Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
J Bacteriol ; 206(9): e0011624, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39140751

RESUMO

Don't Panic. In the nearly 50 years since the discovery of Lyme disease, Borrelia burgdorferi has emerged as an unlikely workhorse of microbiology. Interest in studying host-pathogen interactions fueled significant progress in making the fastidious microbe approachable in laboratory settings, including the development of culture methods, animal models, and genetic tools. By developing these systems, insight has been gained into how the microbe is able to survive its enzootic cycle and cause human disease. Here, we discuss the discovery of B. burgdorferi and its development as a model organism before diving into the critical lessons we have learned about B. burgdorferi biology at pivotal stages of its lifecycle: gene expression changes during the tick blood meal, colonization of a new vertebrate host, and developing a long-lasting infection in that vertebrate until a new tick feeds. Our goal is to highlight the advancements that have facilitated B. burgdorferi research and identify gaps in our current understanding of the microbe.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Borrelia burgdorferi/genética , Borrelia burgdorferi/fisiologia , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Animais , Humanos , Interações Hospedeiro-Patógeno , Carrapatos/microbiologia
2.
Appl Environ Microbiol ; 90(7): e0082224, 2024 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-38899883

RESUMO

Borrelia burgdorferi, a Lyme disease spirochete, causes a range of acute and chronic maladies in humans. However, a primary vertebrate reservoir in the United States, the white-footed deermouse Peromyscus leucopus, is reported not to have reduced fitness following infection. Although laboratory strains of Mus musculus mice have successfully been leveraged to model acute human Lyme disease, the ability of these rodents to model B. burgdorferi-P. leucopus interactions remains understudied. Here, we compared infection of P. leucopus with B. burgdorferi B31 with infection of the traditional B. burgdorferi murine models-C57BL/6J and C3H/HeN Mus musculus, which develop signs of inflammation akin to human disease. We find that B. burgdorferi was able to reach much higher burdens (10- to 30-times higher) in multiple M. musculus skin sites and that the overall dynamics of infection differed between the two rodent species. We also found that P. leucopus remained transmissive to larval Ixodes scapularis for a far shorter period than either M. musculus strain. In line with these observations, we found that P. leucopus does launch a modest but sustained inflammatory response against B. burgdorferi in the skin, which we hypothesize leads to reduced bacterial viability and rodent-to-tick transmission in these hosts. Similarly, we also observe evidence of inflammation in infected P. leucopus hearts. These observations provide new insight into reservoir species and the B. burgdorferi enzootic cycle.IMPORTANCEA Lyme disease-causing bacteria, Borrelia burgdorferi, must alternate between infecting a vertebrate host-usually rodents or birds-and ticks. In order to be successful in that endeavor, the bacteria must avoid being killed by the vertebrate host before it can infect a new larval tick. In this work, we examine how B. burgdorferi and one of its primary vertebrate reservoirs, Peromyscus leucopus, interact during an experimental infection. We find that B. burgdorferi appears to colonize its natural host less successfully than conventional laboratory mouse models, which aligns with a sustained seemingly anti-bacterial response by P. leucopus against the microbe. These data enhance our understanding of P. leucopus host-pathogen interactions and could potentially serve as a foundation to uncover ways to disrupt the spread of B. burgdorferi in nature.


Assuntos
Borrelia burgdorferi , Reservatórios de Doenças , Doença de Lyme , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Peromyscus , Animais , Peromyscus/microbiologia , Camundongos , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Doença de Lyme/veterinária , Borrelia burgdorferi/fisiologia , Borrelia burgdorferi/genética , Reservatórios de Doenças/microbiologia , Modelos Animais de Doenças , Ixodes/microbiologia
3.
bioRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746284

RESUMO

Ixodes scapularis ticks are an important vector for at least six tick-borne human pathogens, including the predominant North American Lyme disease spirochete Borrelia burgdorferi . The ability for these ticks to survive in nature is credited, in part, to their ability to feed on a variety of hosts without excessive activation of the proinflammatory branch of the vertebrate immune system. While the ability for nymphal ticks to feed on a variety of hosts has been well-documented, the host-parasite interactions between larval I. scapularis and different vertebrate hosts is relatively unexplored. Here we report on the changes in the vertebrate transcriptome present at the larval tick bite site using the natural I. scapularis host Peromyscus leucopus deermouse, a non-natural rodent host Mus musculus (BALB/c), and humans. We note substantially less evidence of activation of canonical proinflammatory pathways in P. leucopus compared to BALB/c mice and pronounced evidence of inflammation in humans. Pathway enrichment analyses revealed a particularly strong signature of interferon gamma, tumor necrosis factor, and interleukin 1 signaling at the BALB/c and human tick bite site. We also note that bite sites on BALB/c mice and humans, but not deermice, show activation of wound-healing pathways. These data provide molecular evidence of the coevolution between larval I. scapularis and P. leucopus as well as expand our overall understanding of I. scapularis feeding. Significance: Ixodes scapularis tick bites expose humans to numerous diseases in North America. While larval tick feeding enables pathogens to enter the tick population and eventually spread to humans, how larval ticks interact with mammals has been understudied compared to other tick stages. Here we examined the transcriptomic response of a natural I. scapularis rodent host ( Peromyscus leucopus ), a non-native I. scapularis rodent host ( Mus musculus ), and an incidental host (humans). We find that there are differences in how all three species respond to larval I. scapularis , with the natural host producing the smallest transcriptomic signature of a canonical proinflammatory immune response and the incidental human host producing the most robust signature of inflammation in response to the larval tick. These data expand our understanding of the pressures on ticks in the wild and inform our ability to model these interactions in laboratory settings.

4.
PLoS Pathog ; 19(12): e1011886, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38157387

RESUMO

Borrelia burgdorferi (Bb), the causative agent of Lyme disease, establishes a long-term infection and leads to disease manifestations that are the result of host immune responses to the pathogen. Inflammatory manifestations resolve spontaneously despite continued bacterial presence, suggesting inflammatory cells become less responsive over time. This is mimicked by in vitro repeated stimulations, resulting in tolerance, a phenotypic subset of innate immune memory. We performed comparative transcriptional analysis of macrophages in acute and memory states and identified sets of Tolerized, Hyper-Induced, Secondary-Induced and Hyper-Suppressed genes resulting from memory induction, revealing previously unexplored networks of genes affected by cellular re-programming. Tolerized gene families included inflammatory mediators and interferon related genes as would be predicted by the attenuation of inflammation over time. To better understand how cells mediate inflammatory hypo-responsiveness, we focused on genes that could mediate maintenance of suppression, such as Hyper-Induced genes which are up-regulated in memory states. These genes were notably enriched in stress pathways regulated by anti-inflammatory modulators. We examined one of the most highly expressed negative regulators of immune pathways during primary stimulation, Aconitate decarboxylase 1 (Acod1), and tested its effects during in vivo infection with Bb. As predicted by our in vitro model, we show its inflammation-suppressive downstream effects are sustained during in vivo long-term infection with Bb, with a specific role in Lyme carditis.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Humanos , Inflamação , Doença de Lyme/microbiologia , Macrófagos , Anti-Inflamatórios
5.
iScience ; 26(11): 108217, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37953958

RESUMO

Lyme disease is caused by the bacterial pathogen Borrelia burgdorferi, which can be readily modeled in laboratory mice. In order to understand the cellular and transcriptional changes that occur during B. burgdorferi infection, we conducted single-cell RNA sequencing (scRNA-seq) of ankle joints of infected C57BL/6 mice over time. We found that macrophages/monocytes, T cells, synoviocytes and fibroblasts all showed significant differences in gene expression of both inflammatory and non-inflammatory genes that peaked early and returned to baseline before the typical resolution of arthritis. Predictions of cellular interactions showed that macrophages appear to communicate extensively between different clusters of macrophages as well as with fibroblasts and synoviocytes. Our data give unique insights into the interactions between B. burgdorferi and the murine immune system over time and allow for a better understanding of mechanisms by which the dysregulation of the immune response may lead to prolonged symptoms in some patients.

6.
mSystems ; 8(6): e0083523, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37855615

RESUMO

IMPORTANCE: Lyme disease is often treated using long courses of antibiotics, which can cause side effects for patients and risks the evolution of antimicrobial resistance. Narrow-spectrum antimicrobials would reduce these risks, but their development has been slow because the Lyme disease bacterium, Borrelia burgdorferi, is difficult to work with in the laboratory. To accelerate the drug discovery pipeline, we developed a computational model of B. burgdorferi's metabolism and used it to predict essential enzymatic reactions whose inhibition prevented growth in silico. These predictions were validated using small-molecule enzyme inhibitors, several of which were shown to have specific activity against B. burgdorferi. Although the specific compounds used are not suitable for clinical use, we aim to use them as lead compounds to develop optimized drugs targeting the pathways discovered here.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Humanos , Doença de Lyme/tratamento farmacológico , Antibacterianos/farmacologia , Descoberta de Drogas
7.
Microbiology (Reading) ; 169(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748545

RESUMO

Borrelia burgdorferi is a pathogenic bacterium and the causative agent of Lyme disease. It is exposed to reactive oxygen species (ROS) in both the vertebrate and tick hosts. While some mechanisms by which B. burgdorferi ameliorates the effects of ROS exposure have been studied, there are likely other unknown mechanisms of ROS neutralization that contribute to virulence. Here, we follow up on a three gene cluster of unknown function, bb_0554, bb_0555, and bb_0556, that our prior unbiased transposon insertional sequencing studies implicated in both ROS survival and survival in Ixodes scapularis. We confirmed these findings through genetic knockout and provide evidence that these genes are co-transcribed as an operon to produce a xanthine dehydrogenase. In agreement with these results, we found that B. burgdorferi exposure to either uric acid (a product of xanthine dehydrogenase) or allopurinol (an inhibitor of xanthine dehydrogenase) could modulate sensitivity to ROS in a bb_0554-bb_0556 dependent manner. Together, this study identifies a previously uncharacterized three gene operon in B. burgdorferi as encoding a putative xanthine dehydrogenase critical for virulence. We propose renaming this locus xdhACB.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Animais , Camundongos , Borrelia burgdorferi/genética , Xantina Desidrogenase/genética , Espécies Reativas de Oxigênio , Doença de Lyme/microbiologia , Ixodes/microbiologia
8.
Traffic ; 23(12): 558-567, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224049

RESUMO

Intracellular compartmentalization of ligands, receptors and signaling molecules has been recognized as an important regulator of inflammation. The toll-like receptor (TLR) 2 pathway utilizes the trafficking molecule adaptor protein 3 (AP-3) to activate interleukin (IL)-6 signaling from within phagosomal compartments. To better understand the vesicular pathways that may contribute to intracellular signaling and cooperate with AP-3, we performed a vesicular siRNA screen. We identified Rab8 and Rab11 GTPases as important in IL-6 induction upon stimulation with the TLR2 ligand Pam3 CSK4 or the pathogen, Borrelia burgdorferi (Bb), the causative agent of Lyme disease. These Rabs were recruited to late and lysosomal stage phagosomes and co-transported with TLR2 signaling adaptors and effectors, such as MyD88, TRAM and TAK1, in an AP-3-dependent manner. Our data support a model where AP-3 mediates the recruitment of recycling and secretory vesicles and the assembly of signaling complexes at the phagosome.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Borrelia burgdorferi/metabolismo , Ligantes , Doença de Lyme/genética , Doença de Lyme/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fagossomos/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Proteínas rab de Ligação ao GTP , Animais , Camundongos
9.
PLoS Pathog ; 18(10): e1010903, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36265003

RESUMO

The Lyme disease bacterial pathogen, Borrelia burgdorferi, establishes a long-term infection inside its mammalian hosts. Despite the continued presence of the bacteria in animal models of disease, inflammation is transitory and resolves spontaneously. T cells with limited effector functions and the inability to become activated by antigen, termed exhausted T cells, are present in many long-term infections. These exhausted T cells mediate a balance between pathogen clearance and preventing tissue damage resulting from excess inflammation. Exhausted T cells express a variety of immunoinhibitory molecules, including the molecule PD-1. Following B. burgdorferi infection, we found that PD-1 and its ligand PD-L1 are significantly upregulated on CD4+ T cells and antigen presenting cell subsets, respectively. Using mice deficient in PD-1, we found that the PD-1/PD-L1 pathway did not impact bacterial clearance but did impact T cell expansion and accumulation in the ankle joint and popliteal lymph nodes without affecting B cell populations or antibody production, suggesting that the PD-1/PD-L1 pathway may play a role in shaping the T cell populations present in affected tissues.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Camundongos , Animais , Receptor de Morte Celular Programada 1 , Antígeno B7-H1 , Doença de Lyme/microbiologia , Linfócitos T CD4-Positivos , Inflamação , Mamíferos
10.
J Clin Invest ; 132(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35289310

RESUMO

A close association with its vertebrate and tick hosts allows Borrelia burgdorferi, the bacterium responsible for Lyme disease, to eliminate many metabolic pathways and instead scavenge key nutrients from the host. A lipid-defined culture medium was developed to demonstrate that exogenous lipids are an essential nutrient of B. burgdorferi, which can accumulate intact phospholipids from its environment to support growth. Antibody responses to host phospholipids were studied in mice and humans using an antiphospholipid ELISA. Several of these environmentally acquired phospholipids including phosphatidylserine and phosphatidic acid, as well as borrelial phosphatidylcholine, are the targets of antibodies that arose early in infection in the mouse model. Patients with acute infections demonstrated antibody responses to the same lipids. The elevation of antiphospholipid antibodies predicted early infection with better sensitivity than did the standardized 2-tier tests currently used in diagnosis. Sera obtained from patients with Lyme disease before and after antibiotic therapy showed declining antiphospholipid titers after treatment. Further study will be required to determine whether these antibodies have utility in early diagnosis of Lyme disease, tracking of the response to therapy, and diagnosis of reinfection, areas in which current standardized tests are inadequate.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Animais , Anticorpos Antifosfolipídeos/metabolismo , Anticorpos Antibacterianos , Ensaio de Imunoadsorção Enzimática , Humanos , Camundongos , Fosfolipídeos/metabolismo
11.
J Infect Dis ; 225(6): 1113, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34623448
12.
Cell ; 184(21): 5405-5418.e16, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34619078

RESUMO

Lyme disease is on the rise. Caused by a spirochete Borreliella burgdorferi, it affects an estimated 500,000 people in the United States alone. The antibiotics currently used to treat Lyme disease are broad spectrum, damage the microbiome, and select for resistance in non-target bacteria. We therefore sought to identify a compound acting selectively against B. burgdorferi. A screen of soil micro-organisms revealed a compound highly selective against spirochetes, including B. burgdorferi. Unexpectedly, this compound was determined to be hygromycin A, a known antimicrobial produced by Streptomyces hygroscopicus. Hygromycin A targets the ribosomes and is taken up by B. burgdorferi, explaining its selectivity. Hygromycin A cleared the B. burgdorferi infection in mice, including animals that ingested the compound in a bait, and was less disruptive to the fecal microbiome than clinically relevant antibiotics. This selective antibiotic holds the promise of providing a better therapeutic for Lyme disease and eradicating it in the environment.


Assuntos
Antibacterianos/uso terapêutico , Doença de Lyme/tratamento farmacológico , Animais , Borrelia burgdorferi/efeitos dos fármacos , Calibragem , Cinamatos/química , Cinamatos/farmacologia , Cinamatos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Fezes/microbiologia , Feminino , Células HEK293 , Células Hep G2 , Humanos , Higromicina B/análogos & derivados , Higromicina B/química , Higromicina B/farmacologia , Higromicina B/uso terapêutico , Doença de Lyme/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Microbiota/efeitos dos fármacos
13.
Sci Rep ; 11(1): 12384, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117323

RESUMO

Inadequate sensitivity has been the primary limitation for implementing high-throughput sequencing for studies of tick-borne agents. Here we describe the development of TBDCapSeq, a sequencing assay that uses hybridization capture probes that cover the complete genomes of the eleven most common tick-borne agents found in the United States. The probes are used for solution-based capture and enrichment of pathogen nucleic acid followed by high-throughput sequencing. We evaluated the performance of TBDCapSeq to surveil samples that included human whole blood, mouse tissues, and field-collected ticks. For Borrelia burgdorferi and Babesia microti, the sensitivity of TBDCapSeq was comparable and occasionally exceeded the performance of agent-specific quantitative PCR and resulted in 25 to > 10,000-fold increase in pathogen reads when compared to standard unbiased sequencing. TBDCapSeq also enabled genome analyses directly within vertebrate and tick hosts. The implementation of TBDCapSeq could have major impact in studies of tick-borne pathogens by improving detection and facilitating genomic research that was previously unachievable with standard sequencing approaches.


Assuntos
Babesia microti/genética , Babesiose/microbiologia , Borrelia burgdorferi/genética , Técnicas de Genotipagem/métodos , Doença de Lyme/microbiologia , Técnicas de Diagnóstico Molecular/métodos , Análise de Sequência de DNA/métodos , Animais , Babesia microti/patogenicidade , Babesiose/diagnóstico , Borrelia burgdorferi/patogenicidade , Genoma Bacteriano , Técnicas de Genotipagem/normas , Humanos , Doença de Lyme/diagnóstico , Camundongos , Técnicas de Diagnóstico Molecular/normas , Sensibilidade e Especificidade , Análise de Sequência de DNA/normas , Carrapatos/microbiologia
14.
J Clin Invest ; 131(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33914704

RESUMO

Disrupting transmission of Borrelia burgdorferi sensu lato complex (B. burgdorferi) from infected ticks to humans is one strategy to prevent the significant morbidity from Lyme disease. We have previously shown that an anti-OspA human mAb, 2217, prevents transmission of B. burgdorferi from infected ticks in animal models. Maintenance of a protective plasma concentration of a human mAb for tick season presents a significant challenge for a preexposure prophylaxis strategy. Here, we describe the optimization of mAb 2217 by amino acid substitutions (2217LS: M428L and N434S) in the Fc domain. The LS mutation led to a 2-fold increase in half-life in cynomolgus monkeys. In a rhesus macaque model, 2217LS protected animals from tick transmission of spirochetes at a dose of 3 mg/kg. Crystallographic analysis of Fab in complex with OspA revealed that 2217 bound an epitope that was highly conserved among the B. burgdorferi, B. garinii, and B. afzelii species. Unlike most vaccines that may require boosters to achieve protection, our work supports the development of 2217LS as an effective preexposure prophylaxis in Lyme-endemic regions, with a single dose at the beginning of tick season offering immediate protection that remains for the duration of exposure risk.


Assuntos
Anticorpos Antibacterianos , Anticorpos Monoclonais/farmacologia , Borrelia burgdorferi , Doença de Lyme , Substituição de Aminoácidos , Animais , Anticorpos Antibacterianos/genética , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/farmacologia , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Antígenos de Superfície/genética , Antígenos de Superfície/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Borrelia burgdorferi/genética , Borrelia burgdorferi/imunologia , Modelos Animais de Doenças , Humanos , Lipoproteínas/genética , Lipoproteínas/imunologia , Doença de Lyme/tratamento farmacológico , Doença de Lyme/genética , Doença de Lyme/imunologia , Doença de Lyme/transmissão , Macaca fascicularis , Macaca mulatta , Masculino , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Carrapatos/imunologia , Carrapatos/microbiologia
15.
Parasite Immunol ; 43(5): e12816, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33368329

RESUMO

The bacterial pathogen Borrelia burgdorferi is the causative agent of Lyme disease and is transmitted to humans through an Ixodes tick vector. B. burgdorferi is able to survive in both mammalian and tick hosts through careful modulation of its gene expression. This allows B. burgdorferi to adapt to the environmental and nutritional changes that occur when it is transmitted between the two hosts. Distinct interactions between the spirochete and its host occur at every step of the enzootic cycle and dictate the ability of the spirochete to survive until the next stage of the cycle. Studying the interface between B. burgdorferi, the Ixodes tick vector and the natural mammalian reservoirs has been made significantly more feasible through the complete genome sequences of the organisms and the advent of high throughput screening technologies. Ultimately, a thorough investigation of the interplay between the two domains (and two phyla within one domain) is necessary in order to completely understand how the pathogen is transmitted.


Assuntos
Vetores Aracnídeos/microbiologia , Borrelia burgdorferi/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Ixodes/microbiologia , Doença de Lyme/microbiologia , Mamíferos/microbiologia , Animais , Vetores Aracnídeos/imunologia , Borrelia burgdorferi/genética , Expressão Gênica , Humanos , Ixodes/imunologia , Doença de Lyme/epidemiologia , Doença de Lyme/transmissão , Mamíferos/sangue , Mamíferos/parasitologia , Microbiota , Ninfa/microbiologia , Glândulas Salivares/microbiologia
16.
Curr Issues Mol Biol ; 42: 473-518, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33353871

RESUMO

Lyme disease Borrelia are obligately parasitic, tick- transmitted, invasive, persistent bacterial pathogens that cause disease in humans and non-reservoir vertebrates primarily through the induction of inflammation. During transmission from the infected tick, the bacteria undergo significant changes in gene expression, resulting in adaptation to the mammalian environment. The organisms multiply and spread locally and induce inflammatory responses that, in humans, result in clinical signs and symptoms. Borrelia virulence involves a multiplicity of mechanisms for dissemination and colonization of multiple tissues and evasion of host immune responses. Most of the tissue damage, which is seen in non-reservoir hosts, appears to result from host inflammatory reactions, despite the low numbers of bacteria in affected sites. This host response to the Lyme disease Borrelia can cause neurologic, cardiovascular, arthritic, and dermatologic manifestations during the disseminated and persistent stages of infection. The mechanisms by which a paucity of organisms (in comparison to many other infectious diseases) can cause varied and in some cases profound inflammation and symptoms remains mysterious but are the subjects of diverse ongoing investigations. In this review, we provide an overview of virulence mechanisms and determinants for which roles have been demonstrated in vivo, primarily in mouse models of infection.


Assuntos
Borrelia , Suscetibilidade a Doenças , Doença de Lyme/microbiologia , Animais , Vetores Artrópodes/microbiologia , Borrelia/genética , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Doença de Lyme/transmissão , Carrapatos/microbiologia , Virulência , Fatores de Virulência/genética
17.
J Infect Dis ; 224(2): 345-350, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33216133

RESUMO

Unrecognized immunodeficiency has been proposed as a possible cause of failure of antibiotics to resolve symptoms of Lyme disease. Here, we examined the efficacy of doxycycline in different immunodeficient mice to identify defects that impair antibiotic treatment outcomes. We found that doxycycline had significantly lower efficacy in the absence of adaptive immunity, specifically B cells. This effect was most pronounced in immunodeficient C3H mice compared with C57BL/6 mice, suggesting a role for genetic background beyond immunodeficiency. Addition of a single dose of ceftriaxone to doxycycline treatment effectively cleared infection in C3H mice with severe combined immunodeficiency.


Assuntos
Antibacterianos , Patrimônio Genético , Síndromes de Imunodeficiência , Doença de Lyme , Animais , Antibacterianos/uso terapêutico , Borrelia burgdorferi , Doxiciclina , Síndromes de Imunodeficiência/genética , Doença de Lyme/tratamento farmacológico , Doença de Lyme/genética , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL
19.
J Immunol ; 205(12): 3383-3389, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33168577

RESUMO

Borrelia burgdorferi, the causative agent of Lyme disease, is transmitted by the bite of an infected tick. Once inoculated into the host dermis, it disseminates to various organs including distant skin sites, the heart, the joint and the nervous system. Most humans will develop an early skin manifestation called erythema migrans at the tick bite site. This can be followed by symptoms such as carditis, neuritis, meningitis, or arthritis if not treated. A specific mouse strain, C3H/HeN develops arthritis with B. burgdorferi infection whereas another strain, C57BL/6, develops minimal to no arthritis. Neither strain of mice show any skin signs of rash or inflammation. Factors that determine the presence of skin inflammation and the joint arthritis susceptibility in the host are only partially characterized. We show in this study that murine fibroblast-like synoviocytes display trained immunity, a program in some cells that results in increased inflammatory responses if the cell has previously come in contact with a stimulus, and that trained immunity in fibroblast-like synoviocytes tested ex vivo correlates with Lyme arthritis susceptibility. Conversely, skin fibroblasts do not exhibit trained immunity, which correlates with the absence of skin symptoms in these mice. Moreover, we demonstrate that the trained phenotype in FLS is affected by the cell environment, which depends on the host genetic background. Future studies expanding this initial report of the role of trained immunity on symptoms of B. burgdorferi infection may provide insight into the pathogenesis of disease in murine models.


Assuntos
Artrite/imunologia , Borrelia burgdorferi/imunologia , Imunidade Inata , Memória Imunológica , Doença de Lyme/imunologia , Sinoviócitos/imunologia , Animais , Artrite/genética , Artrite/patologia , Feminino , Inflamação/imunologia , Inflamação/patologia , Doença de Lyme/genética , Doença de Lyme/patologia , Camundongos , Camundongos Knockout , Sinoviócitos/patologia
20.
BMC Microbiol ; 20(1): 128, 2020 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448120

RESUMO

BACKGROUND: Pyruvate oxidase (Pox) is an important enzyme in bacterial metabolism for increasing ATP production and providing a fitness advantage via hydrogen peroxide production. However, few Pox enzymes have been characterized from bacterial species. The tetrameric non-hydrogen-peroxide producing Pox from E. coli is activated by phospholipids, which is important for its function in vivo. RESULTS: We characterized the hydrogenperoxide-producing Pox from L. delbrueckii strain STYM1 and showed it is specifically activated by phosphotidylethanolamine (16:0-18:1), but not by phosphotidylcholine or phosphotidylglycerol. This activation is a mixture of K- and V-type activation as both km and enzyme turnover are altered. Furthermore, we demonstrated that the L. delbrueckii Pox forms pentamers and either decamers or dimers of pentamers in solution, which is different from other characterized Pox enzymes. Lastly, we generated a C-terminal truncation mutant that was only weakly activated by phosphotidylethanolamine, which suggests the C-terminus is important for lipid activation. CONCLUSIONS: To our knowledge this is the first known hydrogenperoxide-producing Pox enzyme that is activated by phospholipids. Our results suggest that there are substantial differences between Pox enzymes from different bacterial species, which could be important for their role in biological systems as well as in the development of Pox-based biosensors.


Assuntos
Lactobacillus delbrueckii/enzimologia , Fosfatidiletanolaminas/metabolismo , Piruvato Oxidase/genética , Piruvato Oxidase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ativação Enzimática , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Lactobacillus delbrueckii/genética , Mutação , Multimerização Proteica , Piruvato Oxidase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA