RESUMO
Obtaining micron-thick perovskite films of high quality is key to realizing efficient and stable positive (p)-intrinsic (i)-negative (n) perovskite solar cells1,2, but it remains a critical challenge. Here, we report an effective method for producing high-quality, micron-thick formamidinium-based perovskite films by forming coherent grain boundaries, where high-Miller-index-oriented grains grow on the low-Miller-index-oriented grains in a stabilized atmosphere. The resulting micron-thick perovskite films, with enhanced grain boundaries and grains, showed stable material properties and outstanding optoelectronic performances. The small-area solar cells achieved efficiencies of 26.1%. The 1-square-centimeter devices and 5 cm × 5 cm minimodules delivered efficiencies of 24.3% and 21.4%, respectively. The devices processed in a stabilized atmosphere presented a high reproducibility across all four seasons. The encapsulated devices exhibited superior long-term stability under both light and thermal stressors in ambient air.
RESUMO
Self-healing hydrogels have attracted significant attention in chronic diabetic wound healing due to their potential to minimize the risk of secondary infections caused by joint movement or dressing rupture. Herein, a multifunctional self-healing hydrogel mediated utilizing an enzyme-triggered cascade reaction based on dynamic imine bonds was designed. The hydrogel employs three enzymes: lysozyme (LYZ), glucose oxidase (GOx), and catalase (CAT), as building blocks. GOx catalyzes the conversion of glucose and 1-thio-ß-d-glucose (ß-GlcSH) into hydrogen peroxide (H2O2), gluconic acid (GA), and hydrogen sulfide (H2S). Subsequently, CAT eliminates H2O2, protecting the imine bonds from oxidative damage. The acidic environment created by GA decreases the pH and regulates the crosslinking density of imine bonds, enhancing the self-healing capability and porosity of the hydrogel. This feature enables the sustained release of the drug rosuvastatin calcium (RCa) to promote endothelial cell migration and vascular regeneration. Combined with the antioxidative and anti-inflammatory effects of released H2S gas and the antibacterial properties of lysozyme, this hydrogel exhibits promising therapeutic efficacy for the synergistic treatment of chronic diabetic wounds.
RESUMO
This study demonstrated a dynamic analysis to investigate the ion migration in p-type perovskite MAPbI3 films under an electric field, revealing its detrimental effects on the electrical performance of MAPbI3-based devices. An additive strategy was proposed to suppress ion migration, thereby facilitating the fabrication of high-performance MAPbI3-based devices.
RESUMO
INTRODUCTION: Septic shock, a severe manifestation of infection-induced systemic immune response, poses a critical threat resulting in life-threatening multi-organ failure. Early diagnosis and intervention are imperative due to the potential for irreversible organ damage. However, specific and sensitive detection tools for the diagnosis of septic shock are still lacking. METHODS: Gene expression files of early septic shock were obtained from the Gene Expression Omnibus (GEO) database. CIBERSORT analysis was used to evaluate immune cell infiltration. Genes related to immunity and disease progression were identified using weighted gene co-expression network analysis (WGCNA), followed by enrichment analysis. CytoHubba was then employed to identify hub genes, and their relationships with immune cells were explored through correlation analysis. Blood samples from healthy controls and patients with early septic shock were collected to validate the expression of hub genes, and an external dataset was used to validate their diagnostic efficacy. RESULTS: Twelve immune cells showed significant infiltration differences in early septic shock compared to control, such as neutrophils, M0 macrophages, and natural killer cells. The identified immune and disease-related genes were mainly enriched in immune, cell signaling, and metabolism pathways. In addition, six hub genes were identified (PECAM1, F11R, ITGAL, ICAM3, HK3, and MCEMP1), all significantly associated with M0 macrophages and exhibiting an area under curve of over 0.7. These genes exhibited abnormal expression in patients with early septic shock. External datasets and real-time qPCR validation supported the robustness of these findings. CONCLUSION: Six immune-related hub genes may be potential biomarkers for early septic shock.
RESUMO
The design of mutifunctional protein films for large-area spatially ordered arrays of functional components holds great promise in the field of biomedical applications. Herein, interfacial electrostatic self-assembly was employed to construct a large-scale protein thin film by inducing electrostatic interactions between three bovine serum albumin (BSA)-coated nanoclusters and cetyltrimethylammonium bromide (CTAB), leading to their spontaneous organization and uniform distribution at the oil-water interface. This protein film demonstrated excellent multienzyme functions, high antibacterial activity, and pH-responsive drug release capability. Therefore, it can accelerate the wound closure process through a synergistic effect that includes reducing local blood glucose levels, regulating cellular oxidative stress, eradicating bacteria, and promoting cell proliferation.
Assuntos
Antibacterianos , Soroalbumina Bovina , Cicatrização , Cicatrização/efeitos dos fármacos , Soroalbumina Bovina/química , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Cetrimônio/química , Bovinos , Eletricidade Estática , Escherichia coli/efeitos dos fármacos , Camundongos , Proliferação de Células/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Humanos , Concentração de Íons de HidrogênioRESUMO
Repeatability of adaptation to similar environments provides opportunity to evaluate the predictability of natural selection. While many studies have investigated gene expression differences between populations adapted to contrasting environments, the role of post-transcriptional processes such as alternative splicing has rarely been evaluated in the context of parallel adaptation. To address the aforementioned knowledge gap, we reanalysed transcriptomic data from three pairs of threespine stickleback (Gasterosteus aculeatus) ecotypes adapted to marine or freshwater environment. First, we identified genes with repeated expression or splicing divergence across ecotype pairs, and compared the genetic architecture and biological processes between parallelly expressed and parallelly spliced loci. Second, we analysed the extent to which parallel adaptation was reflected at gene expression and alternative splicing levels. Finally, we tested how the two axes of transcriptional variation differed in their potential for evolutionary change. Although both repeated differential splicing and differential expression across ecotype pairs showed tendency for parallel divergence, the degree of parallelism was lower for splicing than expression. Furthermore, parallel divergences in splicing and expression were likely to be associated with distinct cis-regulatory genetic variants and functionally unique set of genes. Finally, we found that parallelly spliced genes showed higher nucleotide diversity than parallelly expressed genes, indicating splicing is less susceptible to genetic variation erosion during parallel adaptation. Our results provide novel insight into the role of splicing in parallel adaptation, and underscore the contribution of splicing to the evolutionary potential of wild populations under environmental change.
RESUMO
High-efficiency Pb-Sn narrow-bandgap perovskite solar cells (PSCs) heavily rely on PEDOT:PSS as the hole-transport layer (HTL) owing to its excellent electrical conductivity, dopant-free nature, and facile solution processability. However, the shallow work function (WF) of PEDOT:PSS consequently results in severe minority carrier recombination at the perovskite/HTL interface. Here, we tackle this issue by an in situ interface engineering strategy using a new molecule called 2-fluoro benzylammonium iodide (FBI) that suppresses nonradiative recombination near the Pb-Sn perovskite (FA0.6MA0.4Pb0.4Sn0.6I3)/HTL bottom interface. The WF of PEDOT:PSS increases by 0.1 eV with FBI modification, resulting in Pb-Sn PSCs with 20.5% efficiency and an impressive VOC of 0.843 V. Finally, we have successfully transferred our in situ buried interface modification strategy to fabricate blade-coated FA0.6MA0.4Pb0.4Sn0.6I3 PSCs with 18.3% efficiency and an exceptionally high VOC of 0.845 V.
RESUMO
Low-dimension metal halide perovskites are attractive for bandgap tunable optoelectronic materials. Among them, 1-D CsPbBr3 quantum wires (QWs) are emerging as promising deep-blue luminescent material. However, the growth dynamics of 1-D perovskite QWs are intricate, making the study and control of 1-D QWs highly challenging. In this study, a strategy for controlling both the length and width of the CsPbBr3 QWs was realized. The temperature-dependent isotropic growth mechanism was revealed and employed as the main tool for the oriented growth of 1-D CsPbBr3 QWs for various aspect ratios. Our results pave the way for the controlled synthesis of ultrasmall perovskite nanocrystals.
RESUMO
We theoretically propose and demonstrate topological parabolic umbilic beams (PUBs) with high-dimensional caustic by mapping catastrophe theory into optics. The PUBs are first experimentally observed via dimensionality reduction. Due to the high-dimensionality, such light beams exhibit rich caustic structures characterized by optical singularities where the high-intensity gradient appears. Further, we propose an improved caustic approach to artificially tailored structured beams which exhibit significant intensity gradient and phase gradient. The properties can trap and drive particles to move along the predesigned trajectory, respectively. The advantages for structured caustic beams likely enable new applications in flexible particle manipulation, light-sheet microscopy, and micromachining.
RESUMO
OBJECTIVE: To investigate the effect of mild hypothermia on macrophage polarization in lipopolysaccharide (LPS)-induced acute lung injury (ALI) mice and to clarify its role in lung injury. METHODS: According to a random number table method, 18 male C57BL/6 mice were divided into sham operation group (Sham group), ALI normothermic model group (NT group) and ALI mild hypothermia treatment group (HT group), with 6 mice in each group. The ALI model in mice was established by the method of tracheal instillation of LPS, and temperature control was administered at 1 hour after surgery. The anus temperature in NT group was kept at 36-38?centigrade, while the anus temperature in HT group was kept at 32-34?centigrade. The target anus temperature in both groups were maintained for 6 hours and then slowly rewarmed to 36-38 centigrade. The Sham group was infused with an equal amount of physiological saline through the trachea without temperature control. After 24 hours of modeling, serum was collected and mice were sacrificed to obtain lung tissue. Pathological changes in lung tissue were observed under light microscopy and semi-quantitative lung injury score was performed. Enzyme linked immunosorbent assay (ELISA) was used to detect the serum levels of interleukins (IL-1ß, IL-10). Real-time quantitative polymerase chain reaction (RT-qPCR) was used to test the indicators of macrophage polarization, such as the mRNA expressions of CD86, IL-6, CD206 and arginase 1 (Arg1) in the lung tissue. The protein expression of M1 macrophage marker inducible nitric oxide synthase (iNOS) and M2 macrophage marker Arg1 were detected by Western blotting. RESULTS: Compared with the Sham group, the NT group appeared significant pulmonary hemorrhage and edema, thickened lung septum, inflammatory cell infiltration, and lung injury score was significantly increased; serum IL-1ß level was significantly elevated; IL-10 level was increased without statistical significance; the expressions of CD86 mRNA, IL-6 mRNA and iNOS protein were significantly elevated, and CD206 mRNA was significantly decreased; the mRNA and protein expressions of Arg1 decreased, but there were no significant differences. Compared with the NT group, the pathological injury of lung tissue in HT group was significantly reduced, and the lung injury score was significantly decreased (4.78±0.96 vs. 8.56±1.98, P < 0.01); serum IL-1ß level was decreased (ng/L: 13.52±1.95 vs. 27.18±3.87, P < 0.01), and IL-10 level was significantly increased (ng/L: 42.59±15.79 vs. 14.62±4.47, P < 0.01); IL-6 mRNA expression was decreased in lung tissue (2-ΔΔCt: 3.37±0.92 vs. 10.04±0.91, P < 0.05), the expression of M1 macrophage markers CD86 mRNA and iNOS protein were significantly decreased [CD86 mRNA (2-ΔΔCt): 0.52±0.16 vs. 1.95±0.33, iNOS protein (iNOS/ß-actin): 0.57±0.19 vs. 1.11±0.27, both P < 0.05], the expression of M2 macrophage markers CD206 mRNA, Arg1 mRNA and Arg1 protein were significantly increased [CD206 mRNA (2-ΔΔCt): 3.99±0.17 vs. 0.34±0.17, Arg1 mRNA (2-ΔΔCt): 2.33±0.73 vs. 0.94±0.23, Arg1 protein (Arg1/ß-actin): 0.96±0.09 vs. 0.31±0.11, all P < 0.05]. CONCLUSIONS: Mild hypothermia can alleviate the inflammatory response and protect lung tissue in ALI mice, which may be related to the inhibition of M1 macrophage polarization and promotion of M2 macrophage polarization.
Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Macrófagos , Camundongos Endogâmicos C57BL , Animais , Lesão Pulmonar Aguda/terapia , Masculino , Camundongos , Macrófagos/metabolismo , Lipopolissacarídeos/efeitos adversos , Óxido Nítrico Sintase Tipo II/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Hipotermia Induzida , Interleucina-1beta/metabolismo , Modelos Animais de DoençasRESUMO
BACKGROUND: Recent observational studies have suggested that osteoporosis may be a risk factor for sepsis. To mitigate confounding factors and establish the causal relationship between sepsis and osteoporosis, we conducted a two-sample Mendelian randomization analysis using publicly available summary statistics. METHODS: Utilizing summary data from FinnGen Biobank, we employed a two-sample Mendelian randomization (MR) analysis to predict the causal relationship between osteoporosis and sepsis. The MR analysis primarily utilized the inverse variance weighted (IVW) method, supplemented by MR-Egger, weighted median, weighted mode, and simple mode analyses, with Bayesian weighted MR (BWMR) analysis employed for result validation. Sensitivity analyses included MR-PRESSO, "leave-one-out" analysis, MR-Egger regression, and Cochran's Q test. RESULTS: In the European population, an increase of one standard deviation in osteoporosis was associated with an 11% increased risk of sepsis, with an odds ratio (OR) of 1.11 (95% CI, 1.06 - 1.16; p = 3.75E-06). BWMR yielded an OR of 1.11 (95% CI, 1.06 - 1.67; p = 1.21E-05), suggesting osteoporosis as a risk factor for sepsis. Conversely, an increase of one standard deviation in sepsis was associated with a 26% increased risk of osteoporosis, with an OR of 1.26 (95% CI, 1.11 - 1.16; p = 0.45E-03). BWMR yielded an OR of 1.26 (95% CI, 1.09 - 1.45; p = 1.45E-03), supporting sepsis as a risk factor for osteoporosis. CONCLUSION: There is a association between osteoporosis and sepsis, with osteoporosis may serving as a risk factor for the development of sepsis, while sepsis may also promote the progression of osteoporosis.
RESUMO
Depression and obesity are prevalent disorders with significant public health implications. In this study, we used a high-fat diet (HFD)-induced obese mouse model to investigate the mechanism underlying HFD-induced depression-like behaviors. HFD-induced obese mice exhibited depression-like behaviors and a reduction in hippocampus volume, which were reversed by treatment with an indoleamine 2,3-dioxygenase (IDO) inhibitor 1-methyltryptophan (1-MT). Interestingly, no changes in IDO levels were observed post-1-MT treatment, suggesting that other mechanisms may be involved in the anti-depressive effect of 1-MT. We further conducted RNA sequencing analysis to clarify the potential underlying mechanism of the anti-depressive effect of 1-MT in HFD-induced depressive mice and found a significant enrichment of shared differential genes in the extracellular matrix (ECM) organization pathway between the 1-MT-treated and untreated HFD-induced depressive mice. Therefore, we hypothesized that changes in ECM play a crucial role in the anti-depressive effect of 1-MT. To this end, we investigated perineuronal nets (PNNs), which are ECM assemblies that preferentially ensheath parvalbumin (PV)-positive interneurons and are involved in many abnormalities. We found that HFD is associated with excessive accumulation of PV-positive neurons and upregulation of PNNs, affecting synaptic transmission in PV-positive neurons and leading to glutamate-gamma-aminobutyric acid imbalances in the hippocampus. The 1-MT effectively reversed these changes, highlighting a PNN-related mechanism by which 1-MT exerts its anti-depressive effect.
Assuntos
Depressão , Dieta Hiperlipídica , Modelos Animais de Doenças , Matriz Extracelular , Hipocampo , Camundongos Endogâmicos C57BL , Triptofano , Animais , Camundongos , Triptofano/análogos & derivados , Triptofano/farmacologia , Depressão/tratamento farmacológico , Depressão/etiologia , Masculino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Obesidade/tratamento farmacológico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Rede Nervosa/efeitos dos fármacosRESUMO
Our design aimed to explore the potential involvement of matrix metalloproteinase-9 (MMP-9) in the inflammatory response associated with acute ischemic stroke (AIS). We also aimed to preliminarily examine the potential impact of a disintegrin-like and metalloprotease with thrombospondin type I repeats-13 (ADAMTS13) on MMP-9 in AIS. We conducted oxygen-glucose deprivation models of microglia cells and mice models of AIS with middle cerebral artery occlusion (MCAO). We assessed the expression pattern of MMP-9 with western blotting (WB) and real-time quantitative PCR both in vivo and in vitro. MMP-9 downregulation was achieved by using ACE inhibitors such as trandolapril. For the MCAO model, we used ADAMTS13-deficient mice. We then evaluated the related neurological function scores, cerebral edema and infarct volume. The levels of inflammation-related proteins, such as COX2 and iNOS, were assessed using WB, and the expression of inflammatory cytokines was measured via enzyme-linked immuno sorbent assay in vivo. Our findings indicated that MMP-9 was up-regulated while ADAMTS13 was down-regulated in the MCAO model. Knockdown of MMP-9 reduced both inflammation and ischemic brain injury. ADAMTS13 prevented brain damage, improved neurological function and decreased the inflammation response in mice AIS models. Additionally, ADAMTS13 alleviated MMP-9-induced neuroinflammation in vivo. It showed that ADAMTS13 deficiency exacerbated ischemic brain injury through an MMP-9-dependent inflammatory mechanism. Therefore, the ADAMTS13-MMP-9 axis could have therapeutic potential for the treatment of AIS.
Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Animais , Camundongos , Proteína ADAMTS13 , Lesões Encefálicas/complicações , Isquemia Encefálica/complicações , Infarto da Artéria Cerebral Média/complicações , Inflamação/complicações , AVC Isquêmico/complicações , Metaloproteinase 9 da Matriz/metabolismo , Doenças NeuroinflamatóriasRESUMO
Climate change is intensifying the frequency and severity of extreme temperatures. Understanding the molecular mechanisms underlying the ability to cope with acute thermal stress is key for predicting species' responses to extreme temperature events. While many studies have focused on the individual roles of gene expression, post-transcriptional processes and epigenetic modifications in response to acute thermal stress, the relative contribution of these molecular mechanisms remains unclear. The wide range of thermal limits of western mosquitofish (Gambusia affinis) provides an opportunity to explore this interplay. Here, we quantified changes in gene expression, alternative splicing, DNA methylation and microRNA (miRNA) expression in muscle tissue dissected from mosquitofish immediately after reaching high (CTmax) or low thermal limit (CTmin). Although the numbers of genes showing expression and splicing changes in response to acute temperature stress were small, we found a possibly larger and non-redundant role of splicing compared to gene expression, with more genes being differentially spliced (DSGs) than differentially expressed (DEGs), and little overlap between DSGs and DEGs. We also identified a small proportion of CpGs showing significant methylation change (i.e. differentially methylated cytosines, DMCs) in fish at thermal limits; however, there was no overlap between DEGs and genes annotated with DMCs in both CTmax and CTmin experiments. The weak interplay between epigenetic modifications and gene expression was further supported by our discoveries of no differentially expressed miRNAs. These findings provide novel insights into the relative role of different molecular mechanisms underlying immediate responses to extreme temperatures and demonstrate non-concordant responses of epigenetic and transcriptional mechanisms to acute temperature stress.
RESUMO
The development of cell-like nanoreactors with the ability to initiate biocatalytic cascades under special conditions holds tremendous potential for therapeutic applications. Herein, conformationally gated nanoreactors that respond to the acidic microenvironment of infected diabetic wounds were developed by cucur[8]bituril (CB[8])-based supramolecular assembly. The bioinspired nanoreactors exhibit not only self-regulated permeability and selectivity to control internal enzyme activities by substance exchange but also distinct binding specificities toward Gram-positive and Gram-negative bacteria via noncovalent modification with different ligands. The encapsulation of glucose oxidase (GOx), Fe3O4 nanozyme, and l-arginine (l-Arg) into the nanocarriers enables intelligent activation of multienzyme cascade reactions upon glucose (Glu) uptake to produce gluconic acid (GA) and hydrogen peroxide (H2O2), which is further converted into highly toxic hydroxyl radicals (·OH) for selective antibacterial activity. Moreover, acidic H2O2 promotes the oxidization of l-Arg, leading to the release of nitric oxide (NO). Consequently, this nanoreactor provides a multifunctional and synergistic platform for diabetic chronic wound healing by combining enzyme dynamic therapy with NO gas therapy to combat bacterial infections and inflammation under high blood Glu levels.
Assuntos
Antibacterianos , Diabetes Mellitus , Humanos , Antibacterianos/farmacologia , Peróxido de Hidrogênio , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Arginina , Glucose Oxidase , Óxido Nítrico , Cicatrização , NanotecnologiaRESUMO
Perovskite solar cells (PSCs) comprise a solid perovskite absorber sandwiched between several layers of different charge-selective materials, ensuring unidirectional current flow and high voltage output of the devices1,2. A 'buffer material' between the electron-selective layer and the metal electrode in p-type/intrinsic/n-type (p-i-n) PSCs (also known as inverted PSCs) enables electrons to flow from the electron-selective layer to the electrode3-5. Furthermore, it acts as a barrier inhibiting the inter-diffusion of harmful species into or degradation products out of the perovskite absorber6-8. Thus far, evaporable organic molecules9,10 and atomic-layer-deposited metal oxides11,12 have been successful, but each has specific imperfections. Here we report a chemically stable and multifunctional buffer material, ytterbium oxide (YbOx), for p-i-n PSCs by scalable thermal evaporation deposition. We used this YbOx buffer in the p-i-n PSCs with a narrow-bandgap perovskite absorber, yielding a certified power conversion efficiency of more than 25%. We also demonstrate the broad applicability of YbOx in enabling highly efficient PSCs from various types of perovskite absorber layer, delivering state-of-the-art efficiencies of 20.1% for the wide-bandgap perovskite absorber and 22.1% for the mid-bandgap perovskite absorber, respectively. Moreover, when subjected to ISOS-L-3 accelerated ageing, encapsulated devices with YbOx exhibit markedly enhanced device stability.
RESUMO
OBJECTIVE: Inflammation-related factors play a crucial role in intracranial aneurysms (IA) initiation, progression, and rupture. High mobility group box 1 (HMGB-1) serves as an alarm to drive the pathogenesis of the inflammatory disease. This study aimed to evaluate the role of HMGB-1 in IA and explore the correlation with other inflammatory-related factors. METHODS: A total of twenty-eight adult male Japanese white rabbits were included in with elastase-induced aneurysms, n = 18) and the control group (normal rabbits, n = 10). To assess the expression of HMGB-1, both reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) was performed on serum samples obtained from human subjects (10 patients with IA and 10 healthy donors) as well as from rabbits (aneurysm group and control group). Immunohistochemistry and immunofluorescence were employed to evaluate the expression levels of elastic fibers, HMGB-1, tumor necrosis factor-alpha (TNF-α), and triggering receptor expressed on myeloid cells-1 (TREM-1). RESULTS: The expression of HMGB-1 was found to be significantly higher in the IA group compared to the control group, both at the mRNA and protein levels (P < 0.0001). Similar findings were observed in the rabbit aneurysm model group compared to the control group (P < 0.0001). HMGB-1 expression was observed to be more abundant in the inner wall of the aneurysm compared to the external wall, whereas in the control group, it was rarely scattered. Additionally, the localization patterns of TNF-α and TREM-1 exhibited similar characteristics to HMGB-1. CONCLUSION: Our findings demonstrate that HMGB-1 is highly expressed in both IA patients and rabbit aneurysm models. Furthermore, the similar localization patterns of HMGB-1, TNF-α, and TREM-1 suggest their potential involvement in the inflammatory processes associated with IA. These results highlight the potential of HMGB-1 as a novel therapeutic target for IA.
Assuntos
Proteína HMGB1 , Aneurisma Intracraniano , Adulto , Animais , Humanos , Masculino , Coelhos , Fator de Necrose Tumoral alfa/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides , Aneurisma Intracraniano/etiologia , Aneurisma Intracraniano/patologia , Inflamação/patologia , Proteínas HMGB , Proteína HMGB1/metabolismoRESUMO
The limited conductivity of existing transparent conducting oxide (TCO) greatly restricts the further performance improvement of perovskite solar cells (PSCs), especially for large-area devices. Herein, buried-metal-grid tin-doped indium oxide (BMG ITO) electrodes are developed to minimize the power loss caused by the undesirable high sheet resistance of TCOs. By burying 140-nm-thick metal grids into ITO using a photolithography technique, the sheet resistance of ITO is reduced from 15.0 to 2.7 Ω sq-1 . The metal step of BMG over ITO has a huge impact on the charge carrier transport in PSCs. The PSCs using BMG ITO with a low metal step deliver power conversion efficiencies (PCEs) significantly better than that of their counterparts with higher metal steps. Moreover, compared with the pristine ITO-based PSCs, the BMG ITO-based PSCs show a smaller PCE decrease when scaling up the active area of devices. The parallel-connected large-area PSCs with an active area of 102.8 mm2 reach a PCE of 22.5%. The BMG ITO electrodes are also compatible with the fabrication of inverted-structure PSCs and organic solar cells. The work demonstrates the great efficacy of improving the conductivity of TCO by BMG and opens up a promising avenue for constructing highly efficient large-area PSCs.
RESUMO
OBJECTIVE: To explore lung ultrasound radiomics features which related to extravascular lung water index (EVLWI), and to predict EVLWI in critically ill patients based on lung ultrasound radiomics combined with machine learning and validate its effectiveness. METHODS: A retrospective case-control study was conducted. The lung ultrasound videos and pulse indicated continuous cardiac output (PiCCO) monitoring results of critically ill patients admitted to the department of critical care medicine of the First Affiliated Hospital of Guangxi Medical University from November 2021 to October 2022 were collected, and randomly divided into training set and validation set at 8:2. The corresponding images from lung ultrasound videos were obtained to extract radiomics features. The EVLWI measured by PiCCO was regarded as the "gold standard", and the radiomics features of training set was filtered through statistical analysis and LASSO algorithm. Eight machine learning models were trained using filtered radiomics features including random forest (RF), extreme gradient boost (XGBoost), decision tree (DT), Naive Bayes (NB), multi-layer perceptron (MLP), K-nearest neighbor (KNN), support vector machine (SVM), and Logistic regression (LR). Receiver operator characteristic curve (ROC curve) was plotted to evaluate the predictive performance of models on EVLWI in the validation set. RESULTS: A total of 151 samples from 30 patients were enrolled (including 906 lung ultrasound videos and 151 PiCCO monitoring results), 120 in the training set, and 31 in the validation set. There were no statistically significant differences in main baseline data including gender, age, body mass index (BMI), mean arterial pressure (MAP), central venous pressure (CVP), heart rate (HR), cardiac index (CI), cardiac function index (CFI), stroke volume index (SVI), global end diastolic volume index (GEDVI), systemic vascular resistance index (SVRI), pulmonary vascular permeability index (PVPI) and EVLWI. The overall EVLWI range in 151 PiCCO monitoring results was 3.7-25.6 mL/kg. Layered analysis showed that both datasets had EVLWI in the 7-15 mL/kg interval, and there was no statistically significant difference in EVLWI distribution. Two radiomics features were selected by using LASSO algorithm, namely grayscale non-uniformity (weight was -0.006 464) and complexity (weight was -0.167 583), and they were used for modeling. ROC curve analysis showed that the MLP model had better predictive performance. The area under the ROC curve (AUC) of the prediction validation set EVLWI was higher than that of RF, XGBoost, DT, KNN, LR, SVM, NB models (0.682 vs. 0.658, 0.657, 0.614, 0.608, 0.596, 0.557, 0.472). CONCLUSIONS: The gray level non-uniformity and complexity of lung ultrasound were the most correlated radiomics features with EVLWI monitored by PiCCO. The MLP model based on gray level non-uniformity and complexity of lung ultrasound can be used for semi-quantitative prediction of EVLWI in critically ill patients.
Assuntos
Estado Terminal , Água Extravascular Pulmonar , Humanos , Água Extravascular Pulmonar/diagnóstico por imagem , Estudos Retrospectivos , Estudos de Casos e Controles , Teorema de Bayes , China , Pulmão/diagnóstico por imagemRESUMO
OBJECTIVE: Burr hole drainage (BHD) is the primary surgical intervention for managing chronic subdural hematoma (CSDH). However, it can lead to postoperative complications such as acute bleeding within the hematoma cavity and hematoma recurrence. The objective of this study is to identify the risk factors for these complications and develop a predictive model for acute hematoma cavity bleeding after BHD in patients with CSDH. METHODS: This study presents a retrospective cohort investigation conducted at a single center. The clinical dataset of 308 CSDH patients who underwent BHD at a hospital from 2016 to 2022 was analyzed to develop and assess a prognostic model. RESULTS: The nonbleeding group exhibited a significant correlation between fibrinogen (FIB) and thrombin time (TT), whereas no correlation was observed in the bleeding group. Notably, both FIB and TT were identified as risk factors for postoperative acute bleeding within the hematoma cavity. We developed a prognostic model to predict the occurrence of postoperative acute bleeding within the hematoma cavity after BHD in patients with CSDH. The model incorporated FIB, TT, coronary artery disease, and Glasgow Coma Scale scores. The model exhibited good discrimination (area under the curve: 0.725) and calibration (Hosmer-Leeshawn goodness of fit test: P > 0.1). Furthermore, decision curve analysis demonstrated the potential clinical benefit of implementing this prediction model. CONCLUSIONS: The predictive model developed in this study can forecast the risk of postoperative acute bleeding within the hematoma cavity, thus aiding clinicians in selecting the optimal treatment approach for patients with CSDH.