RESUMO
Osteosarcoma, a malignant bone tumor often characterized by high hedgehog signaling activity, residual tumor cells, and substantial bone defects, poses significant challenges to both treatment response and postsurgical recovery. Here, we developed a nanocomposite hydrogel for the sustained co-delivery of bioactive magnesium ions, anti-PD-L1 antibody (αPD-L1), and hedgehog pathway antagonist vismodegib, to eradicate residual tumor cells while promoting bone regeneration post-surgery. In a mouse model of tibia osteosarcoma, this hydrogel-mediated combination therapy led to remarkable tumor growth inhibition and hence increased animal survival by enhancing the activity of tumor-suppressed CD8+ T cells. Meanwhile, the implanted hydrogel improved the microenvironment of osteogenesis through long-term sustained release of Mg2+, facilitating bone defect repair by upregulating the expression of osteogenic genes. After 21 days, the expression levels of ALP, COL1, RUNX2, and BGLAP in the Vis-αPD-L1-Gel group were approximately 4.1, 5.1, 5.5, and 3.4 times higher than those of the control, respectively. We believe that this hydrogel-based combination therapy offers a potentially valuable strategy for treating osteosarcoma and addressing the tumor-related complex bone diseases.
Assuntos
Neoplasias Ósseas , Hidrogéis , Imunoterapia , Nanocompostos , Osteossarcoma , Osteossarcoma/patologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/terapia , Animais , Hidrogéis/química , Nanocompostos/química , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Neoplasias Ósseas/terapia , Camundongos , Imunoterapia/métodos , Linhagem Celular Tumoral , Regeneração Óssea/efeitos dos fármacos , Humanos , Osteogênese/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Camundongos Endogâmicos BALB C , Magnésio/químicaRESUMO
Gene therapy has emerged as a highly promising strategy for the clinical treatment of large segmental bone defects and non-union fractures, which is a common clinical need. Meanwhile, many preclinical data have demonstrated that gene and cell therapies combined with optimal scaffold biomaterials could be used to solve these tough issues. Bone tissue engineering, an interdisciplinary field combining cells, biomaterials, and molecules with stimulatory capability, provides promising alternatives to enhance bone regeneration. To deliver and localize growth factors and associated intracellular signaling components into the defect site, gene therapy strategies combined with bioengineering could achieve a uniform distribution and sustained release to ensure mesenchymal stem cell osteogenesis. In this review, we will describe the process and cell molecular changes during normal fracture healing, followed by the advantages and disadvantages of various gene therapy vectors combined with bone tissue engineering. The growth factors and other bioactive peptides in bone regeneration will be particularly discussed. Finally, gene-activated biomaterials for bone regeneration will be illustrated through a description of characteristics and synthetic methods.
RESUMO
Developing superporous hemostatic sponges with simultaneously enhanced permeability and mechanical properties remains challenging but highly desirable to achieve rapid hemostasis for non-compressible hemorrhage. Typical approaches to improve the permeability of hemostatic sponges by increasing porosity sacrifice mechanical properties and yield limited pore interconnectivity, thereby undermining the hemostatic efficacy and subsequent tissue regeneration. Herein, we propose a temperature-assisted secondary network compaction strategy following the phase separation-induced primary compaction to fabricate the superporous chitosan sponge with highly-interconnected porous structure, enhanced blood absorption rate and capacity, and fatigue resistance. The superporous chitosan sponge exhibits rapid shape recovery after absorbing blood and maintains sufficient pressure on wounds to build a robust physical barrier to greatly improve hemostatic efficiency. Furthermore, the superporous chitosan sponge outperforms commercial gauze, gelatin sponges, and chitosan powder by enhancing hemostatic efficiency, cell infiltration, vascular regeneration, and in-situ tissue regeneration in non-compressible organ injury models, respectively. We believe the proposed secondary network compaction strategy provides a simple yet effective method to fabricate superporous hemostatic sponges for diverse clinical applications.
Assuntos
Quitosana , Hemostasia , Hemostáticos , Permeabilidade , Animais , Porosidade , Quitosana/química , Hemostáticos/química , Hemostáticos/farmacologia , Suínos , Hemostasia/fisiologia , Hemorragia/terapia , MasculinoRESUMO
The clinical role and underlying mechanisms of valproic acid (VPA) on bone homeostasis remain controversial. Herein, we confirmed that VPA treatment was associated with decreased bone mass and bone mineral density (BMD) in both patients and mice. This effect was attributed to VPA-induced elevation in osteoclast formation and activity. Through RNA-sequencing, we observed a significant rise in precursor miR-6359 expression in VPA-treated osteoclast precursors in vitro, and further, a marked upregulation of mature miR-6359 (miR-6359) in vivo was demonstrated using quantitative real-time PCR (qRT-PCR) and miR-6359 fluorescent in situ hybridization (miR-6359-FISH). Specifically, the miR-6359 was predominantly increased in osteoclast precursors and macrophages but not in neutrophils, T lymphocytes, monocytes and bone marrow-derived mesenchymal stem cells (BMSCs) following VPA stimulation, which influenced osteoclast differentiation and bone-resorptive activity. Additionally, VPA-induced miR-6359 enrichment in osteoclast precursors enhanced reactive oxygen species (ROS) production by silencing the SIRT3 protein expression, followed by activation of the MAPK signaling pathway, which enhanced osteoclast formation and activity, thereby accelerating bone loss. Currently, there are no medications that can effectively treat VPA-induced bone loss. Therefore, we constructed engineered small extracellular vesicles (E-sEVs) targeting osteoclast precursors in bone and naturally carrying anti-miR-6359 by introducing of EXOmotif (CGGGAGC) in the 3'-end of the anti-miR-6359 sequence. We confirmed that the E-sEVs exhibited decent bone/osteoclast precursor targeting and exerted protective therapeutic effects on VPA-induced bone loss, but not on ovariectomy (OVX) and glucocorticoid-induced osteoporotic models, deepening our understanding of the underlying mechanism and treatment strategies for VPA-induced bone loss.
Assuntos
Vesículas Extracelulares , MicroRNAs , Feminino , Humanos , Animais , Camundongos , Ácido Valproico/farmacologia , Antagomirs , Hibridização in Situ Fluorescente , Vesículas Extracelulares/genética , MicroRNAs/genéticaRESUMO
It is imperative to develop and implement newer, more effective strategies to address refractory diabetic wounds. As of now, there is currently no optimal solution for these wounds. Hypoxic human umbilical vein endothelial cells (HUVECs)-derived exosomes have been postulated to promote diabetic wound healing, however, its effect and molecular mechanism need further study. In this study, we aimed to investigate whether hypoxic exosomes enhance wound healing in diabetics. Based on our high-throughput sequencing, differentially expressed lncRNAs (including 64 upregulated lncRNAs and 94 downregulated lncRNAs) were found in hypoxic exosomes compared to normoxic exosomes. Interestingly, lncHAR1B was one of the prominently upregulated lncRNAs in hypoxic exosomes, showing a notable correlation with diabetic wound healing. More specifically, hypoxic exosomes were transmitted to surrounding cells, which resulted in a significant increase in lncHAR1B level, thereby relieving the dysfunction of endothelial cells and promoting the switch from M1 to M2 macrophages under high glucose conditions. Mechanistically, lncHAR1B directly interacted with the transcription factor basic helix-loop-helix family member e23 (BHLHE23), which subsequently led to its binding to the KLF transcription factor 4 (KLF4) and promoted KLF4 expression. In our in vivo experiments, the use of hypoxic exosomes-loaded HGM-QCS hydrogels (Gel-H-Exos) resulted in rapid wound healing compared to that of normoxic exosomes-loaded HGM-QCS hydrogels (Gel-N-Exos) and diabetic groups. Consequently, our study provides potentially novel therapeutic approaches aimed at accelerating wound healing and developing a practical exosomes delivery platform.
RESUMO
Increasing data reveals that gelatin that has been methacrylated is involved in a variety of physiologic processes that are important for therapeutic interventions. Gelatin methacryloyl (GelMA) hydrogel is a highly attractive hydrogels-based bioink because of its good biocompatibility, low cost, and photo-cross-linking structure that is useful for cell survivability and cell monitoring. Methacrylated gelatin (GelMA) has established itself as a typical hydrogel composition with extensive biomedical applications. Recent advances in GelMA have focused on integrating them with bioactive and functional nanomaterials, with the goal of improving GelMA's physical, chemical, and biological properties. GelMA's ability to modify characteristics due to the synthesis technique also makes it a good choice for soft and hard tissues. GelMA has been established to become an independent or supplementary technology for musculoskeletal problems. Here, we systematically review mechanism-of-action, therapeutic uses, and challenges and future direction of GelMA in musculoskeletal disorders. We give an overview of GelMA nanocomposite for different applications in musculoskeletal disorders, such as osteoarthritis, intervertebral disc degeneration, bone regeneration, tendon disorders and so on.
Assuntos
Degeneração do Disco Intervertebral , Nanocompostos , Humanos , Gelatina/química , Hidrogéis/química , Engenharia Tecidual/métodosRESUMO
BACKGROUND: Postmenopausal bone loss, mainly caused by excessive bone resorption mediated by osteoclasts, has become a global public health burden. Metformin, a hypoglycemic drug, has been reported to have beneficial effects on maintaining bone health. However, the role and underlying mechanism of metformin in ovariectomized (OVX)-induced bone loss is still vague. RESULTS: In this study, we demonstrated for the first time that metformin administration alleviated bone loss in postmenopausal women and ovariectomized mice, based on reduced bone resorption markers, increased bone mineral density (BMD) and improvement of bone microstructure. Then, osteoclast precursors administered metformin in vitro and in vivo were collected to examine the differentiation potential and autophagical level. The mechanism was investigated by infection with lentivirus-mediated BNIP3 or E2F1 overexpression. We observed a dramatical inhibition of autophagosome synthesis and osteoclast formation and activity. Treatment with RAPA, an autophagy activator, abrogated the metformin-mediated autophagy downregulation and inhibition of osteoclastogenesis. Additionally, overexpression of E2F1 demonstrated that reduction of OVX-upregulated autophagy mediated by metformin was E2F1 dependent. Mechanistically, metformin-mediated downregulation of E2F1 in ovariectomized mice could downregulate BECN1 and BNIP3 levels, which subsequently perturbed the binding of BECN1 to BCL2. Furthermore, the disconnect between BECN1 and BCL2 was shown by BNIP3 overexpression. CONCLUSION: In summary, we demonstrated the effect and underlying mechanism of metformin on OVX-induced bone loss, which could be, at least in part, ascribed to its role in downregulating autophagy during osteoclastogenesis via E2F1-dependent BECN1 and BCL2 downregulation, suggesting that metformin or E2F1 inhibitor is a potential agent against postmenopausal bone loss. Video abstract.
Assuntos
Reabsorção Óssea , Metformina , Osteoporose Pós-Menopausa , Humanos , Camundongos , Feminino , Animais , Osteoclastos , Osteoporose Pós-Menopausa/metabolismo , Metformina/farmacologia , Reabsorção Óssea/tratamento farmacológico , Autofagia , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Diferenciação Celular , Ligante RANK/metabolismo , Fator de Transcrição E2F1/metabolismoRESUMO
Background: A coronal comminuted femoral intertrochanteric fracture is a special type of fracture that easily leads to internal fixation failure, and the current internal fixation techniques remain controversial. This study aims to evaluate the effect of traction-bed-assisted reduction and double-plate internal fixation in the treatment of comminuted and coronally split intertrochanteric femoral fracture. Method: Retrospective analyses of the clinical data of 83 patients diagnosed with, and treated for, comminuted and coronally split intertrochanteric femoral fracture from December 2017 to November 2019 were conducted. Among the total number of 83 patients, 40 patients received traction-bed-assisted reduction and PFNA fixation (the control group), whereas 43 patients received traction-bed-assisted reduction and double-plate internal fixation (the experimental group). The major indicators for the research analysis such as the general information of patients, perioperative data, and follow-up data of both groups were collected, sorted out, and meticulously analyzed. Results: The time taken for traction-bed-assisted reduction and double-plate intern fixation in the experimental group was significantly shorter than that in the control group (P < .05). The post-operative Harris Hip Score (HHS) at 3 months and at the final follow-up after the surgery was significantly better in the experimental group compared with that in the control group, both of which were statistically significant (P < .05). However, there were statistically no significant differences between the two groups in terms of preoperative hemoglobin (Hb) level, amount of intraoperative total blood loss, immediate post-operative Hb level, incidence of wound infection within 14 days post-operatively, time taken to step up on the ground after surgery, HHS 2 weeks after surgery, time taken for fracture healing, and the incidence of complications (P > .05). Conclusion: The use of a traction bed to achieve adequate reduction, followed by internal fixation using double plates, comparatively takes less time for both reduction and operation in the treatment of comminuted and coronally split intertrochanteric femoral fractures, which also restores proper hip joint movements relatively early and hence provides better hip joint functions in the long run.
RESUMO
MicroRNAs (miRNAs) broadly regulate normal biological functions of bone and the progression of fracture healing and osteoporosis. Recently, it has been reported that miR-1224-5p in fracture plasma is a potential therapy for osteogenesis. To investigate the roles of miR-1224-5p and the Rap1 signaling pathway in fracture healing and osteoporosis development and progression, we used BMMs, BMSCs, and skull osteoblast precursor cells for in vitro osteogenesis and osteoclastogenesis studies. Osteoblastogenesis and osteoclastogenesis were detected by ALP, ARS, and TRAP staining and bone slice resorption pit assays. The miR-1224-5p target gene was assessed by siRNA-mediated target gene knockdown and luciferase reporter assays. To explore the Rap1 pathway, we performed high-throughput sequencing, western blotting, RT-PCR, chromatin immunoprecipitation assays and immunohistochemical staining. In vivo, bone healing was judged by the cortical femoral defect, cranial bone defect and femoral fracture models. Progression of osteoporosis was evaluated by an ovariectomy model and an aged osteoporosis model. We discovered that the expression of miR-1224-5p was positively correlated with fracture healing progression. Moreover, in vitro, overexpression of miR-1224-5p slowed Rankl-induced osteoclast differentiation and promoted osteoblast differentiation via the Rap1-signaling pathway by targeting ADCY2. In addition, in vivo overexpression of miR-1224-5p significantly promoted fracture healing and ameliorated the progression of osteoporosis caused by estrogen deficiency or aging. Furthermore, knockdown of miRNA-1224-5p inhibited bone regeneration in mice and accelerated the progression of osteoporosis in elderly mice. Taken together, these results identify miR-1224-5p as a key bone osteogenic regulator, which may be a potential therapeutic target for osteoporosis and fracture nonunion.
Assuntos
Reabsorção Óssea , MicroRNAs , Osteoporose , Adenilil Ciclases , Animais , Reabsorção Óssea/metabolismo , Diferenciação Celular/genética , Feminino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese/genética , Osteoporose/genética , Transdução de Sinais , Proteínas rap1 de Ligação ao GTPRESUMO
Major traumatic tissue defects are common clinical problems often complicated by infection and local vascular dysfunction, processes which hinder the healing process. Although local application of growth factors or stem cells through various tissue engineering techniques are promising methods for the repair of tissue defects, limitations in their clinical application exist. Herein, we synthesized multifaceted nanohybrids composed of Quaternized chitosan (QCS), Graphene oxide (GO), and Polydopamine (PDA; QCS-GO-PDA). Covalent grafting of QCS and GO at a mass ratio of 5:1 (5QCS-1GO) displayed excellent biocompatibility and enhanced osteogenic ability, while addition of PDA (5QCS-1GO-PDA) reduced the level of reactive oxygen species (ROS). 5QCS-1GO-PDA was able to achieve wound tissue regeneration by reducing the inflammatory response and enhancing angiogenesis. Furthermore, Polylactic acid/hydroxyapatite (PLA/HA) composite scaffolds were printed using Selective Laser Sintering (SLS) and the hybrid nanomaterial (5QCS-1GO-PDA) was used to coat the PLA/HA scaffold (5QCS-1GO-PDA@PLA/HA) to be used for rapid bone regeneration. 5QCS-1GO-PDA not only improved angiogenesis and osteogenic differentiation, but also induced M2-type polarization of macrophages and promoted bone regeneration via the BMP2/BMPRs/Smads/Runx2 signaling pathway. The bidirectional enhanced healing ability of the multifaceted nanohybrids 5QCS-1GO-PDA provides a promising method of effectively treating tissue defects.
RESUMO
Fracture nonunion can result in considerable physical harm and limitation of quality of life in patients, exerting an extensive economic burden to the society. Nonunion largely results from unresolved inflammation and impaired osteogenesis. Despite advancements in surgical techniques, the indispensable treatment for nonunion is robust anti-inflammation therapy and the promotion of osteogenic differentiation. Herein, we report that plasma exosomes derived from infected fracture nonunion patients (Non-Exos) delayed fracture repair in mice by inhibiting the osteogenic differentiation of bone marrow stromal cells in vivo and in vitro. Unique molecular identifier microRNA-sequencing (UID miRNA-seq) suggested that microRNA-708-5p (miR-708-5p) was overexpressed in Non-Exos. Mechanistically, miR-708-5p targeted structure-specific recognition protein 1, thereby suppressing the Wnt/ß-catenin signaling pathway, which, in turn, impaired osteogenic differentiation. AntagomicroRNA-708-5p (antagomiR-708-5p) could partly reverse the above process. A bacteria-sensitive natural polymer hyaluronic-acid-based hydrogel (HA hydrogel) loaded with antagomiR-708-5p exhibited promising effects in an in vivo study through antibacterial and pro-osteogenic differentiation functions in infected fractures. Overall, the effectiveness and reliability of an injectable bacteria-sensitive hydrogel with sustained release of agents represent a promising approach for infected fractures.
Assuntos
Fraturas Ósseas , MicroRNAs , Animais , Antagomirs , Bactérias/metabolismo , Diferenciação Celular/genética , Preparações de Ação Retardada/farmacologia , Fraturas Ósseas/tratamento farmacológico , Humanos , Hidrogéis/farmacologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Qualidade de Vida , Reprodutibilidade dos TestesRESUMO
With the worldwide aging population, the prevalence of osteoporosis is on the rise, particularly the number of postmenopausal women with the condition. However, the various adverse side effects associated with the currently available treatment options underscore the need to develop novel therapies. In this study, we investigated the use of AQX-1125, a novel clinical-stage activator of inositol phosphatase-1 (SHIP1), in ovariectomized (OVX) mice, identifying a protective role. We then found that the effect was likely due to increased osteogenesis and mineralization and decreased osteoclastogenesis caused by AQX-1125 in a time- and dose-dependent manner. The effect against OVX-induced bone loss was identified to be SHIP1-dependent as pretreatment of BMSCs and BMMs with SHIP1 RNAi could greatly diminish the osteoprotective effects. Furthermore, SHIP1 RNAi administration in vivo induced significant bone loss and decreased bone mass. Mechanistically, AQX-1125 upregulated the expression level and activity of SHIP1, followed upregulating the phosphorylation levels of PI3K and Akt to promote osteoblast-related gene expressions, including Alp, cbfa1, Col1a1, and osteocalcin (OCN). NF-κB signaling was also inhibited through suppression of the phosphorylation of IκBα and P65 induced by RANKL, resulting in diminished osteoclastogenesis. Taken together, our results demonstrate that AQX-1125 may be a promising candidate for preventing and treating bone loss.
RESUMO
A moderate inflammatory response at the early stages of fracture healing is necessary for callus formation. Over-active and continuous inflammation, however, impairs fracture healing and leads to excessive tissue damage. Adequate fracture healing could be promoted through suppression of local over-active immune cells in the fracture site. In the present study, we achieved an enriched concentration of PD-L1 from exosomes (Exos) of a genetically engineered Human Umbilical Vein Endothelial Cell (HUVECs), and demonstrated that exosomes overexpressing PD-L1 specifically bind to PD-1 on the T cell surface, suppressing the activation of T cells. Furthermore, exosomal PD-L1 induced Mesenchymal Stem Cells (MSCs) towards osteogenic differentiation when pre-cultured with T cells. Moreover, embedding of Exos into an injectable hydrogel allowed Exos delivery to the surrounding microenvironment in a time-released manner. Additionally, exosomal PD-L1, embedded in a hydrogel, markedly promoted callus formation and fracture healing in a murine model at the early over-active inflammation phase. Importantly, our results suggested that activation of T cells in the peripheral lymphatic tissues was inhibited after local administration of PD-L1-enriched Exos to the fracture sites, while T cells in distant immune organs such as the spleen were not affected. In summary, this study provides the first example of using PD-L1-enriched Exos for bone fracture repair, and highlights the potential of Hydrogel@Exos systems for bone fracture therapy through immune inhibitory effects.
RESUMO
Diabetic wounds remain a great challenge for clinicians due to the multiple bacterial infections and oxidative damage. Exosomes, as an appealing nanodrug delivery system, have been widely applied in the treatment of diabetic wounds. Endovascular cells are important component cells of the vascular wall. Herein, we investigated the effects of HUCMSCs and HUC-Exos (exosomes secreted by HUCMSCs) on diabetic wound healing. In this study, HUVECs were coincubated with HUCMSCs, and HUC-Exos were utilized for in vitro and in vivo experiments to verify their roles in the regulation of diabetic wound healing. Our results demonstrated that HUCMSCs have the ability to regulate oxidative stress injuries of endothelial cells through exosomes and accelerate diabetic cutaneous wound healing in vitro. The present study suggests that HUC-Exos accelerate diabetic cutaneous wound healing, providing a promising therapeutic strategy for chronic diabetic wound repair.
RESUMO
The osteoblast/osteoclast and M1/M2 macrophage ratios play critical roles in delayed fracture healing. Robust osteoblast differentiation and M2 macrophage polarization can substantiality promote fracture repair; however, the combined effect of these strategies has not been previously studied. In this study, we constructed a cocktail therapy to simultaneously regulate the osteoblast/osteoclast and M1/M2 macrophage balance. The cocktail therapy composed of a natural polymer hyaluronic-acid-based hydrogel (HA hydrogel, which has a tissue-adhesive, injectable, self-healing, anti-inflammation profile), engineered endothelial cell-derived exosomes (EC-ExosmiR-26a-5p), and APY29, an IRE-1α inhibitor. This allowed for specific delivery of EC-ExosmiR-26a-5p and APY29 for osteoblast/osteoclast and macrophage regulation, respectively. The results suggested that the cocktail therapy exerted pro-fracture repair effects with each of its components established as indispensable. The assessed cocktail therapy provides insight into synergistic strategies and is useful for developing more suitable pro-fracture repair therapy.
Assuntos
Exossomos , MicroRNAs , Osteoclastos , Hidrogéis/farmacologia , OsteoblastosRESUMO
The treatment of diabetic wounds remains a major challenge in clinical practice, with chronic wounds characterized by multiple drug-resistant bacterial infections, angiopathy, and oxidative damage to the microenvironment. Herein, a novel in situ injectable HA@MnO2 /FGF-2/Exos hydrogel is introduced for improving diabetic wound healing. Through a simple local injection, this hydrogel is able to form a protective barrier covering the wound, providing rapid hemostasis and long-term antibacterial protection. The MnO2 /ε-PL nanosheet is able to catalyze the excess H2 O2 produced in the wound, converting it to O2 , thus not only eliminating the harmful effects of H2 O2 but also providing O2 for wound healing. Moreover, the release of M2-derived Exosomes (M2 Exos) and FGF-2 growth factor stimulates angiogenesis and epithelization, respectively. These in vivo and in vitro results demonstrate accelerated healing of diabetic wounds with the use of the HA@MnO2 /FGF-2/Exos hydrogel, presenting a viable strategy for chronic diabetic wound repair.
Assuntos
Diabetes Mellitus , Exossomos , Exossomos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Hidrogéis , Compostos de Manganês , Estresse Oxidativo , Óxidos , CicatrizaçãoRESUMO
The immune system and skeletal system are closely linked. Macrophages are one of the most important immune cells for bone remodeling, playing a prohealing role mainly through M2 phenotype polarization. Baicalein (5,6,7-trihydroxyflavone, BCL) has been well documented to have a noticeable promotion effect on M2 macrophage polarization. However, due to the limitations in targeted delivery to macrophages and the toxic effect on other organs, BCL has rarely been used in the treatment of bone fractures. In this study, we developed mesoporous silica and Fe3O4 composite-targeted nanoparticles loaded with BCL (BCL@MMSNPs-SS-CD-NW), which could be magnetically delivered to the fracture site. This induced macrophage recruitment in a targeted manner, polarizing them toward the M2 phenotype, which was demonstrated to induce mesenchymal stem cells (MSCs) toward osteoblastic differentiation. The mesoporous silicon nanoparticles (MSNs) were prepared with surface sulfhydrylation and amination modification, and the mesoporous channels were blocked with ß-cyclodextrin. The outer layer of the mesoporous silicon was added with an amantane-modified NW-targeting peptide to obtain the targeted nanosystem. After entering macrophages, BCL could be released from nanoparticles since the disulfide linker could be cleaved by intracellular glutathione (GSH), resulting in the removal of cyclodextrin (CD) gatekeeper, which is a key element in the pro-bone-remodeling functions such as anti-inflammation and induction of M2 macrophage polarization to facilitate osteogenic differentiation. This nanosystem passively accumulated in the fracture site, promoting osteogenic differentiation activities, highlighting a potent therapeutic benefit with high biosafety.
Assuntos
Materiais Biomiméticos/farmacologia , Consolidação da Fratura/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Animais , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Células Cultivadas , Consolidação da Fratura/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Teste de Materiais , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/imunologiaRESUMO
Purpose: Polydatin (POL) is a natural active compound found in Polygonum multiflorum with reported anti-oxidant and antiviral effects. With the aging population there has been a stark increase in the prevalence of osteoporosis (OP), rendering it an imposing public health issue. The potential effect of POL as a therapy for OP remains unclear. Therefore, we sought to investigate the therapeutic effect of POL in OP and to elucidate the underlying signaling mechanisms in its regulatory process. Methods: The POL-targeted genes interaction network was constructed using the Search Tool for Interacting Chemicals (STITCH) database, and the shared Kyoto Encyclopedia of Genes and Genomes (KEGG). Pathways involved in OP and POL-targeted genes were identified. Quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were performed to evaluate the osteogenic genes and the phosphorylation level in pre-osteoblastic cells. In addition, ALP and alizarin red staining was used to test the effect of POL on extracellular matrix mineralization. Results: Twenty-seven KEGG pathways shared between POL-related genes and OP were identified. MAPK signaling was identified as a potential key mechanism. In vitro results highlighted a definitive anti-OP effect of POL. The phosphorylation levels of MAPK signaling, including p38α, ERK1/2, and JNK, were significantly decreased in this regulatory process. Conclusion: Our results suggest that POL has a promising therapeutic effect in OP. MAPK signaling may be the underlying mechanism in this effect, providing a novel sight in discovering new drugs for OP.
RESUMO
Ulcers are a lower-extremity complication of diabetes with high recurrence rates. Oxidative stress has been identified as a key factor in impaired diabetic wound healing. Hyperglycemia induces an accumulation of intracellular reactive oxygen species (ROS) and advanced glycation end products, activation of intracellular metabolic pathways, such as the polyol pathway, and PKC signaling leading to suppression of antioxidant enzymes and compounds. Excessive and uncontrolled oxidative stress impairs the function of cells involved in the wound healing process, resulting in chronic non-healing wounds. Given the central role of oxidative stress in the pathology of diabetic ulcers, we performed a comprehensive review on the mechanism of oxidative stress in diabetic wound healing, focusing on the progress of antioxidant therapeutics. We summarize the antioxidant therapies proposed in the past 5 years for use in diabetic wound healing, including Nrf2- and NFκB-pathway-related antioxidant therapy, vitamins, enzymes, hormones, medicinal plants, and biological materials.