RESUMO
METHODS: The aetiological composition and clinical characteristics of patients with pulmonary hypertension (PH) hospitalised in the respiratory department were retrospectively analysed, as well as the correlation between transthoracic echocardiography (TTE) and right heart catheterization (RHC) for evaluating pulmonary artery systolic pressure (PASP) and mean pulmonary artery pressure (mPAP). RESULTS: Of 731 patients, 544 (74.42%) were diagnosed with PH by RHC. Pulmonary arterial hypertension (PAH) was the most common type of PH, accounting for 30.10%; PH due to lung disease and/or hypoxia accounted for 20.79%, and PH due to pulmonary artery obstructions accounted for 19.29%. TTE has the highest specificity for diagnosing PH due to pulmonary artery obstructions. The specificity was 0.9375, the sensitivity was 0.7361 and the area under the ROC curve (AUC) was 0.836. PASP, and mPAP estimated by TTE were different for various types of PH. In terms of PASP, TTE overestimated PASP in PH due to lung disease and/or hypoxia, but there was no significant difference compared with RHC (P > 0.05). TTE underestimates PAH patients' PASP compared with RHC. In terms of mPAP, TTE underestimated the mPAP of all types of PH, as there was a significant difference in the TTE-estimated mPAP of patients with PAH compared with RHC but not on other types of PH. Pearson correlation analysis of TTE and RHC showed a moderate overall correlation (rPASP 0.598, P < 0.001; rmPAP 0.588, P < 0.001). CONCLUSIONS: Among the patients with PH in the respiratory department, patients with PAH accounted for the majority. TTE has high sensitivity and specificity for the diagnosis of PH due to pulmonary artery obstructions in the respiratory department.
Assuntos
Hipertensão Pulmonar , Pneumopatias , Hipertensão Arterial Pulmonar , Humanos , Hipertensão Pulmonar/diagnóstico por imagem , Hipertensão Pulmonar/epidemiologia , Estudos Retrospectivos , Ecocardiografia , Artéria Pulmonar/diagnóstico por imagem , Pneumopatias/complicações , Hipertensão Pulmonar Primária Familiar/complicações , Cateterismo Cardíaco/efeitos adversosRESUMO
To analyze the spatial-temporal distribution and sedimentation characteristics of suspended solids in reservoirs, high-frequency monitoring of a sediment trap and buoy, combined with three-dimensional water sampling, was conducted and analyzed in Xin'anjiang Reservoir for a year. The results showed that the turbidity data of the buoy has significant correlation with rainfall, inflow, and suspended solids (SS), particularly for SS (P<0.01, R2=0.86). There is an obvious spatial difference in SS between spring and summer, when the rainfall season occurs (river area > transition area > lake area). However, there is little difference in SS concentration between autumn and winter. There is a spatial trend of river area > transition area > lake area (with rates of 27.82, 4.34, and 0.26 g·(m2·d)-1, respectively), and a temporal trend of spring and summer > autumn and winter. The sedimentation flux of the whole lake is 2.57×106 t·a-1 combined with the investigation of the four-season SS at 60 points across the whole lake, and the settlement flux in spring and summer is higher than that in autumn and winter. The contents of particulate nitrogen (PN) in JK, XJS, and DB were 6812, 15886, and 21986 mg·kg-1, and the particulate phosphorus (PP) contents were 2545, 3269, and 3077 mg·kg-1, respectively. Statistical analysis shows that there is a good exponential relationship between moderate rainfall and turbidity growth rate in the river area of the reservoir (R2=0.81). Moreover, the continuous heavy rainfall affects turbidity in river area, but has little effect on the transition area. The concentration of SS has a good exponential decay with distance from the river to the dam (R2=0.84), especially in spring and summer. Research shows that the average annual deposition rate in Xin'anjiang Reservoir is 0.07%, lower than other large reservoirs in the country; however, there are certain risks in front of the dam because the nutrient sediments are high. The results suggest that reservoir managers should pay attention to water and soil conservation in the watershed to reduce the impact of rainfall on reservoir water quality. Meanwhile, the potential nutrient internal release risk in the downstream area before the dam should be considered.
RESUMO
In order to recognize the risk of odorous compounds and its driving mechanisms in water source reservoirs, the water quality, plankton, and odorous compounds of 17 provincial water source reservoirs in Jiangsu Province were investigated during a high-risk period of odorous compounds. A high eutrophication status, such as high algal biomass and low transparency, were widely observed in our study reservoirs. In addition, 2-methylisoborneol (MIB) exceeded the standard in some water layers of one-third of the reservoirs, of which the average concentration was (13.7±20.7) ng·L-1. Geosmin (GSM) was also detected in several reservoirs, although the maximum concentration of 4.6 ng·L-1 did not exceed the drinking water quality standard. With respect to the relationships between odorous compounds and environmental conditions, significant correlation (P<0.05) was noted between the MIB concentration and eutrophication indicators, including chlorophyll-a, Secchi depth, suspended solids, and comprehensive nutrition state index (TLI), particularly for chlorophyll-a and TLI (P<0.01). These results indicate that the risk of odorous compounds in water source reservoirs depend largely on the eutrophic status. Therefore, nutrient reduction, improvement in vegetation coverage of the reservoir basin, reasonable fishing practices are considered as effective strategies to avoid the risk of the odorous compounds in reservoirs.
RESUMO
Twelve lakes and reservoirs with different water depths and different water residence times were studied to identify the applicability of bioavailable phosphorus of sediments in indicating trophic levels. Water and sediment samples were collected in these 12 lakes and reservoirs to analyze the relationship of nutrient levels between the sediment and the water column. Sodium hydroxide extracted phosphorus (NaOH-P) determined using the SMT classification method is defined as the bioavailable phosphorus of sediment. The results showed that total phosphorus levels in sediments in different lakes and reservoirs ranged from 225 to 760 mg·kg-1 (mean value 502 mg·kg-1); the NaOH-P levels in sediments ranged from 86 to 584 mg·kg-1 (mean value 263 mg·kg-1); the total phosphorus concentrations in the water was 0.02-0.35 mg·L-1 (mean value 0.11 mg·L-1), and the chlorophyll a concentrations in the water were 3-349 µg·L-1 (mean value 51 µg·L-1). It was found that NaOH-P was more effective than total phosphorus in indicating the trophic status of the lakes and reservoirs. However, the NaOH-P levels were significantly related to the phosphorus concentrations in the water column only in shallow water with a long residence time. It was revealed that water residence time and water depth are two key factors that affect the relationship of the phosphorus content between the sediment and the water column. In deep waters or waters with short residence time, the NaOH-P content in the sediment hardly influenced the phosphorus concentration in the water columns, even at high levels. However, in shallow waters with long residence time, the sediment acted as both sources and sinks and frequently exchanged nutrients with the overlying water, especially during bloom periods in summer. Thus NaOH-P could be a potential risk of eutrophication in such waters.
Assuntos
Eutrofização , Lagos , Fósforo , Poluentes Químicos da Água , China , Clorofila A , Monitoramento Ambiental , Sedimentos GeológicosRESUMO
Using electroacupuncture and moxibustion to treat peripheral nerve injury is highly efficient with low side effects. However, the electroacupuncture- and moxibustion-based mechanisms underlying nerve repair are still unclear. Here, in vivo and in vitro experiments uncovered one mechanism through which electroacupuncture and moxibustion affect regeneration after peripheral nerve injury. We first established rat models of sciatic nerve injury using neurotomy. Rats were treated with electroacupuncture or moxibustion at acupoints Huantiao (GB30) and Zusanli (ST36). Each treatment lasted 15 minutes, and treatments were given six times a week for 4 consecutive weeks. Behavioral testing was used to determine the sciatic functional index. We used electrophysiological detection to measure sciatic nerve conduction velocity and performed hematoxylin-eosin staining to determine any changes in the gastrocnemius muscle. We used immunohistochemistry to observe changes in the expression of S100-a specific marker for Schwann cells-and an enzyme-linked immunosorbent assay to detect serum level of nerve growth factor. Results showed that compared with the model-only group, sciatic functional index, recovery rate of conduction velocity, diameter recovery of the gastrocnemius muscle fibers, number of S100-immunoreactive cells, and level of nerve growth factor were greater in the electroacupuncture and moxibustion groups. The efficacy did not differ between treatment groups. The serum from treated rats was collected and used to stimulate Schwann cells cultured in vitro. Results showed that the viability of Schwann cells was much higher in the treatment groups than in the model group at 3 and 5 days after treatment. These findings indicate that electroacupuncture and moxibustion promoted nerve regeneration and functional recovery; its mechanism might be associated with the enhancement of Schwann cell proliferation and upregulation of nerve growth factor.
RESUMO
Analysis of the indicator synthesis was studied by catalytic spectrophotometry, and the reducing decolorization that the copper(II) catalyzed the ration between ascorbic acid and 3-methyl-4-amino-4'-nitro azobenzol was discussed. Reaction condition was optimized and a highly selective determination of trace copper(II) was established. The detection limit was 0.048 microgram.L-1 for copper (II). The method has been used for determining trace copper(II) in human hair and aluminum alloy samples with satisfactory results.