Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
J Control Release ; 368: 24-41, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367864

RESUMO

Peripheral nerve injury (PNI) and the limitations of current treatments often result in incomplete sensory and motor function recovery, which significantly impact the patient's quality of life. While exosomes (Exo) derived from stem cells and Schwann cells have shown promise on promoting PNI repair following systemic administration or intraneural injection, achieving effective local and sustained Exo delivery holds promise to treat local PNI and remains challenging. In this study, we developed Exo-loaded decellularized porcine nerve hydrogels (DNH) for PNI repair. We successfully isolated Exo from differentiated human adipose-derived mesenchymal stem cells (hADMSC) with a Schwann cell-like phenotype (denoted as dExo). These dExo were further combined with polyethylenimine (PEI), and DNH to create polyplex hydrogels (dExo-loaded pDNH). At a PEI content of 0.1%, pDNH showed cytocompatibility for hADMSCs and supported neurite outgrowth of dorsal root ganglions. The sustained release of dExos from dExo-loaded pDNH persisted for at least 21 days both in vitro and in vivo. When applied around injured nerves in a mouse sciatic nerve crush injury model, the dExo-loaded pDNH group significantly improved sensory and motor function recovery and enhanced remyelination compared to dExo and pDNH only groups, highlighting the synergistic regenerative effects. Interestingly, we observed a negative correlation between the number of colony-stimulating factor-1 receptor (CSF-1R) positive cells and the extent of PNI regeneration at the 21-day post-surgery stage. Subsequent in vitro experiments demonstrated the potential involvement of the CSF-1/CSF-1R axis in Schwann cells and macrophage interaction, with dExo effectively downregulating CSF-1/CSF-1R signaling.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Traumatismos dos Nervos Periféricos , Camundongos , Humanos , Suínos , Animais , Fator Estimulador de Colônias de Macrófagos , Hidrogéis , Qualidade de Vida , Regeneração Nervosa , Nervo Isquiático/lesões , Células de Schwann , Traumatismos dos Nervos Periféricos/terapia
2.
Pharmaceutics ; 16(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38258111

RESUMO

The administration of therapeutics to peripheral nerve tissue is challenging due to the complexities of peripheral neuroanatomy and the limitations imposed by the blood-nerve barrier (BNB). Therefore, there is a pressing need to enhance delivery effectiveness and implement targeted delivery methods. Recently, erythrocyte-derived exosomes (Exos) have gained widespread attention as biocompatible vehicles for therapeutics in clinical applications. However, engineering targeted Exos for the peripheral nervous system (PNS) is still challenging. This study aims to develop a targeted Exo delivery system specifically designed for presynaptic terminals of peripheral nerve tissue. The clostridium neurotoxin, tetanus toxin-C fragment (TTC), was tethered to the surface of red blood cell (RBC)-derived Exos via a facile and efficient bio-orthogonal click chemistry method without a catalyst. Additionally, Cyanine5 (Cy5), a reactive fluorescent tag, was also conjugated to track Exo movement in both in vitro and in vivo models. Subsequently, Neuro-2a, a mouse neuronal cell line, was treated with dye-labeled Exos with/without TTC in vitro, and the results indicated that TTC-Exos exhibited more efficient accumulation along the soma and axonal circumference, compared to their unmodified counterparts. Further investigation, using a mouse model, revealed that within 72 h of intramuscular administration, engineered TTC-Exos were successfully transported into the neuromuscular junction and sciatic nerve tissues. These results indicated that TTC played a crucial role in the Exo delivery system, improving the affinity to peripheral nerves. These promising results underscore the potential of using targeted Exo carriers to deliver therapeutics for treating peripheral neuropathies.

3.
Biol Psychiatry ; 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37956781

RESUMO

Primary and motile cilia are thin, hair-like cellular projections from the cell surface involved in movement, sensing, and communication between cells. Extracellular vesicles (EVs) are small membrane-bound vesicles secreted by cells and contain various proteins, lipids, and nucleic acids that are delivered to and influence the behavior of other cells. Both cilia and EVs are essential for the normal functioning of brain cells, and their malfunction can lead to several neurological diseases. Cilia and EVs can interact with each other in several ways, and this interplay plays a crucial role in facilitating various biological processes, including cell-to-cell communication, tissue homeostasis, and pathogen defense. Cilia and EV crosstalk in the brain is an emerging area of research. Herein, we summarize the detailed molecular mechanisms of cilia and EV interplay and address the ciliary molecules that are involved in signaling and cellular dysfunction in brain development and diseases. Finally, we discuss the potential clinical use of cilia and EVs in brain diseases.

4.
Mol Ther ; 31(5): 1332-1345, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012704

RESUMO

Repeated use of opioids such as morphine causes changes in the shape and signal transduction pathways of various brain cells, including astrocytes and neurons, resulting in alterations in brain functioning and ultimately leading to opioid use disorder. We previously demonstrated that extracellular vesicle (EV)-induced primary ciliogenesis contributes to the development of morphine tolerance. Herein, we aimed to investigate the underlying mechanisms and potential EV-mediated therapeutic approach to inhibit morphine-mediated primary ciliogenesis. We demonstrated that miRNA cargo in morphine-stimulated-astrocyte-derived EVs (morphine-ADEVs) mediated morphine-induced primary ciliogenesis in astrocytes. CEP97 is a target of miR-106b and is a negative regulator of primary ciliogenesis. Intranasal delivery of ADEVs loaded with anti-miR-106b decreased the expression of miR-106b in astrocytes, inhibited primary ciliogenesis, and prevented the development of tolerance in morphine-administered mice. Furthermore, we confirmed primary ciliogenesis in the astrocytes of opioid abusers. miR-106b-5p in morphine-ADEVs induces primary ciliogenesis via targeting CEP97. Intranasal delivery of ADEVs loaded with anti-miR-106b ameliorates morphine-mediated primary ciliogenesis and prevents morphine tolerance. Our findings bring new insights into the mechanisms underlying primary cilium-mediated morphine tolerance and pave the way for developing ADEV-mediated small RNA delivery strategies for preventing substance use disorders.


Assuntos
Vesículas Extracelulares , MicroRNAs , Camundongos , Animais , Antagomirs/metabolismo , Morfina/farmacologia , Morfina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo
5.
Metabolites ; 13(3)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36984873

RESUMO

Morphine administration causes system-level metabolic changes. Here, we show that morphine-tolerant mice exhibited distinct plasma metabolic signatures upon acute and chronic administration. We utilized a mouse model of morphine tolerance by exposing mice to increasing doses of the drug over 4 days. We collected plasma samples from mice undergoing acute or chronic morphine or saline injections and analyzed them using targeted GC-MS-based metabolomics to profile approximately 80 metabolites involved in the central carbon, amino acid, nucleotide, and lipid metabolism. Our findings reveal distinct alterations in plasma metabolite concentrations in response to acute or chronic morphine intake, and these changes were linked to the development of tolerance to morphine's analgesic effects. We identified several metabolites that had been differentially affected by acute versus chronic morphine use, suggesting that metabolic changes may be mitigated by prolonged exposure to the drug. Morphine-tolerant mice showed a restoration of amino acid and glycolytic metabolites. Additionally, we conducted reconstructed metabolic network analysis on the first 30 VIP-ranked metabolites from the PLSDA of the saline, acute, and morphine-tolerant mice groups, which uncovered four interaction networks involving the amino acid metabolism, the TCA cycle, the glutamine-phenylalanine-tyrosine pathway, and glycolysis. These pathways were responsible for the metabolic differences observed following distinct morphine administration regimens. Overall, this study provides a valuable resource for future investigations into the role of metabolites in morphine-induced analgesia and associated effects following acute or chronic use in mice.

6.
Bioeng Transl Med ; 8(2): e10420, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36925713

RESUMO

Coronary artery disease (CAD) is one of the major cardiovascular diseases and represents the leading causes of global mortality. Developing new diagnostic and therapeutic approaches for CAD treatment are critically needed, especially for an early accurate CAD detection and further timely intervention. In this study, we successfully isolated human plasma small extracellular vesicles (sEVs) from four stages of CAD patients, that is, healthy control, stable plaque, non-ST-elevation myocardial infarction, and ST-elevation myocardial infarction. Surface-enhanced Raman scattering (SERS) measurement in conjunction with five machine learning approaches, including Quadratic Discriminant Analysis, Support Vector Machine (SVM), K-Nearest Neighbor, Artificial Neural network, were then applied for the classification and prediction of the sEV samples. Among these five approaches, the overall accuracy of SVM shows the best predication results on both early CAD detection (86.4%) and overall prediction (92.3%). SVM also possesses the highest sensitivity (97.69%) and specificity (95.7%). Thus, our study demonstrates a promising strategy for noninvasive, safe, and high accurate diagnosis for CAD early detection.

7.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36901763

RESUMO

HIV-1 infection in the era of combined antiretroviral therapy has been associated with premature aging. Among the various features of HIV-1 associated neurocognitive disorders, astrocyte senescence has been surmised as a potential cause contributing to HIV-1-induced brain aging and neurocognitive impairments. Recently, lncRNAs have also been implicated to play essential roles in the onset of cellular senescence. Herein, using human primary astrocytes (HPAs), we investigated the role of lncRNA TUG1 in HIV-1 Tat-mediated onset of astrocyte senescence. We found that HPAs exposed to HIV-1 Tat resulted in significant upregulation of lncRNA TUG1 expression that was accompanied by elevated expression of p16 and p21, respectively. Additionally, HIV-1 Tat-exposed HPAs demonstrated increased expression of senescence-associated (SA) markers-SA-ß-galactosidase (SA-ß-gal) activity and SA-heterochromatin foci-cell-cycle arrest, and increased production of reactive oxygen species and proinflammatory cytokines. Intriguingly, gene silencing of lncRNA TUG1 in HPAs also reversed HIV-1 Tat-induced upregulation of p21, p16, SA-ß gal activity, cellular activation, and proinflammatory cytokines. Furthermore, increased expression of astrocytic p16 and p21, lncRNA TUG1, and proinflammatory cytokines were observed in the prefrontal cortices of HIV-1 transgenic rats, thereby suggesting the occurrence of senescence activation in vivo. Overall, our data indicate that HIV-1 Tat-induced astrocyte senescence involves the lncRNA TUG1 and could serve as a potential therapeutic target for dampening accelerated aging associated with HIV-1/HIV-1 proteins.


Assuntos
Infecções por HIV , HIV-1 , RNA Longo não Codificante , Animais , Humanos , Ratos , Envelhecimento/metabolismo , Astrócitos/metabolismo , Senescência Celular , Citocinas/metabolismo , Infecções por HIV/metabolismo , HIV-1/fisiologia , Ratos Transgênicos , RNA Longo não Codificante/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana
9.
Front Cell Dev Biol ; 10: 984375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36478740

RESUMO

Opioids such as morphine are the most potent and efficacious drugs currently available for pain management. Paradoxically, opioids have also been implicated in inducing neuroinflammation and associated neurocognitive decline. Pericytes, a critical component of the neurovascular unit (NVU), are centrally positioned between endothelial cells and astrocytes, maintaining function of the blood-brain barrier (BBB) nd regulating neuroinflammation by controlling monocyte influx under various pathological conditions. The role of pericytes in morphine-mediated neuroinflammation however, has received less attention, especially in the context of how pericytes crosstalk with other central nervous system (CNS) cells. The current study was undertaken to examine the effect of miRNAs released from morphine-stimulated human primary astrocyte-derived extracellular vesicles (morphine-ADEVs) in mediating pericyte loss at the blood-brain barrier, leading, in turn, to increased influx of peripheral monocytes. Our findings suggest that the heterogeneous nuclear ribonucleoprotein complex A2/B1 (hnRNP A2/B1) plays role in morphine-mediated upregulation and release of miR-23a in ADEVs, and through action of morphine via mu opioid receptor.We further demonstrated that miR-23a in morphine-ADEVs could be taken up by pericytes, resulting in downregulation of PTEN expression, ultimately leading to increased pericyte migration. Furthermore, both overexpression of PTEN and blocking the miR-23a target site at PTEN 3UTR (by transfecting miR-23a-PTEN target protector), attenuated morphine-ADEV-mediated pericyte migration. We also demonstrated that in the microvessels isolated from morphine-administered mice, there were fewer PDGFßR + pericytes co-localizing with CD31+ brain endothelial cells compared with those from saline mice. In line with these findings, we also observed increased loss of pericytes and a concomitantly increased influx of monocytes in the brains of morphine-administered pericyte-labeled NG2-DsRed mice compared with saline mice. In conclusion, our findings indicate morphine-ADEVs mediated loss of pericyte coverage at the brain endothelium, thereby increasing the influx of peripheral monocytes in the central nervous system, leading to neuroinflammation.

10.
Front Pharmacol ; 13: 819516, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35462907

RESUMO

Extracellular vesicles (EVs) are small lipid membrane-bound vesicles that can pass the blood-brain barrier. Therefore, EVs could be used for the delivery of therapeutics to the brain. Herein, we investigated the biodistribution of intranasal perfusion of ultrasmall superparamagnetic iron oxide (USPIO)-labeled astrocyte-derived EVs (ADEVs) in mice. We used Western blotting, transmission electron microscopy (TEM), and nanoparticle uptake assay to characterize ADEVs. In addition, intranasal perfusion coupled with magnetic resonance imaging (MRI) was employed to determine the distribution of USPIO-labeled ADEVs in mice. Our results showed the uptake of USPIO by mouse astrocytes and ADEVs. In addition, we confirmed the biodistribution of ADEVs in the brain and other internal organs, including the kidneys, liver, and spleen. Our results suggest that USPIO did not affect mouse astrocyte cell survivability and EV release. Therefore, intranasal delivery of therapeutic loaded EVs could be used for the treatment of various brain disorders.

11.
Bioact Mater ; 14: 61-75, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35310346

RESUMO

Peripheral nerve regeneration remains a significant clinical challenge due to the unsatisfactory functional recovery and public health burden. Exosomes, especially those derived from mesenchymal stem cells (MSCs), are promising as potential cell-free therapeutics and gene therapy vehicles for promoting neural regeneration. In this study, we reported the differentiation of human adipose derived MSCs (hADMSCs) towards the Schwann cell (SC) phenotype (hADMSC-SCs) and then isolated exosomes from hADMSCs with and without differentiation (i.e., dExo vs uExo). We assessed and compared the effects of uExo and dExo on antioxidative, angiogenic, anti-inflammatory, and axon growth promoting properties by using various peripheral nerve-related cells. Our results demonstrated that hADMSC-SCs secreted more neurotrophic factors and other growth factors, compared to hADMSCs without differentiation. The dExo isolated from hADMSC-SCs protected rat SCs from oxidative stress and enhanced HUVEC migration and angiogenesis. Compared to uExo, dExo also had improved performances in downregulating pro-inflammatory gene expressions and cytokine secretions and promoting axonal growth of sensory neurons differentiated from human induced pluripotent stem cells. Furthermore, microRNA (miRNA) sequencing analysis revealed that exosomes and their parent cells shared some similarities in their miRNA profiles and exosomes displayed a distinct miRNA signature. Many more miRNAs were identified in dExo than in uExo. Several upregulated miRNAs, like miRNA-132-3p and miRNA-199b-5p, were highly related to neuroprotection, anti-inflammation, and angiogenesis. The dExo can effectively modulate various peripheral nerve-related cellular functions and is promising for cell-free biological therapeutics to enhance neural regeneration.

12.
Neurobiol Dis ; 163: 105607, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34979259

RESUMO

Brain disorders are characterized by the progressive loss of structure and function of the brain as a consequence of progressive degeneration and/or death of nerve cells. Aging is a major risk factor for brain disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and stroke. Various cellular and molecular events have been shown to play a role in the progress of neurodegenerative diseases. Emerging studies suggest that primary cilia could be a key regulator in brain diseases. The primary cilium is a singular cellular organelle expressed on the surface of many cell types, such as astrocytes and neurons in the mature brain. Primary cilia detect extracellular cues, such as Sonic Hedgehog (SHH) protein, and transduce these signals into cells to regulate various signaling pathways. Abnormalities in ciliary length and frequency (ratio of ciliated cells) have been implicated in various human diseases, including brain disorders. This review summarizes current findings and thoughts on the role of primary cilia and ciliary signaling pathways in aging and age-related brain disorders.


Assuntos
Envelhecimento/metabolismo , Encefalopatias/metabolismo , Encéfalo/metabolismo , Cílios/metabolismo , Transdução de Sinais/fisiologia , Animais , Astrócitos/metabolismo , Humanos , Neurônios/metabolismo
13.
J Extracell Vesicles ; 11(1): e12185, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35029057

RESUMO

Major depressive disorder (MDD) is the most prevalent psychiatric disorder worldwide and severely limits psychosocial function and quality of life, but no effective medication is currently available. Circular RNAs (circRNAs) have been revealed to participate in the MDD pathological process. Targeted delivery of circRNAs without blood-brain barrier (BBB) restriction for remission of MDD represents a promising approach for antidepressant therapy. In this study, RVG-circDYM-extracellular vesicles (RVG-circDYM-EVs) were engineered to target and preferentially transfer circDYM to the brain, and the effect on the pathological process in a chronic unpredictable stress (CUS) mouse model of depression was investigated. The results showed that RVG-circDYM-EVs were successfully purified by ultracentrifugation from overexpressed circDYM HEK 293T cells, and the characterization of RVG-circDYM-EVs was successfully demonstrated in terms of size, morphology and specific markers. Beyond demonstrating proof-of-concept for an RNA drug delivery technology, we observed that systemic administration of RVG-circDYM-EVs efficiently delivered circDYM to the brain, and alleviated CUS-induced depressive-like behaviours, and we discovered that RVG-circDYM-EVs notably inhibited microglial activation, BBB leakiness and peripheral immune cells infiltration, and attenuated astrocyte disfunction induced by CUS. CircDYM can bind mechanistically to the transcription factor TAF1 (TATA-box binding protein associated factor 1), resulting in the decreased expression of its downstream target genes with consequently suppressed neuroinflammation. Taken together, our findings suggest that extracellular vesicle-mediated delivery of circDYM is effective for MDD treatment and promising for clinical applications.


Assuntos
Transtorno Depressivo Maior/tratamento farmacológico , Vesículas Extracelulares/metabolismo , RNA Circular/administração & dosagem , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/fisiopatologia , Modelos Animais de Doenças , Glicoproteínas/administração & dosagem , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células HEK293 , Histona Acetiltransferases/genética , Humanos , Inflamação , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Proteínas Virais/administração & dosagem , Proteínas Virais/genética , Proteínas Virais/metabolismo
14.
Acta Biomater ; 138: 182-192, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34774784

RESUMO

Polyelectrolyte complex (PEC) hydrogels are advantageous as therapeutic agent and cell carriers. However, due to the weak nature of physical crosslinking, PEC swelling and cargo burst release are easily initiated. Also, most current cell-laden PEC hydrogels are limited to fibers and microcapsules with unfavorable dimensions and structures for practical implantations. To overcome these drawbacks, alginate (Alg)/poly-L-ornithine (PLO) PEC hydrogels are fabricated into microcapsules, fibers, and bulk scaffolds to explore their feasibility as drug and cell carriers. Stable Alg/PLO microcapsules with controllable shapes are obtained through aqueous electrospraying technique, which avoids osmotic shock and prolongs the release time. Model enzyme and nanosized cargos are successfully encapsulated and continuously released for more than 21 days. Alg/PLO PEC fibers are then prepared to encapsulate brown adipose progenitors (BAPs) and Jurkat T cells. The electrostatic interactions between Alg and PLO are found to facilitate the printability and self-support ability of Alg/PLO bioinks. Alg/PLO PEC fibers and scaffolds support cell proliferation, differentiation, and functionalization. These results demonstrate new options for biocompatible PEC hydrogel preparation and improve the understanding of PEC hydrogels as drug and cell carriers. STATEMENT OF SIGNIFICANCE: In this study, the concept of polyelectrolyte complex hydrogel networks as drug and cell carriers has been demonstrated. Their feasibility to achieve sustained drug release and cell functionality was explored, from microcapsules to fibers to three-dimension printed scaffolds. PEC microcapsules with controllable shapes were obtained. Therapeutic drugs can be encapsulated and continuously release for more than 21 days. Benefiting from the dynamic interactions of physically crosslinked PEC, self-healing fibers were achieved. Besides, the electrostatic interactions between polyelectrolytes were found to facilitate the printability and self-support ability of PEC bioinks. The PEC fibers and scaffolds with controllable structure supported cell proliferation, differentiation, and function. The outcome of current research promotes design of new biocompatible PEC hydrogels and potential drug and cell carriers.


Assuntos
Alginatos , Hidrogéis , Peptídeos , Polieletrólitos , Alicerces Teciduais
15.
Viruses ; 15(1)2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36680084

RESUMO

Chronic low-grade inflammation remains an essential feature of HIV-1 infection under combined antiretroviral therapy (cART) and contributes to the accelerated cognitive defects and aging in HIV-1 infected populations, indicating cART limitations in suppressing viremia. Interestingly, ~50% of the HIV-1 infected population on cART that develops cognitive defects is complicated by drug abuse, involving the activation of cells in the central nervous system (CNS) and neurotoxin release, altogether leading to neuroinflammation. Neuroinflammation is the hallmark feature of many neurodegenerative disorders, including HIV-1-associated neurocognitive disorders (HAND). Impaired autophagy has been identified as one of the underlying mechanisms of HAND in treated HIV-1-infected people that also abuse drugs. Several lines of evidence suggest that autophagy regulates CNS cells' responses and maintains cellular hemostasis. The impairment of autophagy is associated with low-grade chronic inflammation and immune senescence, a known characteristic of pathological aging. Therefore, autophagy impairment due to CNS cells, such as neurons, microglia, astrocytes, and pericytes exposure to HIV-1/HIV-1 proteins, cART, and drug abuse could have combined toxicity, resulting in increased neuroinflammation, which ultimately leads to accelerated aging, referred to as neuroinflammaging. In this review, we focus on the potential role of autophagy in the mechanism of neuroinflammaging in the context of HIV-1 and drug abuse.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Transtornos Relacionados ao Uso de Substâncias , Humanos , Doenças Neuroinflamatórias , Infecções por HIV/tratamento farmacológico , Autofagia , Inflamação/complicações , Transtornos Relacionados ao Uso de Substâncias/complicações
16.
Front Cell Dev Biol ; 9: 724970, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527676

RESUMO

HIV trans-activator of transcription (Tat), one of the cytotoxic proteins secreted from HIV-infected cells, is also known to facilitate chemokine-mediated transmigration of monocytes into the brain leading, in turn, to neuroinflammation and thereby contributing to the development of HIV-associated neurocognitive disorders (HAND). The mechanism(s) underlying HIV Tat-mediated enhancement of monocyte transmigration, however, remain largely unknown. CXC chemokine receptor 3 (CXCR3) that is expressed by the peripheral monocytes is known to play a role in the monocyte influx and accumulation. In the present study, we demonstrate for the first time that exposure of human monocytes to HIV Tat protein resulted in upregulated expression of CXCR3 leading, in turn, to increased monocyte transmigration across the blood-brain barrier (BBB) both in the in vitro and in vivo model systems. This process involved activation of toll-like receptor 4 (TLR4), with downstream phosphorylation and activation of TANK-binding kinase 1 (TBK1), and subsequent phosphorylation and nuclear translocation of interferon regulatory factor 3 (IRF3), ultimately leading to enhanced expression of CXCR3 in human monocytes. These findings imply a novel molecular mechanism underlying HIV Tat-mediated increase of monocyte transmigration across the BBB, while also implicating a novel role of CXCR3-dependent monocyte transmigration in HIV Tat-mediated neuroinflammation.

17.
Biol Psychiatry ; 90(8): 575-585, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34417054

RESUMO

BACKGROUND: Morphine is used extensively in the clinical setting owing to its beneficial effects, such as pain relief; its therapeutic utility is limited because the prolonged use of morphine often results in tolerance and addiction. Astrocytes in the brain are a direct target of morphine action and play an essential role in the development of morphine tolerance. Primary cilia and the cilia-mediated sonic hedgehog (SHH) signaling pathways have been shown to play a role in drug resistance and morphine tolerance, respectively. Extracellular vesicles (EVs) play important roles as cargo-carrying vesicles mediating communication among cells and tissues. METHODS: C57BL/6N mice were administered morphine for 8 days to develop tolerance, which was determined using the tail-flick and hot plate assays. EVs were separated from astrocyte-conditioned media using either size exclusion chromatography or ultracentrifugation approaches, followed by characterization of EVs using nanoparticle tracking analysis for EV size distribution and number, Western blotting for EV markers, and electron microscopy for EV morphology. Astrocytes were treated with EVs for 24 hours, followed by assessing primary cilia by fluorescent immunostaining for primary cilia markers (ARL13B and acetylated tubulin). RESULTS: Morphine-tolerant mice exhibited an increase in primary cilia length and percentage of ciliated astrocytes. The levels of SHH protein were upregulated in morphine-stimulated astrocyte-derived EVs. SHH on morphine-stimulated astrocyte-derived EVs activated SHH signaling in astrocytes through primary cilia. Our in vivo study demonstrated that inhibition of either EV release or primary cilia prevents morphine tolerance in mice. CONCLUSIONS: EV-mediated primary ciliogenesis contributes to the development of morphine tolerance.


Assuntos
Astrócitos , Vesículas Extracelulares , Animais , Cílios , Camundongos , Camundongos Endogâmicos C57BL , Morfina/farmacologia
18.
Cell Mol Life Sci ; 78(11): 4849-4865, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33821293

RESUMO

Substance use disorder (SUD) is a growing health problem that affects several millions of people worldwide, resulting in negative socioeconomic impacts and increased health care costs. Emerging evidence suggests that extracellular vesicles (EVs) play a crucial role in SUD pathogenesis. EVs, including exosomes and microvesicles, are membrane-encapsulated particles that are released into the extracellular space by most types of cells. EVs are important players in mediating cell-to-cell communication through transfer of cargo such as proteins, lipids and nucleic acids. The EV cargo can alter the status of recipient cells, thereby contributing to both physiological and pathological processes; some of these play critical roles in SUD. Although the functions of EVs under several pathological conditions have been extensively reviewed, EV functions and potential applications in SUD remain less studied. In this review, we provide an overview of the current knowledge of the role of EVs in SUD, including alcohol, cocaine, heroin, marijuana, nicotine and opiate abuse. The review will focus on the biogenesis and cargo composition of EVs as well as the potential use of EVs as biomarkers of SUD or therapeutic targets in SUD.


Assuntos
Vesículas Extracelulares/metabolismo , Transtornos Relacionados ao Uso de Substâncias/patologia , Animais , Biomarcadores/metabolismo , Comunicação Celular , Citocromo P-450 CYP2E1/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Vesículas Extracelulares/transplante , Humanos , MicroRNAs/metabolismo , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Transtornos Relacionados ao Uso de Substâncias/terapia
19.
J Extracell Vesicles ; 10(1): e12027, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33304479

RESUMO

Opioids, such as morphine, are the mainstay for the management of postsurgical pain. Over the last decade there has been a dramatic increase in deaths related to opioid overdose. While opioid abuse has been shown to result in increased neuroinflammation, mechanism(s) underlying this process, remain less understood. In recent years, microRNAs have emerged as key mediators of gene expression regulating both paracrine signaling and cellular crosstalk. MiRNAs constitute the extracellular vesicle (EV) cargo and can shuttle from the donor to the recipient cells. Exposure of human primary astrocytes to morphine resulted in induction and release of miR-138 in the EVs isolated from conditioned media of cultured astrocytes. Released EVs were, in turn, taken up by the microglia, leading to activation of these latter cells. Interestingly, activation of microglia involved binding of the GUUGUGU motif of miR138 to the endosomal toll like receptor (TLR)7, leading, in turn, to cellular activation. These findings were further corroborated in vivo in wildtype mice wherein morphine administration resulted in increased microglial activation in the thalamus. In TLR7-/- mice on the other hand, morphine failed to induce microglial activation. These findings have ramifications for the development of EV-loaded anti-miRNAs as therapeutics for alleviating neuroinflammation in opioids abusers.


Assuntos
Astrócitos/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Microglia/metabolismo , Morfina/efeitos adversos , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Tálamo/metabolismo , Animais , Astrócitos/patologia , Vesículas Extracelulares/genética , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , MicroRNAs/genética , Microglia/patologia , Morfina/farmacologia , Transtornos Relacionados ao Uso de Substâncias/genética , Transtornos Relacionados ao Uso de Substâncias/patologia , Tálamo/patologia , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo
20.
Front Cell Dev Biol ; 8: 573, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850781

RESUMO

MicroRNA-124 (miR-124), a brain-enriched microRNA, is known to regulate microglial quiescence. Psychostimulants such as cocaine have been shown to activate microglia by downregulating miR-124, leading, in turn, to neuroinflammation. We thus rationalized that restoring the levels of miR-124 could function as a potential therapeutic approach for cocaine-mediated neuroinflammation. Delivering miRNA based drugs in the brain that are effective and less invasive, however, remains a major challenge in the field. Herein we engineered extracellular vesicles (EVs) and loaded them with miR-124 for delivery in the brain. Approach involved co-transfection of mouse dendritic cells with Dicer siRNA and RVG-Lamp2b plasmid to deplete endogenous miRNAs and for targeting the CNS, respectively. Mouse primary microglia (mPm) were treated with purified engineered EVs loaded with either Cy5-miR-124 or Cy5-scrambled miRNA oligos in the presence or absence of cocaine followed by assessing EV uptake and microglial activation. In vivo studies involved pretreating mice intranasally with engineered EVs followed by cocaine injection (20 mg/kg, i.p.). mPm exposed to EV-miR-124 exhibited reduced expression of miR-124 targets - TLR4 and STAT3 as well as ERK-1/2 and Iba1. In cocaine administered mice, EV-Cy5-miR-124 delivered intranasally were detected in the CNS and significantly reduced the expression of inflammatory markers TLR4, MYD88, STAT3 and NF-kB p65 while also downregulating the microglial activation marker, Iba1. Collectively, these findings suggest that engineered EVs can deliver miR-124 into the CNS, thereby alleviating cocaine-mediated microglial activation. Manipulating EV miRNAs can thus be envisioned as an efficient means for delivery of RNA-based therapeutics to target organs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA