.001). These results highlight divergent pathways of shrub-cover responses to fire disturbance and climate change, depending on near-surface permafrost and drainage conditions. Our study offers new insights into the land-atmosphere interactions as climate warming and burning intensify in high latitudes.


Assuntos
Pergelissolo , Incêndios Florestais , Alaska , Regiões Árticas , Mudança Climática , Ecossistema , Tundra
4.
Ecol Evol ; 10(17): 9271-9282, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32953060

RESUMO

Predicted increases in drought and heat stress will likely induce shifts in species bioclimatic envelopes. Genetic variants adapted to water limitation may prove pivotal for species response under scenarios of increasing drought. In this study, we aimed to explore this hypothesis by investigating genetic variation in 16 populations of black spruce (Picea mariana) in relation to climate variables in Alaska. A total of 520 single nucleotide polymorphisms (SNPs) were genotyped for 158 trees sampled from areas of contrasting climate regimes. We used multivariate and univariate genotype-by-environment approaches along with available gene annotations to investigate the relationship between climate and genetic variation among sampled populations. Nine SNPs were identified as having a significant association with climate, of which five were related to drought stress response. Outlier SNPs with respect to the overall environment were significantly overrepresented for several biological functions relevant for coping with variable hydric regimes, including osmotic stress response. This genomic imprint is consistent with local adaptation of black spruce to drought stress. These results suggest that natural selection acting on standing variation prompts local adaptation in forest stands facing water limitation. Improved understanding of possible adaptive responses could inform our projections about future forest dynamics and help prioritize populations that harbor valuable genetic diversity for conservation.

5.
Ecology ; 101(9): e03096, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32386341

RESUMO

Boreal forest and tundra biomes are key components of the Earth system because the mobilization of large carbon stocks and changes in energy balance could act as positive feedbacks to ongoing climate change. In Alaska, wildfire is a primary driver of ecosystem structure and function, and a key mechanism coupling high-latitude ecosystems to global climate. Paleoecological records reveal sensitivity of fire regimes to climatic and vegetation change over centennial-millennial time scales, highlighting increased burning concurrent with warming or elevated landscape flammability. To quantify spatiotemporal patterns in fire-regime variability, we synthesized 27 published sediment-charcoal records from four Alaskan ecoregions, and compared patterns to paleoclimate and paleovegetation records. Biomass burning and fire frequency increased significantly in boreal forest ecoregions with the expansion of black spruce, ca. 6,000-4,000 years before present (yr BP). Biomass burning also increased during warm periods, particularly in the Yukon Flats ecoregion from ca. 1,000 to 500 yr BP. Increases in biomass burning concurrent with constant fire return intervals suggest increases in average fire severity (i.e., more biomass burning per fire) during warm periods. Results also indicate increases in biomass burning over the last century across much of Alaska that exceed Holocene maxima, providing important context for ongoing change. Our analysis documents the sensitivity of fire activity to broad-scale environmental change, including climate warming and biome-scale shifts in vegetation. The lack of widespread, prolonged fire synchrony suggests regional heterogeneity limited simultaneous fire-regime change across our study areas during the Holocene. This finding implies broad-scale resilience of the boreal forest to extensive fire activity, but does not preclude novel responses to 21st-century changes. If projected increases in fire activity over the 21st century are realized, they would be unprecedented in the context of the last 8,000 yr or more.


Assuntos
Ecossistema , Incêndios , Alaska , Regiões Árticas , Árvores , Yukon
6.
Ecol Evol ; 10(3): 1692-1702, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32076544

RESUMO

Larix laricina (eastern larch, tamarack) is a transcontinental North American conifer with a prominent disjunction in the Yukon isolating the Alaskan distribution from the rest of its range. We investigate whether in situ persistence during the last glacial maximum (LGM) or long-distance postglacial migration from south of the ice sheets resulted in the modern-day Alaskan distribution. We analyzed variation in three chloroplast DNA regions of 840 trees from a total of 69 populations (24 new sampling sites situated on both sides of the Yukon range disjunction pooled with 45 populations from a published source) and conducted ensemble species distribution modeling (SDM) throughout Canada and United States to hindcast the potential range of L. laricina during the LGM. We uncovered the genetic signature of a long-term isolation of larch populations in Alaska, identifying three endemic chlorotypes and low levels of genetic diversity. Range-wide analysis across North America revealed the presence of a distinct Alaskan lineage. Postglacial gene flow across the Yukon divide was unidirectional, from Alaska toward previously glaciated Canadian regions, and with no evidence of immigration into Alaska. Hindcast SDM indicates one of the broadest areas of past climate suitability for L. laricina existed in central Alaska, suggesting possible in situ persistence of larch in Alaska during the LGM. Our results provide the first unambiguous evidence for the long-term isolation of L. laricina in Alaska that extends beyond the last glacial period and into the present interglacial period. The lack of gene flow into Alaska along with the overall probability of larch occurrence in Alaska being currently lower than during the LGM suggests that modern-day Alaskan larch populations are isolated climate relicts of broader glacial distributions, and so are particularly vulnerable to current warming trends.

7.
Biol Lett ; 15(8): 20190390, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31455173

RESUMO

Novel fire regimes are expected in many boreal regions, and it is unclear how biogeochemical cycles will respond. We leverage fire and vegetation records from a highly flammable ecoregion in Alaska and present new lake-sediment analyses to examine biogeochemical responses to fire over the past 5300 years. No significant difference exists in δ13C, %C, %N, C : N, or magnetic susceptibility between pre-fire, post-fire, and fire samples. However, δ15N is related to the timing relative to fire (χ2 = 19.73, p < 0.0001), with higher values for fire-decade samples (3.2 ± 0.3‰) than pre-fire (2.4 ± 0.2‰) and post-fire (2.2 ± 0.1‰) samples. Sediment δ15N increased gradually from 1.8 ± 0.6 to 3.2 ± 0.2‰ over the late Holocene, probably as a result of terrestrial-ecosystem development. Elevated δ15N in fire decades likely reflects enhanced terrestrial nitrification and/or deeper permafrost thaw depths immediately following fire. Similar δ15N values before and after fire decades suggest that N cycling in this lowland-boreal watershed was resilient to fire disturbance. However, this resilience may diminish as boreal ecosystems approach climate-driven thresholds of vegetation structure, permafrost thaw and fire.


Assuntos
Incêndios , Incêndios Florestais , Alaska , Ecossistema , Florestas , Lagos , Árvores
8.
Ecology ; 99(7): 1530-1546, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29729183

RESUMO

Persistence of natural populations during periods of climate change is likely to depend on migration (range shifts) or adaptation. These responses were traditionally considered discrete processes and conceptually divided into the realms of ecology and evolution. In a milestone paper, Davis and Shaw (2001) Science 292:673 argued that the interplay of adaptation and migration was central to biotic responses to Quaternary climate, but since then there has been no synthesis of efforts made to set up this research program. Here we review some of the salient findings from molecular genetic studies assessing ecological and evolutionary responses to Quaternary climate change. These studies have revolutionized our understanding of population processes associated with past species migration. However, knowledge remains limited about the role of natural selection for local adaptation of populations to Quaternary environmental fluctuations and associated range shifts, and for the footprints this might have left on extant populations. Next-generation sequencing technologies, high-resolution paleoclimate analyses, and advances in population genetic theory offer an unprecedented opportunity to test hypotheses about adaptation through time. Recent population genomics studies have greatly improved our understanding of the role of contemporary adaptation to local environments in shaping spatial patterns of genetic diversity across modern-day landscapes. Advances in this burgeoning field provide important conceptual and methodological bases to decipher the historical role of natural selection and assess adaptation to past environmental variation. We suggest that a process called "temporal conditional neutrality" has taken place: some alleles favored in glacial environments become selectively neutral in modern-day conditions, whereas some alleles that had been neutral during glacial periods become under selection in modern environments. Building on this view, we present a new integrative framework for addressing the interplay of demographic and adaptive evolutionary responses to Quaternary climate dynamics, the research agenda initially envisioned by Davis and Shaw (2001) Science 292:673.


Assuntos
Mudança Climática , Variação Genética , Aclimatação , Adaptação Fisiológica , Seleção Genética
9.
Rapid Commun Mass Spectrom ; 31(21): 1825-1834, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28833668

RESUMO

RATIONALE: Carbon isotope (δ13 C ) data from arthropod cuticles provide invaluable information on past and present biogeochemical processes. However, such analyses typically require large sample sizes that may mask important variation in δ13 C values within or among species. METHODS: We have evaluated a spooling-wire microcombustion (SWiM) device and isotope ratio mass spectrometry (IRMS) to measure the δ13 C values of carbon dissolved from the cuticle of chitinous aquatic zooplankton. The effects of temperature, pH, and reaction time on the δ13 C values of acid-dissolved bulk cuticle and purified chitin fractions obtained from a single species of chironomid from four commercial suppliers were assessed. These results were compared with baseline δ13 C values obtained on solid cuticle using conventional EA (elemental analyzer)/IRMS. RESULTS: The results indicate differential, time-dependent dissolution of chitin, lipid and protein fractions of cuticle concomitant with slow depolymerization and deacetylation of chitin. Isotopic offsets between dissolved bulk head capsules and a purified chitin fraction suggest the contributions of other isotopically lighter components of the bulk head capsules to bulk chitin extracts. The SWiM/IRMS δ13 C results obtained on dissolved cuticle using a treatment of 4 N HCl at 25 °C for 24 h produced generally stable δ13 C values, large sample/blank CO2 yields and a positive correlation with conventional EA/IRMS results on unprocessed cuticle. CONCLUSIONS: The SWiM/IRMS system offers a reliable method to determine δ13 C values on nanogram quantities of carbon from dissolved insect cuticle, thus reducing sample size requirements and providing new opportunities to use δ13 C variation among/within species for reconstructing paleo-biogeochemical processes.


Assuntos
Isótopos de Carbono/análise , Insetos/química , Paleontologia/métodos , Animais , Quitina/química , Fósseis , Proteínas de Insetos/química , Espectrometria de Massas/métodos , Reprodutibilidade dos Testes
10.
PLoS One ; 10(4): e0120835, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25853712

RESUMO

Wildfire size, frequency, and severity are increasing in the Alaskan boreal forest in response to climate warming. One of the potential impacts of this changing fire regime is the alteration of successional trajectories, from black spruce to mixed stands dominated by aspen, a vegetation composition not experienced since the early Holocene. Such changes in vegetation composition may consequently alter the intensity of fires, influencing fire feedbacks to the ecosystem. Paleorecords document past wildfire-vegetation dynamics and as such, are imperative for our understanding of how these ecosystems will respond to future climate warming. For the first time, we have used reflectance measurements of macroscopic charcoal particles (>180µm) from an Alaskan lake-sediment record to estimate ancient charring temperatures (termed pyrolysis intensity). We demonstrate that pyrolysis intensity increased markedly from an interval of birch tundra 11 ky ago (mean 1.52%Ro; 485°C), to the expansion of trees on the landscape ~10.5 ky ago, remaining high to the present (mean 3.54%Ro; 640°C) irrespective of stand composition. Despite differing flammabilities and adaptations to fire, the highest pyrolysis intensities derive from two intervals with distinct vegetation compositions. 1) the expansion of mixed aspen and spruce woodland at 10 cal. kyr BP, and 2) the establishment of black spruce, and the modern boreal forest at 4 cal. kyr BP. Based on our analysis, we infer that predicted expansion of deciduous trees into the boreal forest in the future could lead to high intensity, but low severity fires, potentially moderating future climate-fire feedbacks.


Assuntos
Carvão Vegetal/química , Incêndios , Fenômenos Geológicos , Taiga , Modelos Estatísticos
11.
New Phytol ; 206(2): 852-67, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25639152

RESUMO

Warm-temperate evergreen (WTE) forest represents the typical vegetation type of subtropical China, but how its component species responded to past environmental change remains largely unknown. Here, we reconstruct the evolutionary history of Tetrastigma hemsleyanum, an herbaceous climber restricted to the WTE forest. Twenty populations were genotyped using chloroplast DNA sequences and nuclear microsatellite loci to assess population structure and diversity, supplemented by phylogenetic dating, ancestral area reconstructions and ecological niche modeling (ENM) of the species distributions during the Last Glacial Maximum (LGM) and at present. Lineages in Southwest vs Central-South-East China diverged through climate/tectonic-induced vicariance of an ancestral southern range during the early Pliocene. Long-term stability in the Southwest contrasts with latitudinal range shifts in the Central-South-East region during the early-to-mid-Pleistocene. Genetic and ENM data strongly suggest refugial persistence in situ at the LGM. Pre-Quaternary environmental changes appear to have had a persistent influence on the population genetic structure of this subtropical WTE forest species. Our findings suggest relative demographic stability of this biome in China over the last glacial-interglacial cycle, in contrast with palaeobiome reconstructions showing that this forest biome retreated to areas of today's tropical South China during the LGM.


Assuntos
Repetições de Microssatélites/genética , Modelos Teóricos , Vitaceae/genética , Sequência de Bases , Evolução Biológica , China , Clima , DNA de Cloroplastos/química , DNA de Cloroplastos/genética , Meio Ambiente , Florestas , Fluxo Gênico , Genótipo , Haplótipos , Dados de Sequência Molecular , Filogenia , Filogeografia , Análise de Sequência de DNA
12.
New Phytol ; 204(1): 37-54, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25039238

RESUMO

Climate refugia, locations where taxa survive periods of regionally adverse climate, are thought to be critical for maintaining biodiversity through the glacial-interglacial climate changes of the Quaternary. A critical research need is to better integrate and reconcile the three major lines of evidence used to infer the existence of past refugia - fossil records, species distribution models and phylogeographic surveys - in order to characterize the complex spatiotemporal trajectories of species and populations in and out of refugia. Here we review the complementary strengths, limitations and new advances for these three approaches. We provide case studies to illustrate their combined application, and point the way towards new opportunities for synthesizing these disparate lines of evidence. Case studies with European beech, Qinghai spruce and Douglas-fir illustrate how the combination of these three approaches successfully resolves complex species histories not attainable from any one approach. Promising new statistical techniques can capitalize on the strengths of each method and provide a robust quantitative reconstruction of species history. Studying past refugia can help identify contemporary refugia and clarify their conservation significance, in particular by elucidating the fine-scale processes and the particular geographic locations that buffer species against rapidly changing climate.


Assuntos
Fósseis , Modelos Teóricos , Filogeografia , Plantas , Clima , Fagus/fisiologia , Camada de Gelo , Picea/fisiologia , Pseudotsuga/fisiologia
13.
Proc Natl Acad Sci U S A ; 110(32): 13055-60, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23878258

RESUMO

Wildfire activity in boreal forests is anticipated to increase dramatically, with far-reaching ecological and socioeconomic consequences. Paleorecords are indispensible for elucidating boreal fire regime dynamics under changing climate, because fire return intervals and successional cycles in these ecosystems occur over decadal to centennial timescales. We present charcoal records from 14 lakes in the Yukon Flats of interior Alaska, one of the most flammable ecoregions of the boreal forest biome, to infer causes and consequences of fire regime change over the past 10,000 y. Strong correspondence between charcoal-inferred and observational fire records shows the fidelity of sedimentary charcoal records as archives of past fire regimes. Fire frequency and area burned increased ∼6,000-3,000 y ago, probably as a result of elevated landscape flammability associated with increased Picea mariana in the regional vegetation. During the Medieval Climate Anomaly (MCA; ∼1,000-500 cal B.P.), the period most similar to recent decades, warm and dry climatic conditions resulted in peak biomass burning, but severe fires favored less-flammable deciduous vegetation, such that fire frequency remained relatively stationary. These results suggest that boreal forests can sustain high-severity fire regimes for centuries under warm and dry conditions, with vegetation feedbacks modulating climate-fire linkages. The apparent limit to MCA burning has been surpassed by the regional fire regime of recent decades, which is characterized by exceptionally high fire frequency and biomass burning. This extreme combination suggests a transition to a unique regime of unprecedented fire activity. However, vegetation dynamics similar to feedbacks that occurred during the MCA may stabilize the fire regime, despite additional warming.


Assuntos
Biomassa , Carvão Vegetal/análise , Incêndios , Árvores/crescimento & desenvolvimento , Alaska , Mudança Climática , Clima Frio , Ecossistema , Geografia , Sedimentos Geológicos/análise , Lagos , Picea/crescimento & desenvolvimento , Dinâmica Populacional , Fatores de Tempo , Yukon
14.
PLoS One ; 8(5): e64599, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23741346

RESUMO

Positive species interactions (facilitation) play an important role in shaping the structures and species diversity of ecological communities, particularly under stressful environmental conditions. Epiphytes in rainforests often grow in multiple-species clumps, suggesting interspecies facilitation. However, little is known about the patterns and mechanisms of epiphyte co-occurrence. We assessed the interactions of two widespread epiphyte species, Asplenium antiquum and Haplopteris zosterifolia, by examining their co-occurrence and size-class association in the field. To elucidate factors controlling their interactions, we conducted reciprocal-removal and greenhouse-drought experiments, and nutrient and isotope analyses. Forty-five percent of H. zosterifolia co-occurred with A. antiquum, whereas only 17% of A. antiquum co-occurred with H. zosterifolia. Removing the fronds plus substrate of A. antiquum reduced the relative frond length and specific leaf area of H. zosterifolia, but removing fronds only had little effect. Removing H. zosterifolia had no significant effects on the growth of A. antiquum. H. zosterifolia co-occurring and not co-occurring with A. antiquum had similar foliar nutrient concentrations and δ(15)N values, suggesting that A. antiquum does not affect the nutrient status of H. zosterifolia. Reduced growth of H. zosterifolia with the removal of A. antiquum substrate, together with higher foliar δ(13)C for H. zosterifolia growing alone than those co-occurring with A. antiquum, suggest that A. antiquum enhances water availability to H. zosterifolia. This enhancement probably resulted from water storage in the substrate of A. antiquum, which could hold water up to 6.2 times its dry weight, and from reduced evapotranspiration due to shading of A. antiquum fronds. Greater water loss occurred in the frond-clipped group than the unclipped group between days 3-13 of the drought treatment. Our results imply that drought mitigation by substrate-forming epiphytes is important for maintaining epiphyte diversity in tropic and subtropic regions with episodic water limitations, especially in the context of anthropogenic climate change.


Assuntos
Secas , Folhas de Planta/fisiologia , Polypodiaceae/fisiologia , Água/metabolismo , Isótopos de Carbono , Ecossistema , Transpiração Vegetal/fisiologia , Clima Tropical
15.
Ecology ; 94(2): 389-402, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23691658

RESUMO

Although recent climatic warming has markedly increased fire activity in many biomes, this trend is spatially heterogeneous. Understanding the patterns and controls of this heterogeneity is important for anticipating future fire regime shifts at regional scales and for developing land management policies. To assess climatic and land cover controls on boreal forest fire regimes, we conducted macroscopic-charcoal analysis of sediment cores and GIS analysis of landscape variation in south-central Alaska, USA. Results reveal that fire occurrence was highly variable both spatially and temporally over the past seven millennia. At two of four sites, the lack of distinct charcoal peaks throughout much of this period suggests the absence of large local fires, attributed to abundant water bodies in the surrounding landscape that have likely functioned as firebreaks to limit fire spread. In contrast, distinct charcoal peaks suggest numerous local fires at the other two sites where water bodies are less abundant. In periods of the records where robust charcoal peaks allow identification of local-fire events over the past 7000 years, mean fire return intervals varied widely with a range of 138-453 years. Furthermore, the temporal trajectories of local-fire frequency differed greatly among sites and were statistically independent. Inferred biomass burning and mean summer temperature in the region were not significantly correlated prior to 3000 years ago but became positively related subsequently with varying correlation strengths. Climatic variability associated with the Medieval Climate Anomaly and the Little Ice Age, along with the expansion of flammable Picea mariana forests, probably have heightened the sensitivity of forest burning to summer temperature variations over the past three millennia. These results elucidate the patterns and controls of boreal fire regime dynamics over a broad range of spatiotemporal scales, and they imply that anthropogenic climatic warming and associated land cover changes, in particular lake drying, will interact to affect boreal forest burning over the coming decades.


Assuntos
Mudança Climática , Ecossistema , Incêndios , Alaska , Regiões Árticas , Sedimentos Geológicos , Atividades Humanas , Humanos , Lagos , Fatores de Tempo , Árvores
17.
Glob Chang Biol ; 18(10): 3160-3170, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28741834

RESUMO

Fires burning the vast grasslands and savannas of Africa significantly influence the global carbon cycle. Projecting the impacts of future climate change on fire-mediated biogeochemical processes in these dry tropical ecosystems requires understanding of how various climate factors influence regional fire regimes. To examine climate-vegetation-fire linkages in dry savanna, we conducted macroscopic and microscopic charcoal analysis on the sediments of the past 25 000 years from Lake Challa, a deep crater lake in equatorial East Africa. The charcoal-inferred shifts in local and regional fire regimes were compared with previously published reconstructions of temperature, rainfall, seasonal drought severity, and vegetation dynamics to evaluate millennial-scale drivers of fire occurrence. Our charcoal data indicate that fire in the dry lowland savanna of southeastern Kenya was not fuel-limited during the Last Glacial Maximum (LGM) and Late Glacial, in contrast to many other regions throughout the world. Fire activity remained high at Lake Challa probably because the relatively high mean-annual temperature (~22 °C) allowed productive C4 grasses with high water-use efficiency to dominate the landscape. From the LGM through the middle Holocene, the relative importance of savanna burning in the region varied primarily in response to changes in rainfall and dry-season length, which were controlled by orbital insolation forcing of tropical monsoon dynamics. The fuel limitation that characterizes the region's fire regime today appears to have begun around 5000-6000 years ago, when warmer interglacial conditions coincided with prolonged seasonal drought. Thus, insolation-driven variation in the amount and seasonality of rainfall during the past 25 000 years altered the immediate controls on fire occurrence in the grass-dominated savannas of eastern equatorial Africa. These results show that climatic impacts on dry-savanna burning are heterogeneous through time, with important implications for efforts to anticipate future shifts in fire-mediated ecosystem processes.

18.
Proc Natl Acad Sci U S A ; 108(48): 19299-304, 2011 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-22084085

RESUMO

Regional climate responses to large-scale forcings, such as precessional changes in solar irradiation and increases in anthropogenic greenhouse gases, may be nonlinear as a result of complex interactions among earth system components. Such nonlinear behaviors constitute a major source of climate "surprises" with important socioeconomic and ecological implications. Paleorecords are key for elucidating patterns and mechanisms of nonlinear responses to radiative forcing, but their utility has been greatly limited by the paucity of quantitative temperature reconstructions. Here we present Holocene July temperature reconstructions on the basis of midge analysis of sediment cores from three Alaskan lakes. Results show that summer temperatures during 10,000-5,500 calibrated years (cal) B.P. were generally lower than modern and that peak summer temperatures around 5,000 were followed by a decreasing trend toward the present. These patterns stand in stark contrast with the trend of precessional insolation, which decreased by ∼10% from 10,000 y ago to the present. Cool summers before 5,500 cal B.P. coincided with extensive summer ice cover in the western Arctic Ocean, persistence of a positive phase of the Arctic Oscillation, predominantly La Niña-like conditions, and variation in the position of the Alaskan treeline. These results illustrate nonlinear responses of summer temperatures to Holocene insolation radiative forcing in the Alaskan sub-Arctic, possibly because of state changes in the Arctic Oscillation and El Niño-Southern Oscillation and associated land-atmosphere-ocean feedbacks.


Assuntos
Chironomidae , Aquecimento Global , Modelos Teóricos , Estações do Ano , Temperatura , Alaska , Animais , Sedimentos Geológicos/análise , História Antiga , Lagos , Dinâmica não Linear
19.
New Phytol ; 192(4): 1024-1033, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21883235

RESUMO

A recent model has shown that, during range expansion of one species in a territory already occupied by a related species, introgression should take place preferentially from the resident species towards the invading species and genome components experiencing low rates of gene flow should introgress more readily than those experiencing high rates of gene flow. Here, we use molecular markers from two organelle genomes with contrasted rates of gene flow to test these predictions by examining genetic exchanges between two morphologically distinct spruce Picea species growing in the Qinghai-Tibetan Plateau. The haplotypes from both mitochondrial (mt) DNA and chloroplast (cp) DNA cluster into two distinct lineages that differentiate allopatric populations of the two species. By contrast, in sympatry, the species share the same haplotypes, suggesting interspecific genetic exchanges. As predicted by the neutral model, all sympatric populations of the expanding species had received their maternally inherited mtDNA from the resident species, whereas for paternally inherited cpDNA introgression is more limited and not strictly unidirectional. Our results underscore cryptic introgressions of organelle DNAs in plants and the importance of considering rates of gene flow and range shifts to predict direction and extent of interspecific genetic exchanges.


Assuntos
DNA de Cloroplastos/genética , DNA Mitocondrial/genética , Ecossistema , Endogamia , Picea/genética , Biomassa , Variação Genética , Geografia , Espécies Introduzidas , Modelos Genéticos , Densidade Demográfica , Sementes/genética , Simpatria , Tibet
20.
J Hered ; 102(2): 207-16, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20956358

RESUMO

Although a recent study of white spruce using chloroplast DNA uncovered the presence of a glacial refuge in Alaska, chloroplast failed to provide information on the number or specific localities of refugia. Recent studies have demonstrated the utility of nuclear microsatellites to refine insights into postglacial histories. The greater relative rate of mutation may allow finer scale resolution of historic dynamics, including the number, location, and sizes of refugia. Genetic data were acquired from screening 6 microsatellite loci on approximately 14 trees from each of 22 populations located across the central and western boreal forests of Canada and Alaska. Our studies combining microsatellites with Bayesian analyses of population structure in white spruce support the phylogeographic patterns uncovered using chloroplast, separating Alaskan from non-Alaskan regions. Results also support the idea that north-central Alaska served as a glacial refugium during the last glacial maximum. Additionally, the relationship between the degree of genetic differentiation and geographic distance indicated that gene flow played a more important role in structuring non-Alaskan populations, whereas drift played a more important role in structuring Alaskan populations (R(ST)'s for non-Alaskan populations 0.029 ± 0.007 and 0.083 ± 0.012 for Alaskan populations). Microsatellites also substantiate the bidirectional patterns of gene flow previously uncovered using chloroplast DNA but indicate much greater movement and mixing. Results from our Bayesian analyses also suggest the existence of additional cryptic refugia. However, the locations have been obscured by high gene flow (R(ST) averaging 0.057 ± 0.004).


Assuntos
Picea/classificação , Picea/genética , Alelos , DNA de Cloroplastos/genética , Fluxo Gênico , Deriva Genética , Genética Populacional , Genótipo , Desequilíbrio de Ligação , Repetições de Microssatélites/genética , Filogeografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA