RESUMO
Responsive spin-crossover (SCO) metal-organic cages (MOCs) are emerging dynamic platforms with potential for advanced applications in magnetic sensing and molecular switching. Among these, FeIII-based MOCs are particularly noteworthy for their air stability, yet they remain largely unexplored. Herein, we report the synthesis of two novel FeIII MOCs using a bis-bidentate ligand approach, which exhibit SCO activity above room temperature. These represent the first SCO-active FeIII cages and feature an atypical {FeN6}-type coordination sphere, uncommon for FeIII SCO compounds. Our study reveals that these MOCs are sensitive to acid/base variations, enabling reversible magnetic switching in solution. The presence of multiple active proton sites within these SCO-MOCs facilitates multisite, multilevel proton-induced spin-state modulation. This behavior is observed at room temperature through 1H NMR spectroscopy, capturing the subtle proton-induced spin-state transitions triggered by pH changes. Further insights from extended X-ray absorption fine structure (EXAFS) and theoretical analyses indicate that these magnetic alterations primarily result from the protonation and deprotonation processes at the NH active sites on the ligands. These processes induce changes in the secondary coordination sphere, thereby modulating the magnetic properties of the cages. The capability of these FeIII MOCs to integrate magnetic responses with environmental stimuli underscores their potential as finely tunable magnetic sensors and highlights their versatility as molecular switches. This work paves the way for the development of SCO-active materials with tailored properties for applications in sensing and molecular switching.
RESUMO
A single crystal composed of one-dimensional coordinated polymers, [CdCl2(1-methyl-2-pyridone)]n, has been synthesized and characterized. This compound exhibits outstanding elastic bending due to the molecular spring nature of the CdCl2 coordination framework and weak intermolecular interactions between the coordination chains. Owing to the helical arrangement of organic ligands surrounding the coordination structure, the compound crystallizes in a chiral space group. As a result, it displays compelling circular dichroism spectra and second harmonic generation properties.
RESUMO
A mononuclear valence tautomeric (VT) complex, [Co(pycz)2(Sq)(Cat)] (1-trans), where pycz = 9-(pyridin-4-yl)-9H-carbazole, Sqâ - = 3,5-di-tert-butyl-semiquinonato, and Cat2- = 3,5-di-tert-butyl-catecholato, is synthesized in the trans configuration, which undergoes one-step valence tautomeric transition above room temperature. Remarkably, 1-trans can transform into its isomeric structure, [Co(pycz)2(Sq)(Sq)] (1-cis), at temperature above 350â K in a single-crystal-to-single-crystal way by in situ molecular twist, and the resulting 1-cis exhibits a pronounced two-step VT transition during magnetic measurements that is rare for mononuclear VT complexes. Such drastic solid-state structural transformation is reported in VT compounds for the first time, which is actuated by a crystal surface's melting-recrystallization induced phase transition process. DFT calculations offer an underlying mechanism suggesting a concerted bond rotation during the structural transformation. The results demonstrate an unconventional approach that realizes structural transformation of VT complexes and the control of VT performance.
RESUMO
Controlling molecular chirality by external stimuli is of great significance in both fundamental research and technological applications. Herein, we report a high-temperature (384 K) molecular ferroelectric of a Cu(II) complex whose spontaneous polarization can be switched associated with flipping of molecular chirality. In this two-dimensional perovskite structure, the inorganic layer is separated by (NH3(CH2)2SS(CH2)2NH3)2+ organic cations skewed in a chiral conformation (P- or M-helicity in an individual crystal). As the stereodynamic disulfide bridge determines the molecular dipole moment along the polar axis, the chiral organic cation can be converted to its enantiomer as a consequence of an electric field-induced shift of the S-S moiety relative to its screw axis during the ferroelectric switching. The variation of the molecular chirality is examined with single-crystal X-ray diffraction and circular dichroism spectra. The simultaneous switching of molecular chirality and spontaneous polarization in this perovskite ferroelectric may lead to novel chiral electronic phenomena.
RESUMO
A tetradentate ligand, 1,1,2,2-tetrakis(4-(pyridin-4-yl)phenyl)ethene (TPPE), was adopted to construct a two-dimensional coordination polymer that incorporated valence tautomerism and luminescence, and the synergistic effect arising from energy transfer from TPPE to the semiquinone moieties was experimentally and theoretically uncovered.