Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
World J Emerg Surg ; 19(1): 31, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375689

RESUMO

BACKGROUND: Exposure of the hepatic artery is a fundamental step in many surgeries, during which iatrogenic hepatic artery injury may occur. Although the incidence of hepatic artery haemorrhage is low, its occurrence can lead to life-threatening haemorrhage. It is difficult and dangerous to accumulate clinical experience in laparoscopic hepatic artery repair in actual patients, and simulation training models for laparoscopic hepatic artery repair are currently lacking. In this study, a 3D printed model was designed to simulate the training curriculum for sudden hepatic artery haemorrhage, but whether training with the 3D printed model could yield superior skill improvement for surgeons remained to be determined. METHODS: A new 3D printed model was designed for this study. Surgeons from the General Surgery Department of Sir Run Run Shaw Hospital participated in this simulation training. The surgical performance of each model was compared, and the authenticity of the model was evaluated and mechanically tested. RESULTS: Experienced surgeons performed better on the 3D printed model. After repeated training, inexperienced surgeons showed significant improvement of their laparoscopic hepatic artery repair skills. The authenticity of the model was generally satisfactory, but shortcomings persisted in the mechanical testing of artery wall tearing, necessitating further improvement. CONCLUSIONS: Few studies have investigated laparoscopic simulation training for sudden hepatic artery haemorrhage. This simulation model distinguishes surgeons with different levels of experience and allows those with less experience to improve their laparoscopic hepatic artery repair skills through training on the model.


Assuntos
Currículo , Hemorragia , Artéria Hepática , Laparoscopia , Humanos , Artéria Hepática/cirurgia , Laparoscopia/educação , Laparoscopia/métodos , Laparoscopia/efeitos adversos , Hemorragia/etiologia , Treinamento por Simulação/métodos , Competência Clínica , Impressão Tridimensional , Modelos Anatômicos
2.
Phytomedicine ; 135: 156092, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39368340

RESUMO

BACKGROUND: Inhalation of crystalline silica (CS) frequently leads to chronic lung inflammation and pulmonary fibrosis (PF), a condition with limited effective treatments. Resveratrol (Res) has demonstrated potential in PF treatment; however, its underlying mechanisms remain incompletely elucidated. PURPOSE: This study represents the first comprehensive attempt to uncover the novel mechanisms underlying Res's anti-fibrotic effects against PF through an innovative, integrated approach combining network pharmacology and experimental validation. METHODS: We employed network pharmacology to investigate the holistic pharmacological mechanism of Res, then validated the predicted pharmacological effects using in vivo and in vitro studies. RESULTS: In total, 216 genes were identified to be simultaneously associated with PF and Res. An integrated bioinformatics analysis implicated a crucial role of the autophagy signaling pathway in dominating PF, with AMPK and mTOR showing high docking scores. Animal studies revealed that Res significantly alleviated silica-induced lung damage in silicotic mice, with decreased collagen I (Col-I) levels and reduced expression of vimentin and α-SMA. In-depth investigation demonstrated that Res modulated CS-dysregulated autophagy by targeting the AMPK/mTOR pathway. in vitro, Res treatment significantly reduced lactate dehydrogenase (LDH), TNF-α, and TGF-ß levels and improved cell viability of Raw264.7 cells post-CS exposure. Notably, Res was demonstrated to suppress fibroblast-to-myofibroblast transition via mediating macrophage autophagy through the AMPK/mTOR pathway. CONCLUSION: Res can alleviate CS-induced PF by targeting AMPK in the autophagy signaling pathway, which sheds light on Res' therapeutic potential in treating PF.

3.
Sci Rep ; 14(1): 21509, 2024 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277628

RESUMO

In the study of obesity and diabetes, mice are widely used for experimental research, and fasting is a common procedure used to reset metabolism in mouse models. The fasting duration for experimental mice varies greatly in nutritional and metabolic studies, ranging from 2 to 48 h. This study aims to assess the optimal fasting duration for mice fed low- and high-fat diets over a short period of time. C57BL/6J mice were fed a low-fat diet (LFD) or high-fat diet (HFD) and fasted for 4, 6, 8, 10, 12, or 24 h. The effects of different conditions after fasting on the metabolic level of mice were explored, and the data were collected for analysis. Our data indicate that fasting has inconsistent effects on mice fed a low-fat or high-fat diet. To compare the metabolic differences between mice in different dietary levels and thereby secure better scientific data, mice should fast for 6 h in animal experiments. Fasting for 6 h is also recommended when comparing glucose tolerance with insulin tolerance.


Assuntos
Dieta Hiperlipídica , Jejum , Camundongos Endogâmicos C57BL , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Masculino , Glicemia/metabolismo , Dieta com Restrição de Gorduras , Resistência à Insulina , Fatores de Tempo , Insulina/metabolismo , Insulina/sangue , Teste de Tolerância a Glucose , Obesidade/metabolismo
4.
iScience ; 27(8): 110554, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39184441

RESUMO

Zebrafish and organoids, crucial for complex biological studies, necessitate an imaging system with deep tissue penetration, sample protection from environmental interference, and ample operational space. Traditional three-photon microscopy is constrained by short-working-distance objectives and falls short. Our long-working-distance high-collection-efficiency three-photon microscopy (LH-3PM) addresses these challenges, achieving a 58% fluorescence collection efficiency at a 20 mm working distance. LH-3PM significantly outperforms existing three-photon systems equipped with the same long working distance objective, enhancing fluorescence collection and dramatically reducing phototoxicity and photobleaching. These improvements facilitate accurate capture of neuronal activity and an enhanced detection of activity spikes, which are vital for comprehensive, long-term imaging. LH-3PM's imaging of epileptic zebrafish not only showed sustained neuron activity over an hour but also highlighted increased neural synchronization and spike numbers, marking a notable shift in neural coding mechanisms. This breakthrough paves the way for new explorations of biological phenomena in small model organisms.

5.
J Control Release ; 373: 652-666, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39089503

RESUMO

Androgenetic alopecia (AGA) is a non-fatal disease prevalent worldwide. However, mixed efficacy has been observed among different therapies for hair regrowth in AGA patients. Thus, a nano-platform with synergistic treatments based on a hybrid extracellular vesicle encapsulating gold nanoparticles (AuNPs) and finasteride (Hybrid/Au@Fi) was constructed through membrane fusion between hair follicle stem cell (HFSC)-derived extracellular vesicles and liposomes. These hybrid vesicles (HVs) not only fuel hair regrowth by providing cellular signals in extracellular vesicles, but also improve storage stability, follicle retention, and drug encapsulation efficiency (EE%) for finasteride inhibiting 5α-reductase, and nano-size AuNPs that simulate low-level laser therapy (LLLT) with similar photothermal effects in vitro. The EE% of finasteride in these HVs reached 45.33%. The dual administration of these extracellular vesicles and finasteride showed a strong synergistic effect on HFSCs in vitro. In an AGA mouse model, once-daily topical Hybrid/Au@Fi (115.07 ± 0.32 nm, -7.50 ± 1.68 mV) gel led to a faster transition of hair follicles (HFs) from the catagen to the anagen, increased hair regrowth coverage, and higher quality of regrowth hair, compared to once-daily 5% minoxidil treatment. Compared to topical minoxidil, the multifaceted synergistic therapy of Hybrid/Au@Fi through topical administration offers a new option for intractable AGA patients with low side effects.


Assuntos
Inibidores de 5-alfa Redutase , Alopecia , Vesículas Extracelulares , Finasterida , Ouro , Folículo Piloso , Nanopartículas Metálicas , Células-Tronco , Finasterida/administração & dosagem , Ouro/química , Ouro/administração & dosagem , Alopecia/terapia , Animais , Nanopartículas Metálicas/administração & dosagem , Células-Tronco/citologia , Inibidores de 5-alfa Redutase/administração & dosagem , Humanos , Lipossomos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cabelo/crescimento & desenvolvimento
6.
NMR Biomed ; 37(11): e5213, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39032076

RESUMO

We aim to explore the feasibility of head and neck time-of-flight (TOF) magnetic resonance angiography (MRA) at ultra-low-field (ULF). TOF MRA was conducted on a highly simplified 0.05 T MRI scanner with no radiofrequency (RF) and magnetic shielding. A flow-compensated three-dimensional (3D) gradient echo (GRE) sequence with a tilt-optimized nonsaturated excitation RF pulse, and a flow-compensated multislice two-dimensional (2D) GRE sequence, were implemented for cerebral artery and vein imaging, respectively. For carotid artery and jugular vein imaging, flow-compensated 2D GRE sequences were utilized with venous and arterial blood presaturation, respectively. MRA was performed on young healthy subjects. Vessel-to-background contrast was experimentally observed with strong blood inflow effect and background tissue suppression. The large primary cerebral arteries and veins, carotid arteries, jugular veins, and artery bifurcations could be identified in both raw GRE images and maximum intensity projections. The primary brain and neck arteries were found to be reproducible among multiple examination sessions. These preliminary experimental results demonstrated the possibility of artery TOF MRA on low-cost 0.05 T scanners for the first time, despite the extremely low MR signal. We expect to improve the quality of ULF TOF MRA in the near future through sequence development and optimization, ongoing advances in ULF hardware and image formation, and the use of vascular T1 contrast agents.


Assuntos
Angiografia por Ressonância Magnética , Humanos , Angiografia por Ressonância Magnética/métodos , Masculino , Adulto , Feminino , Adulto Jovem , Artérias Cerebrais/diagnóstico por imagem , Reprodutibilidade dos Testes
7.
J Gastrointest Oncol ; 15(3): 1214-1223, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38989400

RESUMO

Background: Gallbladder cancer (GBC) is a rare malignancy of the digestive tract, characterized by a remarkably poor prognosis. Currently, there is a controversy on the relationship between type 2 diabetes (T2D) and GBC. Additionally, no definitive conclusions were established regarding the causal relationships between alcohol intake frequency (AIF), age at menarche (AAM) and GBC. The objective of this study was to elucidate the causal association between T2D, AIF, AAM, and GBC. Methods: Single-nucleotide polymorphisms (SNPs) associated with exposures and outcomes were sourced from the Integrative Epidemiology Unit (IEU) Open Genome-Wide Association Study (GWAS) database. Specifically, the data of GBC comprised 907 East Asians (pathological results of all cases were registered into Biobank Japan) and 425,707 SNPs; T2D comprised 655,666 Europeans with 5,030,727 SNPs; AIF comprised 462,346 Europeans and 9,851,867 SNPs; AAM comprised 243,944 Europeans and 9,851,867 SNPs. The measurement of exposure traits is collected uniformly from the UK Biobank (UKB) database and presented in the form of standard deviation (SD) or the logarithmic form of the odds ratio (logOR). We employed a two-sample Mendelian randomization (MR) analysis to discern the causalities between T2D, AIF, AAM, and GBC. Sensitivity analyses were conducted to identify and address potential heterogeneity, horizontal pleiotropy, and outliers. Results: Our findings indicated that T2D reduced GBC risk [odds ratio (OR) =0.044; 95% confidence interval (CI): 0.004-0.55; P=0.015, inverse variance-weighted (IVW)]. However, no causal relationship was observed between AIF (OR =0.158; 95% CI: 5.33E-05 to 466.84; P=0.65, IVW), AAM (OR =0.19; 95% CI: 0.0003-140.34; P=0.62, IVW), and GBC. Sensitivity analysis revealed no evidence of horizontal pleiotropy, heterogeneity, or outliers, suggesting the robustness and reliability of our conclusions. Conclusions: T2D emerged as a potentially protective factor against GBC, whereas neither AIF nor AAM demonstrated a causal relationship with GBC risk. Regulation of glucose metabolism may be one of the methods for preventing GBC.

8.
Subst Abuse Rehabil ; 15: 87-98, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045315

RESUMO

Substance misuse, traditionally seen as a problem of early to mid-adulthood, is becoming increasingly prevalent among the older adult population (ages ≥65). Diagnosing and treating substance misuse in this vulnerable population is challenging because of multiple pre-existing medical comorbidities as well as polypharmacy. As such, it remains underdiagnosed and underrepresented in the literature. This review provides an overview of the three most commonly misused substances in older adults: alcohol, cannabis, and prescription drugs. It examines epidemiology, societal trends, and treatment options, highlighting the need for targeted research to address the unique challenges faced by older adults. This review also briefly comments on the prevalence and treatment of other illicit drugs in this population.

9.
Br J Dermatol ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912785

RESUMO

BACKGROUND: Psoriatic disease (PsD) is closely associated with cardiovascular diseases. The Life's Essential 8 (LE8) score is a new metric for assessing cardiovascular health (CVH), where a higher score indicates better CVH. However, the longitudinal association between LE8 score and the risk of PsD remains uncertain. The main aim of the present study was to explore the association between LE8 scores and the risk of PsD. OBJECTIVE: To investigate the associations between LE8 score, genetic susceptibility, and the risk of PsD within a cohort design. METHODS: This cohort study included 261,642 participants from the UK Biobank without PsD at baseline. LE8 comprises eight indicators: diet, physical activity, nicotine exposure, sleep health, body mass index, blood lipids, blood glucose, and blood pressure. Cox proportional hazard models were employed to examine the association between the participants' LE8 scores, PsD genetic risk, and the risk of PsD. Hazard ratios (HRs) and 95% confidential intervals (CIs) were calculated. RESULTS: During an average follow-up of 12.32 years, 1,501 participants developed PsD. Compared to participants with low LE8 scores, the HRs (95% CIs) of developing PsD for those with moderate and high LE8 scores were 0.51 (0.43, 0.59) and 0.34 (0.27, 0.42) after adjustments, respectively. Dose-response analysis revealed a linear negative association between continuous LE8 score and the risk of developing PsD (P < 0.001), with no evidence of non-linear association detected. The genetic susceptibility to PsD did not modify this association (P for interaction = 0.63). Subgroup analyses revealed that women demonstrated a more pronounced beneficial association between LE8 scores and PsD risk (P for interaction = 0.02). CONCLUSIONS: Our study suggests that a higher LE8 score, regardless of genetic risk, was associated with a lower risk of PsD, particularly among women. Consequently, maintaining a high CVH status is recommended to prevent PsD and assess associated risks.

10.
ACS Nano ; 18(26): 17119-17134, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38912613

RESUMO

Inducing death receptor 5 (DR5) clustering holds particular promise in tumor-specific therapeutics because it could trigger an apoptotic cascade in cancerous cells. Herein, we present a tumor microenvironment H2O2-responsive self-illuminating nanoagonist, which could induce dual tumor cell death pathways through enhancing DR5 clustering. By conjugating DR5 ligand peptides onto the surfaces of self-illuminating nanoparticles with cross-linking capacity, this strategy not only provides scaffolds for ligands to bind receptors but also cross-links them through photo-cross-linking. This strategy allows for efficient activation of DR5 downstream signaling, initiating the extrinsic apoptosis pathway and immunogenic cell death of tumor cells, and contributes to improved tumor-specific immune responses, resulting in enhanced antitumor efficacy and minimized systemic adverse effects.


Assuntos
Nanopartículas , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Animais , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/agonistas , Nanopartículas/química , Camundongos , Apoptose/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Morte Celular/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Peptídeos/química , Peptídeos/farmacologia
11.
Biomark Res ; 12(1): 41, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644503

RESUMO

Regulatory T cells (Tregs) are essential to the negative regulation of the immune system, as they avoid excessive inflammation and mediate tumor development. The abundance of Tregs in tumor tissues suggests that Tregs may be eliminated or functionally inhibited to stimulate antitumor immunity. However, immunotherapy targeting Tregs has been severely hampered by autoimmune diseases due to the systemic elimination of Tregs. Recently, emerging studies have shown that metabolic regulation can specifically target tumor-infiltrating immune cells, and lipid accumulation in TME is associated with immunosuppression. Nevertheless, how Tregs actively regulate metabolic reprogramming to outcompete effector T cells (Teffs), and how lipid metabolic reprogramming contributes to the immunomodulatory capacity of Tregs have not been fully discussed. This review will discuss the physiological processes by which lipid accumulation confers a metabolic advantage to tumor-infiltrating Tregs (TI-Tregs) and amplifies their immunosuppressive functions. Furthermore, we will provide a summary of the driving effects of various metabolic regulators on the metabolic reprogramming of Tregs. Finally, we propose that targeting the lipid metabolism of TI-Tregs could be efficacious either alone or in conjunction with immune checkpoint therapy.

12.
Sci Bull (Beijing) ; 69(9): 1286-1301, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38519399

RESUMO

Adavosertib (ADA) is a WEE1 inhibitor that exhibits a synthetic lethal effect on p53-mutated gallbladder cancer (GBC). However, drug resistance due to DNA damage response compensation pathways and high toxicity limits further applications. Herein, estrone-targeted ADA-encapsulated metal-organic frameworks (ADA@MOF-EPL) for GBC synthetic lethal treatment by inducing conditional factors are developed. The high expression of estrogen receptors in GBC enables ADA@MOF-EPL to quickly enter and accumulate near the cell nucleus through estrone-mediated endocytosis and release ADA to inhibit WEE1 upon entering the acidic tumor microenvironment. Ultrasound irradiation induces ADA@MOF-EPL to generate reactive oxygen species (ROS), which leads to a further increase in DNA damage, resulting in a higher sensitivity of p53-mutated cancer cells to WEE1 inhibitor and promoting cell death via conditional synthetic lethality. The conditional factor induced by ADA@MOF-EPL further enhances the antitumor efficacy while significantly reducing systemic toxicity. Moreover, ADA@MOF-EPL demonstrates similar antitumor abilities in other p53-mutated solid tumors, revealing its potential as a broad-spectrum antitumor drug.


Assuntos
Antineoplásicos , Neoplasias da Vesícula Biliar , Estruturas Metalorgânicas , Proteínas Tirosina Quinases , Pirimidinonas , Proteína Supressora de Tumor p53 , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Neoplasias da Vesícula Biliar/tratamento farmacológico , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/patologia , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas Tirosina Quinases/antagonistas & inibidores , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Mutações Sintéticas Letais , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Mutação , Camundongos Nus , Dano ao DNA/efeitos dos fármacos , Feminino
13.
Adv Sci (Weinh) ; 11(20): e2307969, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38482752

RESUMO

Non-antibiotic strategies are desperately needed to treat post-traumatic osteomyelitis (PTO) due to the emergence of superbugs, complex inflammatory microenvironments, and greatly enriched biofilms. Previously, growing evidence indicated that quorum sensing (QS), a chemical communication signal among bacterial cells, can accelerate resistance under evolutionary pressure. This study aims to develop a medical dressing to treat PTO by inhibiting QS and regulating the inflammatory microenvironment, which includes severe oxidative stress and acid abscesses, through a reactive oxygen species (ROS)-responsive bond between N1- (4-borobenzoyl)-N3-(4-borobenzoyl)-the N1, the N1, N3, N3-tetramethylpropane-1,3-diamine (TSPBA) and polyvinyl alcohol (PVA), and the amino side chain of hyperbranched polylysine (HBPL). Physically enclosed QS inhibitors subsequently exerted the antibacterial effects. This hydrogel can scavenge hydrogen peroxide (H2O2), superoxide anion free radical (·O2 -), hydroxyl radicals (·OH) and 2,2-di(4-tert-octylphenyl)-1-picryl-hydrazyl (DPPH) to reduce oxidative stress and inhibit "bacteria-to-bacteria communication", thus clearing planktonic bacteria and biofilms, accelerating bacterial plasmolysis, reducing bacterial virulence and interfering with membrane transport. After in vivo treatment with hydrogel, nearly all bacteria are eliminated, inflammation is effectively inhibited, and osteogenesis and bone repair are promoted to facilitate recovery from PTO. The work demonstrates the clinical translational potential of the hydrogel in the treatment of drug-resistant bacteria induced PTO.


Assuntos
Hidrogéis , Osteomielite , Percepção de Quorum , Percepção de Quorum/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Osteomielite/tratamento farmacológico , Osteomielite/microbiologia , Animais , Camundongos , Modelos Animais de Doenças , Antibacterianos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ratos , Masculino
14.
Front Genet ; 15: 1327216, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380424

RESUMO

Objectives: The aim of this study was to conduct a bibliometric analysis of the literature on stem cell treatment for spinal cord injury to gain an intuitive understanding of how the field is progressing, discover topics of interest, and determine what development trends are emerging in this field. Background: Spinal cord injury and its complications often cause an enormous economic burden, and postinjury repair and treatment have always been challenging in clinical and scientific research. Stem cell therapy for spinal cord injury can prevent immune rejection and induce the release of neuroprotective and anti-inflammatory factors to reduce the production of stress-related proteins, reactive oxygen species, and inflammatory reactions. Methods: We analyzed the number and quality of publications in the field of stem cell therapy in spinal cord injury between 2018.01.01 and 2023.06.30 in the core collection database of Web of Science. CiteSpace and VOSviewer were used to sort and summarize these studies by country, institution, authors' publications, and collaborative networks. In addition, the research topics of interest were identified and summarized. Results: This study ultimately included 2,150 valid papers, with the number of publications showing a gradual upward trend. The country, institution, author and journal with the greatest number of publications and citations are China, the Chinese Academy of Sciences, Dai JW, and the International Journal of Molecular Sciences, respectively. The top three high-frequency keyword clusters were hereditary paraplegia, reactive astrocytes and tissue engineering. Conclusion: With the help of visual analysis, we identified general trends and research topics of interest in the field of spinal cord injury over the last 5 years. Our findings suggest that stem cell transplantation for spinal cord injury and exosome therapy may be a focus of future research. This study provides a foundation for future research on stem cell therapy as well as clinical efforts in this field.

15.
Int J Biol Macromol ; 263(Pt 1): 130342, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395289

RESUMO

Frozen shoulder (FS) is a common and progressive shoulder disorder that causes glenohumeral joint stiffness, characterized by inflammation and fibrosis. The treatment options are quite limited, and the therapeutic response is hindered by the fibrous membrane formed by excessive collagen and the rapid removal by synovial fluid. To address these challenges, we designed a hyaluronic acid/Pluronic F-127 (HP)-based injectable thermosensitive hydrogel as a drug carrier loaded with dexamethasone and collagenase (HPDC). We screened for an optimal HP hydrogel that can sustain drug release for approximately 10 days both in vitro and in vivo. In the meanwhile, we found that HP hydrogel could inhibit the proliferation and diminish the adhesion capacity of rat synovial cells induced by transforming growth factor-ß1. Furthermore, using an established immobilization rat model of FS, intra-articular injection of HPDC significantly improved joint range of motion compared to medication alone. Relying on sustained drug release, the accumulated collagen fibers were degraded by collagenase to promote the deep delivery of dexamethasone. These findings showed a positive combined treatment effect of HPDC, providing a novel idea for the comprehensive treatment of FS.


Assuntos
Bursite , Poloxâmero , Ratos , Animais , Ácido Hialurônico , Hidrogéis , Bursite/tratamento farmacológico , Colágeno , Injeções Intra-Articulares , Dexametasona/farmacologia , Colagenases
16.
Magn Reson Med ; 92(1): 112-127, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38376455

RESUMO

PURPOSE: To develop a new electromagnetic interference (EMI) elimination strategy for RF shielding-free MRI via active EMI sensing and deep learning direct MR signal prediction (Deep-DSP). METHODS: Deep-DSP is proposed to directly predict EMI-free MR signals. During scanning, MRI receive coil and EMI sensing coils simultaneously sample data within two windows (i.e., for MR data and EMI characterization data acquisition, respectively). Afterward, a residual U-Net model is trained using synthetic MRI receive coil data and EMI sensing coil data acquired during EMI signal characterization window, to predict EMI-free MR signals from signals acquired by MRI receive and EMI sensing coils. The trained model is then used to directly predict EMI-free MR signals from data acquired by MRI receive and sensing coils during the MR signal-acquisition window. This strategy was evaluated on an ultralow-field 0.055T brain MRI scanner without any RF shielding and a 1.5T whole-body scanner with incomplete RF shielding. RESULTS: Deep-DSP accurately predicted EMI-free MR signals in presence of strong EMI. It outperformed recently developed EDITER and convolutional neural network methods, yielding better EMI elimination and enabling use of few EMI sensing coils. Furthermore, it could work well without dedicated EMI characterization data. CONCLUSION: Deep-DSP presents an effective EMI elimination strategy that outperforms existing methods, advancing toward truly portable and patient-friendly MRI. It exploits electromagnetic coupling between MRI receive and EMI sensing coils as well as typical MR signal characteristics. Despite its deep learning nature, Deep-DSP framework is computationally simple and efficient.


Assuntos
Encéfalo , Aprendizado Profundo , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Humanos , Encéfalo/diagnóstico por imagem , Ondas de Rádio , Imagens de Fantasmas , Campos Eletromagnéticos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Processamento de Sinais Assistido por Computador
18.
Mol Pharm ; 21(1): 102-112, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37994899

RESUMO

O-linked-N-acetylglucosaminylation (O-GlcNAcylation) plays a key role in hepatocellular carcinoma (HCC) development, and the inhibition of O-GlcNAcylation has therapeutic potential. To decrease the systemic adverse events and increase targeting, we used sialic acid (SA)-decorated liposomes loaded with OSMI-1, an inhibitor of the O-GlcNAcylation, to further improve the anti-HCC effect. Fifty pairs of HCC tissue samples and the cancer genome atlas database were used to analyze the expression of O-GlcNAc transferase (OGT) and its effects on prognosis and immune cell infiltration. OSMI-1 cells were treated with SA and liposomes. Western blotting, immunofluorescence, cell proliferation assay, flow cytometry, enzyme-linked immunosorbent assay, immunohistochemistry, and tumorigenicity assays were used to investigate the antitumor effect of SA-modified OSMI-1 liposomes in vitro and in vivo. OGT was highly expressed in HCC tissues, negatively correlated with the degree of tumor infiltration of CD8+ and CD4+T cells and prognosis, and positively correlated with the degree of Treg cell infiltration. SA-modified OSMI-1 liposome (OSMI-1-SAL) was synthesized with stable hydrodynamic size distribution. Both in vitro and in vivo, OSMI-1-SAL exhibited satisfactory biosafety and rapid uptake by HCC cells. Compared to free OSMI-1, OSMI-1-SAL had a stronger capacity for suppressing the proliferation and promoting the apoptosis of HCC cells. Moreover, OSMI-1-SAL effectively inhibited tumor initiation and development in mice. OSMI-1-SAL also promoted the release of damage-associated molecular patterns, including anticalreticulin, high-mobility-group protein B1, and adenosine triphosphate, from HCC cells and further promoted the activation and proliferation of the CD8+ and CD4+T cells. In conclusion, the OSMI-1-SAL synthesized in this study can target HCC cells, inhibit tumor proliferation, induce tumor immunogenic cell death, enhance tumor immunogenicity, and promote antitumor immune responses, which has the potential for clinical application in the future.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/genética , Lipossomos/farmacologia , Neoplasias Hepáticas/metabolismo , Ácido N-Acetilneuramínico , Proliferação de Células
19.
Small ; 20(10): e2306905, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37880861

RESUMO

The efficacy of immune checkpoint blockade (ICB) in promoting an immune response against tumors still encounters challenges such as low response rates and off-target effects. Pyroptosis, an immunogenic cell death (ICD) mechanism, holds the potential to overcome the limitations of ICB by activating and recruiting immune cells. However, the expression of the pyroptosis-related protein Gasdermin-E(GSDME) in some tumors is limited due to mRNA methylation. To overcome this obstacle, sialic acid-functionalized liposomes coloaded with decitabine, a demethylation drug, and triclabendazole, a pyroptosis-inducing drug are developed. This nanosystem primarily accumulates at tumor sites via sialic acid and the Siglec receptor, elevating liposome accumulation in tumors up to 3.84-fold at 24 h and leading to the upregulation of pyroptosis-related proteins and caspase-3/GSDME-dependent pyroptosis. Consequently, it facilitates the infiltration of CD8+ T cells into the tumor microenvironment and enhances the efficacy of ICB therapy. The tumor inhibition rate of the treatment group is 89.1% at 21 days. This study highlights the potential of sialic acid-functionalized pyroptosis nanotuners as a promising approach for improving the efficacy of ICB therapy in tumors with low GSDME expression through epigenetic alteration and ICD.


Assuntos
Neoplasias , Piroptose , Humanos , Ácido N-Acetilneuramínico , Linfócitos T CD8-Positivos , Epigênese Genética , Imunoterapia , Lipossomos , Neoplasias/terapia , Microambiente Tumoral
20.
Genes Dis ; 11(1): 479-494, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37588207

RESUMO

Glioblastoma (GBM) is a malignant brain tumor that grows quickly, spreads widely, and is resistant to treatment. Fibroblast growth factor receptor (FGFR)1 is a receptor tyrosine kinase that regulates cellular processes, including proliferation, survival, migration, and differentiation. FGFR1 was predominantly expressed in GBM tissues, and FGFR1 expression was negatively correlated with overall survival. We rationally designed a novel small molecule CYY292, which exhibited a strong affinity for the FGFR1 protein in GBM cell lines in vitro. CYY292 also exerted an effect on the conserved Ser777 residue of FGFR1. CYY292 dose-dependently inhibited cell proliferation, epithelial-mesenchymal transition, stemness, invasion, and migration in vitro by specifically targeting the FGFR1/AKT/Snail pathways in GBM cells, and this effect was prevented by pharmacological inhibitors and critical gene knockdown. In vivo experiments revealed that CYY292 inhibited U87MG tumor growth more effectively than AZD4547. CYY292 also efficiently reduced GBM cell proliferation and increased survival in orthotopic GBM models. This study further elucidates the function of FGFR1 in the GBM and reveals the effect of CYY292, which targets FGFR1, on downstream signaling pathways directly reducing GBM cell growth, invasion, and metastasis and thus impairing the recruitment, activation, and function of immune cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA