Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Talanta ; 278: 126534, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39002259

RESUMO

Exosomes are of great significance in clinical diagnosis, due to their high homology with parental generation, which can reflect the pathophysiological status. However, the quantitative and classification detection of exosomes is still faced with the challenges of low sensitivity and complex operation. In this study, we develop an electrical and label-free method to directly detect exosomes with high sensitivity based on a Silicon nanowire field effect transistor biosensor (Si-NW Bio-FET). First, the impact of Debye length on Si-NW Bio-FET detection was investigated through simulation. The simulation results demonstrated that as the Debye length increased, the electrical response to Si-NW produced by charged particle at a certain distance from the surface of Si-NW was greater. A Si-NW Bio-FET modified with specific antibody CD81 on the nanowire was fabricated then used for detection of cell line-derived exosomes, which achieved a low limit of detection (LOD) of 1078 particles/mL in 0.01 × PBS. Furthermore, the Si-NW Bio-FETs modified with specific antibody CD9, CD81 and CD63 respectively, were employed to distinguish exosomes derived from human promyelocytic leukemia (HL-60) cell line in three different states (control group, lipopolysaccharide (LPS) inflammation group, and LPS + Romidepsin (FK228) drug treatment group), which was consistent with nano-flow cytometry. This study provides a highly sensitive method of directly quantifying exosomes without labeling, indicating its potential as a tool for disease surveillance and medication instruction.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38980478

RESUMO

Anaerobic digestion of waste activated sludge (WAS) was one of the directions of sludge treatment, but how to effectively improve the production of methane as a resource product of anaerobic digestion of sludge still needs further research. The study examined how the combination of potassium ferrate (PF) and thermal hydrolysis (TH) pretreatment affected methane production from sludge. The results demonstrated a positive synergistic effect on methane production with PF-TH pretreatment. Specifically, by employing a 0.05 g/g TSS (total suspended solids) PF in conjunction with TH at 80 °C for 30 min, the methane yield increased from 170.66 ± 0.92 to 232.73 ± 2.21 mL/g VSS (volatile suspended solids). The co-pretreatment of PF and TH has been substantiated by mechanism studies to effectively enhance the disintegration and biodegradability of sludge. Additionally, the variation of microbial community revealed an enrichment of active microorganisms associated with anaerobic digestion after treated with PF + TH, resulting in a total abundance increase from 11.87 to 20.45% in the PF + TH group.

3.
J Affect Disord ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39009320

RESUMO

BACKGROUND: Traditional methodologies for diagnosing post-traumatic stress disorder (PTSD) primarily rely on interviews, incurring considerable costs and lacking objective indices. Integrating biomarkers and machine learning techniques into this diagnostic process has the potential to facilitate accurate PTSD assessment by clinicians. METHODS: We assembled a dataset encompassing recordings from 76 individuals diagnosed with PTSD and 60 healthy controls. Leveraging the openSmile framework, we extracted acoustic features from these recordings and employed a random forest algorithm for feature selection. Subsequently, these selected features were utilized as inputs for six distinct classification models and a regression model. RESULTS: Classification models employing a feature set of 18 elements yielded robust binary prediction outcomes for PTSD. Notably, the RF model achieved peak accuracy at 0.975 with the highest AUC of 1.0. In terms of the regression model, it exhibited significant predictive capability for PCL-5 scores (MSE = 0.90, MAE = 0.76, R2 = 0.10, p < 0.001). Noteworthy was the correlation coefficient of 0.33 (p < 0.05) between predicted and actual values. LIMITATIONS: Firstly, the process of feature selection may compromise the stability of models, which leads to potentially overestimating results. Secondly, it is hard to elucidate the nature of biological mechanisms behind between PTSD patients and healthy individuals. Lastly, the regression model has a limited prediction for PTSD. CONCLUSIONS: Distinct speech patterns differentiate PTSD patients and controls. Classification models accurately discern both groups. Regression model gauges PTSD severity, but further validation on larger datasets is needed.

4.
Int J Pharm ; 660: 124316, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38857664

RESUMO

The push-pull osmotic pump tablet is a promising drug delivery approach, offering advantages over traditional dosage forms in achieving consistent and predictable drug release rates. In the current study, the drug release process of push-pull osmotic pump tablets is modelled for the first time using the discrete element method (DEM) incorporated with a microscopic diffusion-induced swelling model. The effects of dosage and formulation design, such as delivery orifice size, drug-to-polymer ratio, tablet surface curvature, friction between particles and cohesion of polymer particles, on the drug release performance are systematically analysed. Numerical results reveal that an enlarged delivery orifice significantly increases both the total drug release and the drug release rate. Moreover, the larger the swellable particle component in the tablet, the higher the drug release rate. Furthermore, the tablet surface curvature is found to affect the drug release profile, i.e. the final drug release percentage increases with the increasing tablet surface curvature. It is also found that the drug release rate could be controlled by adjusting the inter-particle friction and the cohesion of polymer particles in the formulation. This DEM study offers valuable insights into the mechanisms governing drug release in push-pull osmotic pump tablets.


Assuntos
Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Osmose , Comprimidos , Preparações de Ação Retardada/química , Polímeros/química , Química Farmacêutica/métodos , Modelos Teóricos
5.
J Org Chem ; 89(12): 9027-9030, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38815156

RESUMO

A Lewis acid-catalyzed intramolecular Hosomi-Sakurai reaction of o-(allylsilyl)benzaldehyde/ketone has been developed. The reaction proceeds through simultaneous C-Si bond cleavage and C-C bond reconstruction. This protocol provides a rapid approach for the synthesis of allyl-substituted benzoxasiloles under mild conditions.

6.
Ann Intensive Care ; 14(1): 72, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735020

RESUMO

BACKGROUND: COVID-19-associated pulmonary fibrosis remains frequent. This study aimed to investigate pulmonary redox balance in COVID-19 ARDS patients and possible relationship with pulmonary fibrosis and long-term lung abnormalities. METHODS: Baseline data, chest CT fibrosis scores, N-terminal peptide of alveolar collagen III (NT-PCP-III), transforming growth factor (TGF)-ß1, superoxide dismutase (SOD), reduced glutathione (GSH), oxidized glutathione (GSSG) and malondialdehyde (MDA) in bronchoalveolar lavage fluid (BALF) were first collected and compared between SARS-CoV-2 RNA positive patients with moderate to severe ARDS (n = 65, COVID-19 ARDS) and SARS-CoV-2 RNA negative non-ARDS patients requiring mechanical ventilation (n = 63, non-ARDS). Then, correlations between fibroproliferative (NT-PCP-III and TGF-ß1) and redox markers were analyzed within COVID-19 ARDS group, and comparisons between survivor and non-survivor subgroups were performed. Finally, follow-up of COVID-19 ARDS survivors was performed to analyze the relationship between pulmonary abnormalities, fibroproliferative and redox markers 3 months after discharge. RESULTS: Compared with non-ARDS group, COVID-19 ARDS group had significantly elevated chest CT fibrosis scores (p < 0.001) and NT-PCP-III (p < 0.001), TGF-ß1 (p < 0.001), GSSG (p < 0.001), and MDA (p < 0.001) concentrations on admission, while decreased SOD (p < 0.001) and GSH (p < 0.001) levels were observed in BALF. Both NT-PCP-III and TGF-ß1 in BALF from COVID-19 ARDS group were directly correlated with GSSG (p < 0.001) and MDA (p < 0.001) and were inversely correlated with SOD (p < 0.001) and GSH (p < 0.001). Within COVID-19 ARDS group, non-survivors (n = 28) showed significant pulmonary fibroproliferation (p < 0.001) with more severe redox imbalance (p < 0.001) than survivors (n = 37). Furthermore, according to data from COVID-19 ARDS survivor follow-up (n = 37), radiographic residual pulmonary fibrosis and lung function impairment improved 3 months after discharge compared with discharge (p < 0.001) and were associated with early pulmonary fibroproliferation and redox imbalance (p < 0.01). CONCLUSIONS: Pulmonary redox imbalance occurring early in COVID-19 ARDS patients drives fibroproliferative response and increases the risk of death. Long-term lung abnormalities post-COVID-19 are associated with early pulmonary fibroproliferation and redox imbalance.

7.
Macromol Rapid Commun ; : e2400169, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722044

RESUMO

In this contribution, the transformation of polydicyclopentadiene (PDCPD) from thermoset into vitrimer is introduced. First, two N-coordinated diboronic diols are successfully synthesized via the reaction of N,N,N-tri(2-hydroxyethyl)amine and/or N,N,N",N"-tetrakis(2-hydroxyethyl)ethylene diamine with 4-(hydroxymethyl) phenylboronic acid and then they are transformed into two N-coordinated cyclic boronic diacrylates. The latter two dienes carrying electron-withdrawing substituents are used for the ring opening insertion metathesis copolymerization (ROIMP) of dicyclopentadiene to afford the crosslinked PDCPD. In the crosslinked PDCPD networks, N-coordinated cyclic boronic ester bonds are integrated. It is found that the as-obtained PDCPD networks displayed the excellent reprocessing properties. In the meantime, the fracture toughness is significantly improved. Owing to the inclusion of N-coordinated cyclic boronic ester bonds, the modified PDCPDs have the thermal stability much superior to plain PDCPD. The results reported in this work demonstrate that PDCPD can successfully be transformed into the vitrimers via the introduction of N-coordinated cyclic boronic ester bonds.

8.
Comput Biol Med ; 175: 108511, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677173

RESUMO

BACKGROUND: Mitochondria are the metabolic hubs of cells, regulating energy production and antigen presentation, which are essential for activation, proliferation, and function of immune cells. Recent evidence indicates that mitochondrial antigen presentation may have an impact on diseases such as Parkinson's disease (PD) and autoimmune diseases. However, there is limited knowledge about the mechanisms that regulate the presentation of mitochondrial antigens in these diseases. METHODS: In the current study, RNA sequencing was performed on labial minor salivary gland (LSG) from 25 patients with primary Sjögren's syndrome (pSS) and 14 non-pSS aged controls. Additionally, we obtained gene expression omnibus datasets associated with PD patients from NCBI Gene Expression Omnibus (GEO) databases. Single-sample Gene Set Enrichment Analysis (ssGSEA), ESTIMATE and Spearman correlations were conducted to explore the association between mitochondrial related genes and the immune system. Furthermore, we applied weighted Gene Co-expression Network Analysis (WGCNA) to identify hub mitochondria-related genes and investigate the correlated networks in both diseases. Single cell transcriptome analysis, immunohistochemical (IHC) staining and quantitative real-time PCR (qRT-PCR) were used to verify the activation of the hub mitochondria-related pathway. Pearson correlations and the CIBERSORT algorithms were employed to further reveal the correlation between hub mitochondria-related pathways and immune infiltration. RESULTS: The transcriptome analysis revealed the presence of overlapping mitochondria-related genes and mitochondrial DNA damage in patients with pSS and PD. Reactive oxygen species (ROS), the senescence marker p53, and the inflammatory markers CD45 and Bcl-2 were found to be regionally distributed in LSGs of pSS patients. WGCNA analysis identified the STING pathway as the central mitochondria-related pathway closely associated with the immune system. Single cell analysis, IHC staining, and qRT-PCR confirmed the activation of the STING pathway. Subsequent, bioinformatic analysis revealed the proportion of infiltrating immune cells in the STING-high and STING-low groups of pSS and PD. Furthermore, the study demonstrated the association of the STING pathway with innate and adaptive immune cells, as well as functional cells, in the immune microenvironment of PD and pSS. CONCLUSION: Our study uncovered a central pathway that connects mitochondrial dysfunction and the immune microenvironment in PD and pSS, potentially offering valuable insights into therapeutic targets for these conditions.


Assuntos
Biologia Computacional , Doença de Parkinson , Síndrome de Sjogren , Humanos , Síndrome de Sjogren/genética , Síndrome de Sjogren/imunologia , Doença de Parkinson/genética , Doença de Parkinson/imunologia , Feminino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Masculino , Pessoa de Meia-Idade , Idoso , Transcriptoma/genética , Redes Reguladoras de Genes , Genes Mitocondriais/genética
9.
Insect Sci ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594229

RESUMO

Honeybees and bumblebees play a crucial role as essential pollinators. The special gut microbiome of social bees is a key factor in determining the overall fitness and health of the host. Although bees harbor relatively simple microbial communities at the genus level, recent studies have unveiled significant genetic divergence and variations in gene content within each bacterial genus. However, a comprehensive and refined genomics-based taxonomic database specific to social bee gut microbiomes remains lacking. Here, we first provided an overview of the current knowledge on the distribution and function of social bee gut bacteria, as well as the factors that influence the gut population dynamics. We then consolidated all available genomes of the gut bacteria of social bees and refined the species-level taxonomy, by constructing a maximum-likelihood core genome phylogeny and calculating genome-wide pairwise average nucleotide identity. On the basis of the refined species taxonomy, we constructed a curated genomic reference database, named the bee gut microbe genome sequence database (BGM-GDb). To evaluate the species-profiling performance of the curated BGM-GDb, we retrieved a series of bee gut metagenomic data and inferred the species-level composition using metagenomic intra-species diversity analysis system (MIDAS), and then compared the results with those obtained from a prebuilt MIDAS database. We found that compared with the default database, the BGM-GDb excelled in aligned read counts and bacterial richness. Overall, this high-resolution and precise genomic reference database will facilitate research in understanding the gut community structure of social bees.

10.
Wei Sheng Yan Jiu ; 53(2): 310-315, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38604969

RESUMO

OBJECTIVE: To establish a method for twelve halobenzoquinones(HBQs) in drinking water by solid phase extraction-ultra-performance liquid chromatography coupled with electrospray-tandem mass spectrometry(SPE-UPLC-MS/MS). METHODS: The drinking water was acidified with formic acid and concentrated by Bond Elut Plexa solid phase extraction column. The sample solution was separated using Waters ACQUITY HSS T3 column(100 mm×2.1 mm, 1.8 µm) with gradient elution using methanol-water containing 0.1% formic acid as mobile phase. The target compouds were detected in negtive electrospray ionization(ESI~-) and multiple reaction monitoring. RESULTS: The concentration of twelve HBQs showed good linearity in the range 5.0-150.0 ng/mL, respectively, with the correlation coefficients greater than 0.999. The limits of detection(LOD) of twelve HBQs were lower than 2.0 ng/mL, and the limits of quantification(LOQ) for twelve HBQs were lower than 5.0 ng/mL, respectively. The recoveries of three levels in the matrix were 70.0%-84.0%. The matrix effffect was 0.08-0.64. CONCLUSION: The SPE-UPLC-MS/MS method has high sensitivity, good accuracy and fast analysis speed for the detection of halobenzoquinones in drinking water.


Assuntos
Água Potável , Formiatos , Espectrometria de Massas em Tandem , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Água Potável/química , Cromatografia Líquida de Alta Pressão/métodos , Extração em Fase Sólida
11.
Biosensors (Basel) ; 14(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38534249

RESUMO

Silicon nanowire field effect (SiNW-FET) biosensors have been successfully used in the detection of nucleic acids, proteins and other molecules owing to their advantages of ultra-high sensitivity, high specificity, and label-free and immediate response. However, the presence of the Debye shielding effect in semiconductor devices severely reduces their detection sensitivity. In this paper, a three-dimensional stacked silicon nanosheet FET (3D-SiNS-FET) biosensor was studied for the high-sensitivity detection of nucleic acids. Based on the mainstream Gate-All-Around (GAA) fenestration process, a three-dimensional stacked structure with an 8 nm cavity spacing was designed and prepared, allowing modification of probe molecules within the stacked cavities. Furthermore, the advantage of the three-dimensional space can realize the upper and lower complementary detection, which can overcome the Debye shielding effect and realize high-sensitivity Point of Care Testing (POCT) at high ionic strength. The experimental results show that the minimum detection limit for 12-base DNA (4 nM) at 1 × PBS is less than 10 zM, and at a high concentration of 1 µM DNA, the sensitivity of the 3D-SiNS-FET is approximately 10 times higher than that of the planar devices. This indicates that our device provides distinct advantages for detection, showing promise for future biosensor applications in clinical settings.


Assuntos
Técnicas Biossensoriais , Nanofios , Ácidos Nucleicos , Silício/química , Transistores Eletrônicos , DNA , Técnicas Biossensoriais/métodos , Nanofios/química
12.
Eur J Surg Oncol ; 50(4): 108246, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484491

RESUMO

BACKGROUND: Sarcopenia is associated with adverse prognosis of intrahepatic cholangiocarcinoma (iCCA) after surgery. METHODS: 321 patients with iCCA undergoing surgery were retrospectively recruited and assigned to training and validation cohort. Skeletal muscle index (SMI) was assessed to define sarcopenia. Logistic regression and cox regression analysis were used to identify risk factors. A novel sarcopenia-based nomogram was constructed and validated by ROC curves, calibration curves, and DCA curves. RESULTS: 260 patients were included for analysis. The median age was 63.0 years and 161 patients (61.9%) were diagnosed with sarcopenia. Patients with sarcopenia exhibited a higher rate of postoperative complications, a worse OS and RFS than patients without sarcopenia. Sarcopenia, low albumin and intraoperative blood transfusion were independent risk factors of postoperative complications, while sarcopenia and low albumin were risk factors of high CCI≥26.2. Sarcopenia, high PS score, low-undifferentiated differentiation, perineural invasion, TNM stage III-IV were risk factors of OS, and a novel nomogram based on these five factors was built to predict the 12-, 24-, and 36-months OS, with the mean AUC > 0.6. CONCLUSION: Sarcopenia is negatively associated with both postoperative complications and survival prognosis of iCCA undergoing hepatectomy.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Sarcopenia , Humanos , Pessoa de Meia-Idade , Hepatectomia , Sarcopenia/complicações , Sarcopenia/epidemiologia , Estudos Retrospectivos , Colangiocarcinoma/complicações , Colangiocarcinoma/cirurgia , Prognóstico , Neoplasias dos Ductos Biliares/complicações , Neoplasias dos Ductos Biliares/cirurgia , Ductos Biliares Intra-Hepáticos/patologia , Complicações Pós-Operatórias/patologia , Albuminas
13.
J Colloid Interface Sci ; 665: 780-792, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38554468

RESUMO

Heterostructured visible-light-responsive photocatalysts represent a prospective approach to achieve efficient solar-to-chemical energy conversion. Herein, we propose a facile self-assembly technique to synthesize NiO nanoparticles/C3N5 nanosheets (NOCN) heterojunctions for hydrogen (H2) evolution catalysis and hydrogen peroxide (H2O2) production under visible light. In this regard, the black NiO nanoparticles (NPs) were tightly anchored on the surface of C3N5 nanosheets (CNNS) to construct S-scheme NOCN heterojunction, enabling efficient charge separation and high redox capability. Obtained results elucidated that the incorporated NiO NPs significantly promote light-harvesting efficiency and photo-to-thermal capacity over the NOCN composites. The enhanced photothermal effect facilitates the charge carrier transfer rate across the heterojunction and boosts the surface reaction kinetics. Accordingly, the photocatalytic performances of CNNS for H2 release and H2O2 production can be manipulated by introducing NiO NPs. The modified photocatalytic properties of NOCN composites are ascribed to the synergistic effects of all integrated components and the S-scheme heterojunction formation. Impressively, the high H2 evolution photocatalysis efficiency of NOCN nano-catalysts in seawater certifies their potential environmental applicability. Among all, the 12-NOCN nano-catalyst exhibits a higher photocatalytic efficiency for H2 release (112.2 µmol∙g-1∙h-1) and H2O2 production (91.2 µmol∙L-1∙h-1). Besides, the 12-NOCN nano-catalyst reveals excellent recyclability and structural stability. Additionally, the possible mechanism for photothermal-assisted photocatalysis is proposed. This work affords a feasible pathway to design photothermal-assisted S-scheme heterojunctions for diverse photocatalytic applications.

14.
Front Endocrinol (Lausanne) ; 15: 1323994, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405150

RESUMO

Background: Thyroid autoimmunity is one of the most prevalent autoimmune diseases. However, its association with extra-thyroid diseases and mortality risk in the general population remains uncertain. Our study aims to evaluate the association of thyroid autoimmunity with extra-thyroid disease and the risk of mortality. Methods: A prospective cohort study was conducted using data from the National Health and Nutrition Examination Survey (NHANES) with participants from 2007-2008, 2009-2010, and 2011-2012, tracking their mortality until 2019. Associations between thyroid autoimmunity, which was defined as having positive thyroid peroxidase antibody (TPOAb) and/or thyroglobulin antibody (TgAb), and extra-thyroid disease including diabetes, hypertension, cardiovascular disease, chronic lung disease, arthritis, cancer and chronic renal disease and the risk of mortality were investigated. Results: A total of 7431 participants were included in this study. Positive The prevalence of positive TgAb was 7.54%, and positive TPOAb prevalence was 11.48%. TgAb was significantly associated with diabetes (Model 1: OR=1.64, 95% CI:1.08-2.50; Model 2: OR=1.93, 95% CI: 1.21-3.08) and hypertension (Model 1: OR=0.67, 95% CI: 0.49-0.91; Model 2: OR=0.62, 95% CI: 0.44-0.88). TPOAb was associated with a lower prevalence of chronic lung disease (model 1: OR=0.71, 95% CI: 0.54-0.95; model 2: OR=0.71, 95% CI: 0.53-0.95). No associations were observed between TgAb, TPOAb and other extra-thyroid diseases. Neither TgAb nor TPOAb were associated with all-cause mortality or heart disease mortality. Conclusion: TgAb was linked to a higher prevalence of diabetes and a lower prevalence of hypertension, while TPOAb was associated with a decreased prevalence of chronic lung disease. However, neither TgAb nor TPOAb posed a risk for all-cause mortality or heart disease mortality.


Assuntos
Doenças Autoimunes , Diabetes Mellitus , Cardiopatias , Hipertensão , Pneumopatias , Doenças da Glândula Tireoide , Adulto , Humanos , Autoimunidade , Inquéritos Nutricionais , Estudos Prospectivos , Iodeto Peroxidase , Doenças da Glândula Tireoide/complicações , Doenças da Glândula Tireoide/epidemiologia , Diabetes Mellitus/epidemiologia , Hipertensão/epidemiologia
15.
Aging (Albany NY) ; 16(1): 928-947, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38217541

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory joint disease that causes great distress to patients and society. Early diagnosis is the key to the successful treatment of RA. The basement membrane, one of the oldest tissue structures, is localized under the epithelium. Its complex composition and rich biological functions have made it a focus of research in recent years, while basement membrane-associated genetic variants are involved in most human disease processes. The aim of this study is to find new diagnostic biomarkers for RA and explore their role and possible mechanism in rheumatoid arthritis. The GSE12021, GSE55235 and GSE55457 datasets were downloaded from the GEO database. Their fraction associated with basement membrane genes was analyzed and differentially expressed genes between the disease and normal groups were explored. We identified two basement membrane-associated genes, lysine oxidase-like 1 (LOXL1) and discoid peptide receptor 2 (DDR2). Focusing on the more interesting LOXL1, we found that LOXL1 expression was significantly elevated in the synovium of patients with rheumatoid arthritis, and LOXL1 mRNA and protein levels were elevated in tumor necrosis factor α-stimulated human synovial sarcoma cells (SW982). And LOXL1 knockdown inhibited tumor necrosis factor α-induced inhibition in SW982 cells expression of inducible nitric oxide synthase (INOS), cyclooxygenase-2 (COX2), and interleukin-6 (IL-6). Interestingly, knockdown of LOXL1 inhibited the phosphorylation of PI3K and AKT. In summary, LOXL1 may become a novel diagnostic gene for RA, and knockdown of LoxL1 may inhibit synovial inflammation by affecting PI3K/AKT pathway.


Assuntos
Artrite Reumatoide , Lisina , Humanos , Artrite Reumatoide/metabolismo , Inflamação/genética , Oxirredutases , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia
16.
Gene ; 894: 147974, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37944649

RESUMO

OBJECT: In this study, we aimed to elucidate the role of LUCAT1, a recently identified lncRNA, in ferroptosis within the context of bladder cancer (BC). METHODS: Through a comprehensive array of experimental techniques, including transmission electron microscopy (TEM), RNA pull-down assays, and fluorescence in situ hybridization (FISH), we investigated the molecular interactions and functional consequences associated with LUCAT1 in BC cells. RESULTS: Our findings indicate that LUCAT1 acts as a pivotal regulator in BC, fostering cell proliferation, migration, and invasion, while concurrently impeding ferroptosis. Mechanistically, we unveiled a direct binding between LUCAT1 and insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), which governs the mRNA stability of signal transducer and activator of transcription 3 (STAT3). Intriguingly, ectopic expression of STAT3 counteracted the suppressive effect of LUCAT1 on ferroptosis induction in BC cells. Notably, in an in vivo setting, LUCAT1 emerged as a crucial modulator of ferroptosis inhibition in BC by regulating STAT3 mRNA stability. CONCLUSION: Collectively, our study identifies LUCAT1 as a novel oncogenic player, repressing ferroptosis in BC. These findings shed light on the intricate interplay between lncRNAs and ferroptosis in cancer, implicating LUCAT1 as a promising therapeutic target for patients afflicted with BC. Further investigations into the underlying mechanisms governing LUCAT1-mediated ferroptosis resistance are warranted, with the potential to uncover novel strategies for combating BC progression and improving patient outcomes.


Assuntos
Ferroptose , MicroRNAs , RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica , Hibridização in Situ Fluorescente , MicroRNAs/genética , Estabilidade de RNA , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Neoplasias da Bexiga Urinária/genética
17.
J Cell Mol Med ; 28(2): e18056, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37988238

RESUMO

Infection by bacterial products in the implant and endotoxin introduced by wear particles activate immune cells, enhance pro-inflammatory cytokines production, and ultimately promote osteoclast recruitment and activity. These factors are known to play an important role in osteolysis as well as potential targets for the treatment of osteolysis. Sesamin has been shown to have a variety of biological functions, such as inhibiting inflammation, anti-tumour and involvement in the regulation of fatty acid and cholesterol metabolism. However, the therapeutic effect of sesamin on osteolysis and its mechanism remain unclear. Present studies shown that in the condition of in vitro, sesamin could inhibit osteoclastogenesis and bone resorption, as well as suppressing the expression of osteoclast-specific genes. Further studies on the mechanism suggest that the effect of sesamin on human osteoclasts was mediated by blocking the ERK and NF-κB signalling pathways. Besides, sesamin was found to be effective in treating LPS-induced osteolysis by decreasing the production of pro-inflammatory cytokines and inhibiting osteoclastogenesis in vivo. Sesamin was non-toxic to heart, liver, kidney, lung and spleen. Therefore, sesamin is a promising phytochemical agent for the therapy of osteolysis-related diseases caused by inflammation and excessive osteoclast activation.


Assuntos
Reabsorção Óssea , Dioxóis , Lignanas , Osteólise , Humanos , Animais , Camundongos , Osteólise/induzido quimicamente , Osteólise/tratamento farmacológico , NF-kappa B/metabolismo , Osteogênese , Lipopolissacarídeos/metabolismo , Osteoclastos/metabolismo , Reabsorção Óssea/patologia , Inflamação/patologia , Citocinas/metabolismo , Ligante RANK/metabolismo , Camundongos Endogâmicos C57BL
18.
Mol Pharm ; 21(2): 781-790, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38153044

RESUMO

There is an urgent need to develop efficient treatments for highly invasive triple-negative breast cancer (TNBC) with a high rate of postoperative. Baicalin (BA) has shown inhibitory effects on several tumor cells and could activate ferroptosis in some tumor cells by producing reactive oxygen species (ROS). For overcoming the shortcomings of BA in clinical applications and enhancing the effect of ferroptosis in TNBC, herein, a multifunctional liposome (BA-Fe(III) coordination-polymer-loaded liposome, BA-Fe(III) Lipo) was developed for synergistic chemotherapy of TNBC with ferroptosis activation. Fe(III) released from BA-Fe(III) Lipo could be efficiently reduced to Fe(II) in the presence of high glutathione in tumor microenvironment, which in turn catalyzed the oxidation of unsaturated fats through lipid peroxidation for more ROS production. In addition, BA-Fe(III) Lipo activated tumor cell ferroptosis by down-regulating the enzymatic activity of ferritin heavy chain 1 protein and glutathione peroxidase. This study provided a novel therapeutic strategy for the treatment of TNBC by ingeniously combining chemotherapy with the activation of ferroptosis, which presented potential clinical applications.


Assuntos
Ferroptose , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Lipossomos , Compostos Férricos , Espécies Reativas de Oxigênio , Glutationa , Linhagem Celular Tumoral , Microambiente Tumoral
19.
Neurobiol Stress ; 28: 100593, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38075025

RESUMO

Glucocorticoids are primary stress hormones that exert neuronal effects via both genomic and non-genomic signaling pathways. However, their rapid non-genomic effects and underlying mechanisms on neural activities remain elusive. In the present study, we investigated the rapid non-genomic effect of glucocorticoids on Kv2.2 channels in cultured HEK293 cells and acute brain slices including cortical pyramidal neurons and calyx-type synapses in the brain stem. We found that cortisol, the endogenous glucocorticoids, rapidly increased Kv2.2 currents by increasing the single-channel open probability in Kv2.2-expressing HEK293 cells through activation of the membrane-associated glucocorticoid receptor. Bovine serum albumin-conjugated dexamethasone, a membrane-impermeable agonist of the glucocorticoid receptor, could mimic the effect of cortisol on Kv2.2 channels. The cortisol-increased Kv2.2 currents were induced by activation of the extracellular signal-regulated protein kinase (ERK) 1/2 kinase, which could be inhibited by U0126, an antagonist of the ERK signaling pathway. In layer 2 cortical pyramidal neurons and the calyx of Held synapses, cortisol suppressed the action potential firing frequency during depolarization and reduced the successful rate upon high-frequency stimulation by activating Kv2.2 channels. We further examined the postsynaptic responses and found that cortisol did not affect the mEPSC and evoked EPSC, but increased the activity-dependent synaptic depression induced by a high-frequency stimulus train. In conclusion, glucocorticoids can rapidly activate Kv2.2 channels through membrane-associated glucocorticoid receptors via the ERK1/2 signaling pathway, suppress presynaptic action potential firing, and inhibit synaptic transmission and plasticity. This may be a universal mechanism of the glucocorticoid-induced non-genomic effects in the central nervous system.

20.
Int J Nanomedicine ; 18: 7183-7204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076727

RESUMO

The increasing use of titanium dioxide nanoparticles (TiO2 NPs) across various fields has led to a growing concern regarding their environmental contamination and inevitable human exposure. Consequently, significant research efforts have been directed toward understanding the effects of TiO2 NPs on both humans and the environment. Notably, TiO2 NPs exposure has been associated with multiple impairments of the nervous system. This review aims to provide an overview of the documented neurotoxic effects of TiO2 NPs in different species and in vitro models. Following exposure, TiO2 NPs can reach the brain, although the specific mechanism and quantity of particles that cross the blood-brain barrier (BBB) remain unclear. Exposure to TiO2 NPs has been shown to induce oxidative stress, promote neuroinflammation, disrupt brain biochemistry, and ultimately impair neuronal function and structure. Subsequent neuronal damage may contribute to various behavioral disorders and play a significant role in the onset and progression of neurodevelopmental or neurodegenerative diseases. Moreover, the neurotoxic potential of TiO2 NPs can be influenced by various factors, including exposure characteristics and the physicochemical properties of the TiO2 NPs. However, a systematic comparison of the neurotoxic effects of TiO2 NPs with different characteristics under various exposure conditions is still lacking. Additionally, our understanding of the underlying neurotoxic mechanisms exerted by TiO2 NPs remains incomplete and fragmented. Given these knowledge gaps, it is imperative to further investigate the neurotoxic hazards and risks associated with exposure to TiO2 NPs.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Síndromes Neurotóxicas , Humanos , Nanopartículas/toxicidade , Nanopartículas/química , Estresse Oxidativo , Titânio/química , Encéfalo , Síndromes Neurotóxicas/etiologia , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA