Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Sensors (Basel) ; 24(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38544212

RESUMO

With the development of the mobile network communication industry, 5G has been widely used in the consumer market, and the application of 5G technology for indoor positioning has emerged. Like most indoor positioning techniques, the propagation of 5G signals in indoor spaces is affected by noise, multipath propagation interference, installation errors, and other factors, leading to errors in 5G indoor positioning. This paper aims to address these issues by first constructing a 5G indoor positioning dataset and analyzing the characteristics of 5G positioning errors. Subsequently, we propose a 5G Positioning Error Correction Neural Network (5G-PECNN) based on neural networks. This network employs a multi-level fusion network structure designed to adapt to the error characteristics of 5G through adaptive gradient descent. Experimental validation demonstrates that the algorithm proposed in this paper achieves superior error correction within the error region, significantly outperforming traditional neural networks.

3.
Front Plant Sci ; 13: 956410, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991415

RESUMO

Salt stress is one of the major abiotic factors limiting the productivity of bermudagrass (Cynodon dactylon). However, the role of hormonal reprogramming and crosstalk in regulating root growth and salt tolerance in bermudagrass was not reported. Here, we examined the physiological and hormonal responses of two contrasting bermudagrass genotypes; 'C43,' salt-tolerant 'C198' salt-sensitive. Under salt stress, 'C43' had better membrane stability and higher photosynthetic activity than the 'C198.' Salt stress promoted root growth and improved root/shoot ratio and root activity in 'C43,' but the root growth of 'C198' was inhibited by salt stress, leading to diminished root activity. The two bermudagrass genotypes also showed critical differences in hormonal responses, especially in the roots. The root contents of indole-3-acetic acid (IAA), cytokinin derivatives, such as trans-zeatin riboside (tZR) and dihydrozeatin riboside (DHZR) were increased in 'C43,' but decreased in 'C198' when exposed to salt stress. The root growth rate was positively correlated with the root IAA, tZR and DHZR, indicating their crucial role in root growth under salt stress. The expressions of TAA/YUCCA and CYP735A involved in IAA and tZR biosynthesis were induced by salt stress in 'C43,' but inhibited in 'C198,' leading to reduced hormone accumulations. Salt stress decreased the iP, tZ, and DHZ content in the roots of both genotypes, and no significant difference was observed between the two genotypes. Salt stress reduced the content of GA3 in both genotypes by inhibiting GA20ox and GA2ox genes, which could be attributed to the reduced shoot growth in both genotypes. The increased ABA level by salt stress was significantly higher in 'C198' than 'C43.' Furthermore, there were positive and negative correlations between different hormones and root growth, suggesting that root growth could be regulated by complex hormonal reprogramming and crosstalk. This study provides a foundation for understanding the underlying mechanisms of hormonal-mediated root growth and salt tolerance in bermudagrass.

4.
PLoS One ; 16(10): e0259100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34699560

RESUMO

Excess copper (Cu) in soil due to industrial and agricultural practices can result in reduced plant growth. Excess Cu resulted in severely retarded root growth with severe discoloration of Alfalfa (Medicago sativa) and Medicago truncatula. Growth in the presence of hydrogen peroxide resulted in similar symptoms that could be partially recovered by the addition of the reductant ascorbic acid revealing damage was likely due to oxidative stress. The addition of proanthocyanidins (PAs) in the presence of Cu prevented much of the damage, including plant growth and restoration of lignin synthesis which was inhibited in the presence of excess Cu. Transcriptome analyses of the impact of excess Cu and the amelioration after PAs treatment revealed that changes were enriched in functions associated with the cell wall and extracellular processes, indicating that inhibition of cell wall synthesis was likely the reason for retarded growth. Excess Cu appeared to induce a strong defense response, along with alterations in the expression of a number of genes encoding transcription factors, notably related to ethylene signaling. The addition of PAs greatly reduced this response, and also induced novel genes that likely help ameliorate the effects of excess Cu. These included induction of genes involved in the last step of ascorbic acid biosynthesis and of enzymes involved in cell wall synthesis. Combined, these results show that excess Cu causes severe oxidative stress damage and inhibition of cell wall synthesis, which can be relieved by the addition of PAs.


Assuntos
Cobre/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Medicago sativa/genética , Estresse Oxidativo/efeitos dos fármacos , Proantocianidinas/farmacologia , Medicago sativa/efeitos dos fármacos , Medicago sativa/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Transcriptoma/efeitos dos fármacos
5.
Environ Res ; 200: 111730, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34293315

RESUMO

Phytoremediation has been increasingly used as a green technology for the remediation of heavy metal contaminated soils. Microorganisms could enhance phytoremediation efficiency by solubilizing heavy metal and improve plant growth by producing phytohormones in the heavy metal contaminated soils. In this study, we investigated the abundance and composition of soil microbial communities in heavy metal contaminated soils. Furthermore, we identified a Cd-resistant fungal strain Penicillium janthinellum ZZ-2 and assessed its potential in improving plant growth, Cd accumulation and Cd tolerance in bermudagrass. The results indicated that long-term heavy metal pollution decreased microbial biomass and activity by inhibiting microbial community diversity, but did not significantly affect community composition. Mainly, the relative abundance of some specific bacterial and fungal taxa, such as Actinobacteria, Chloroflexi, Bacteroidetes, Ascomycota and Basidiomycota, changes under metal pollution. Furthermore, at genus level, certain microbial taxa, such as Pseudonocardiaceae, AD3, Latescibacteria, Apiotrichum and Paraboeremia, only exist in polluted soil. One Cd-resistant fungus ZZ-2 was isolated and identified as Penicillium janthinellum. Further characterization revealed that ZZ-2 had a greater capacity for Cd2+ absorption, produced indole-3-acid (IAA), and facilitated plant growth in the presence of Cd. Interestingly, ZZ-2 inoculation significantly increased Cd uptake in the stem and root of bermudagrass. Thus, ZZ-2 could improve plant growth under Cd stress by reducing Cd-toxicity, increasing Cd uptake and producing IAA. This study suggests a novel fungus-assisted phytoremediation approach to alleviate Cd toxicity in heavy metals contaminated soils.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Cádmio/toxicidade , Cynodon , Metais Pesados/análise , Metais Pesados/toxicidade , Penicillium , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
6.
Bioresour Technol ; 315: 123772, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32653750

RESUMO

The objective was to evaluate effects of Lactobacillus plantarum and/or cellulase on fermentation, aerobic stability and bacterial community of mixed high-moisture amaranth (AF) and rice straw (RS) silage. The mixtures were treated with no addition (C), L. plantarum (L), cellulase (F) and their combination (LF). Additives increased the abundances of Lactobacillus and reduced the abundances of Weissella, Pediococcus, Lactococcus, decreased pH, acetic acid, ammonia nitrogen and increased lactic acid concentration as compared to C silage over the ensiling period. The LF silage had the highest lactic acid concentration among all silages over the 7 d of ensiling and also the lowest abundance of Enterobacteriaceae over 30 d of ensiling. Aerobic spoilage occurred in C and LF silages after 2 d of aerobic exposure, whereas the L and F silages remained stable > 4 d. In conclusion, silage treated with LF showed best silage quality.


Assuntos
Celulase , Lactobacillus plantarum , Oryza , Aerobiose , Fermentação , Silagem/análise , Zea mays
7.
Int J Mol Sci ; 20(6)2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30889856

RESUMO

Alfalfa (Medicago sativa) is the most widely grown and most important forage crop in the world. However, alfalfa is susceptible to waterlogging stress, which is the major constraint for its cultivation area and crop production. So far, the molecular mechanism of alfalfa response to the waterlogging is largely unknown. Here, comparative transcriptome combined with proteomic analyses of two cultivars (M12, tolerant; M25, sensitive) of alfalfa showing contrasting tolerance to waterlogging were performed to understand the mechanism of alfalfa in response to waterlogging stress. Totally, 748 (581 up- and 167 down-regulated) genes were differentially expressed in leaves of waterlogging-stressed alfalfa compared with the control (M12_W vs. M12_CK), whereas 1193 (740 up- and 453 down-regulated) differentially abundant transcripts (DATs) were detected in the leaves of waterlogging-stressed plants in comparison with the control plants (M25_W vs. M25_CK). Furthermore, a total of 187 (122 up- and 65 down-regulated) and 190 (105 up- and 85 down-regulated) differentially abundant proteins (DAPs) were identified via isobaric tags for relative and absolute quantification (iTRAQ) method in M12_W vs. M12_CK and M25_W vs. M25_CK comparison, respectively. Compared dataset analysis of proteomics and transcriptomics revealed that 27 and eight genes displayed jointly up-regulated or down-regulated expression profiles at both mRNA and protein levels in M12_W vs. M12_CK comparison, whereas 30 and 27 genes were found to be co-up-regulated or co-down-regulated in M25_W vs. M25_CK comparison, respectively. The strongly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for co-up-regulated genes at mRNA and protein levels in M12_W vs. M12_CK comparison were 'Amino sugar and nucleotide sugar metabolism', 'Arginine and proline metabolism' and 'Starch and sucrose metabolism', whereas co-up-regulated protein-related pathways including 'Arginine and proline metabolism' and 'Valine, leucine and isoleucine degradation' were largely enriched in M25_W vs. M25_CK comparison. Importantly, the identified genes related to beta-amylase, Ethylene response Factor (ERF), Calcineurin B-like (CBL) interacting protein kinases (CIPKs), Glutathione peroxidase (GPX), and Glutathione-S-transferase (GST) may play key roles in conferring alfalfa tolerance to waterlogging stress. The present study may contribute to our understanding the molecular mechanism underlying the responses of alfalfa to waterlogging stress, and also provide important clues for further study and in-depth characterization of waterlogging-resistance breeding candidate genes in alfalfa.


Assuntos
Medicago sativa/genética , Medicago sativa/fisiologia , Proteoma/metabolismo , Proteômica/métodos , Estresse Fisiológico , Transcriptoma/genética , Água , Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Anotação de Sequência Molecular , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/genética
8.
Front Plant Sci ; 10: 44, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30774639

RESUMO

Melatonin (MT), polyamines (PAs), and ethylene have been suggested to play key roles in plant growth and development in response to environmental abiotic stresses. However, the effect of melatonin on polyamine and ethylene metabolism under waterlogging stress has rarely been elucidated. The main purpose of this study was to investigate the effect of melatonin pretreatment on waterlogging stress in alfalfa. The experiment was arranged into four treatment groups control with water pretreatment (CK-MT), control with melatonin pretreatment (CK+MT), waterlogging pretreated with water (WL-MT) and waterlogging pretreated with melatonin (WL+MT), with three replications. Six-week-old alfalfa seedlings were pretreated with 100 µM melatonin and exposed to waterlogging stress for 10 days. Plant growth rate, different physiological characteristics, and gene expression level were measured. Results showed that waterlogging induced melatonin accumulation, and melatonin pretreatment increased endogenous MT levels for the control and water-logged plants. Waterlogging stress caused a significant reduction in plant growth, chlorophyll content, photochemical efficiency (Fv/Fm) and net photosynthetic rate (Pn), while also causing increased leaf electrolyte leakage (EL) and malondialdehyde (MDA) content. Pretreatment with melatonin alleviated the waterlogging-induced damage and reduction in plant growth, chlorophyll content, Fv/Fm and Pn. Waterlogging stress significantly increased leaf polyamines (Put, Spd, Spm) and ethylene levels, and the increased PAs and ethylene levels are coupled with higher metabolic enzymes and gene expressions. While pretreatment with melatonin further increased Put, Spd and Spm levels, it also decreased ethylene levels under waterlogging, and those increased PAs levels or decreased ethylene levels are regulated by the metabolic enzymes and gene expressions. The results in this study provide more comprehensive insight into the physiological and molecular mechanisms of melatonin-improved waterlogging tolerance in alfalfa. Furthermore, they suggested that melatonin improved waterlogging tolerance in alfalfa at least partially by reprogramming ethylene and PA biosynthesis, attributable to the increased PAs and decreased ethylene levels, which leads to more enhanced membrane stability and photosynthesis as well as less leaf senescence caused by ethylene.

9.
PLoS One ; 13(6): e0198885, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29889884

RESUMO

Low temperature is one of the important limiting factors for growing season and geographical distribution of plants. Zoysiagrass (Zoysia Willd) is one of the widely used warm-season turfgrass that is distribute in many parts of the world. Zoysaigrass native to high latitude may have evolved higher cold tolerance than the ones native to low latitude. The objective of this study was to investigate the cold stress response in zoysiagrass native to diverse latitude at phenotypic, physiological and metabolic levels. Two zoysiagrass (Z. japonica) genotypes, Latitude-40 (higher latitude) and Latitude-22 (lower latitude) were subjected to four temperature treatments (optimum, 30/25°C, day/night; suboptimum, 18/12°C; chilling, 8/2°C; freezing, 2/-4°C) progressively in growth chambers. Low temperature (chilling and freezing) increased leaf electrolyte leakage (EL) and reduced plant growth, turf quality, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm) and photosynthesis (Pn, net photosynthetic rate; gs, stomatal conductance; intercellular CO2; Tr, transpiration rate) in two genotypes, with more rapid changes in Latitude-22. Leaf carbohydrates content (glucose, fructose, sucrose, trehalose, fructan, starch) increased with the decreasing of temperature, to a great extend in Latitude-40. Leaf abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) content increased, while indole-3-acetic acid (IAA), gibberellic acid (GA3) and trans-zeatin ribside (t-ZR) content decreased with the reduction of temperature, with higher content in Latitude-40 than in Latitude-22. Chilling and freezing induced the up-regulation of C-repeat binding factor (ZjCBF), late embryogenesis abundant (ZjLEA3) and dehydration-responsive element binding (ZjDREB1) transcription factors in two genotypes, whereas those genes exhibited higher expression levels in Latitude-40, particularly under freezing temperature. These results suggested that zoysiagrass native to higher latitude exhibited higher freezing tolerance may attribute to the higher carbohydrates serving as energy reserves and stress protectants that stabilize cellular membranes. The phytohormones may serve signals in regulating plant growth, development and adaptation to low temperature as well as inducing the up-regulated ZjCBF, ZjLEA3 and ZjDREB1 expressions thus result in a higher cold tolerance.


Assuntos
Reguladores de Crescimento de Plantas/metabolismo , Poaceae/metabolismo , Estresse Fisiológico , Ácido Abscísico/análise , Ácido Abscísico/metabolismo , Clorofila/metabolismo , Cromatografia Líquida de Alta Pressão , Temperatura Baixa , Ciclopentanos/análise , Ciclopentanos/metabolismo , Congelamento , Regulação da Expressão Gênica de Plantas , Genótipo , Ácidos Indolacéticos/análise , Ácidos Indolacéticos/metabolismo , Espectrometria de Massas , Monossacarídeos/análise , Oxilipinas/análise , Oxilipinas/metabolismo , Fotossíntese , Reguladores de Crescimento de Plantas/análise , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/genética , Poaceae/crescimento & desenvolvimento , Regulação para Cima
10.
Ecotoxicology ; 26(6): 841-854, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28536792

RESUMO

ERF (ethylene-responsive factor) transcription factors play important roles in plant stress signaling transduction pathways. However, their specific roles during diverse abiotic stresses tolerance in Gossypium hirsutum are largely unknown. Here, a novel ERF transcription factor, designated GhERF38, homologous to AtERF38 in Arabidopsis, was isolated from cotton (Gossypium hirsutum L). GhERF38 expression was up-regulated by salt, drought and ABA treatments. Subcellular localization results indicated that GhERF38 was localized in the cell nucleus. Over-expression of GhERF38 in Arabidopsis reduced plant tolerance to salt and drought stress as indicated by a decline of seed germination, plant greenness frequency, primary roots length and the survival rate in transgenic plants compared to those of wild type plants under salt or drought treatment. Besides, stress tolerance related physiological parameters such as proline content, relative water content, soluble sugar and chlorophyll content were all significantly lower in transgenic plants than those of wild type plants under salt or drought treatment. Furthermore, over-expression of GhERF38 in Arabidopsis resulted in ABA sensitivity in transgenic plants during both seed germination and seedling growth. Interestingly, the stomatal aperture of guard cells in the transgenic plants was larger than that in transgenic plant after ABA treatment, suggesting that GhERF38-overexpressing plants were insensitive to ABA in terms of stomatal closure. Furthermore, expressions of the stress-related genes were altered in the GhERF38 transgenic plants under high salinity, drought or ABA treatment. Together, our results revealed that GhERF38 functions as a novel regulator that is involved in response to salt/drought stress and ABA signaling during plant development.


Assuntos
Secas , Gossypium/genética , Plantas Geneticamente Modificadas/fisiologia , Estresse Fisiológico/genética , Arabidopsis/genética , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia , Estresse Fisiológico/fisiologia , Fatores de Transcrição
11.
Sci Rep ; 6: 36396, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27805022

RESUMO

Little is known about the interplay between Ca2+ and H2O2 signaling in stressed cool-season turfgrass. To understand better how Ca2+ and H2O2 signals are integrated to enhance grass acclimation to stress conditions, we analyzed the rearrangements of endogenous ion accumulation, antioxidant systems and secondary metabolism in roots, stems and leaves of perennial ryegrass (Lolium perenne L.) treated with exogenous Ca2+ and H2O2 under salinity. Ca2+ signaling remarkably enhanced the physiological response to salt conditions. Ca2+ signaling could maintain ROS homeostasis in stressed grass by increasing the responses of antioxidant genes, proteins and enzymes. H2O2 signaling could activate ROS homeostasis by inducing antioxidant genes but weakened Ca2+ signaling in leaves. Furthermore, the metabolic profiles revealed that sugars and sugar alcohol accounted for 49.5-88.2% of all metabolites accumulation in all treated leaves and roots. However, the accumulation of these sugars and sugar alcohols displayed opposing trends between Ca2+ and H2O2 application in salt-stressed plants, which suggests that these metabolites are the common regulatory factor for Ca2+ and H2O2 signals. These findings assist in understanding better the integrated network in Ca2+ and H2O2 of cool-season turfgrass' response to salinity.


Assuntos
Antioxidantes/metabolismo , Cálcio/metabolismo , Peróxido de Hidrogênio/metabolismo , Lolium/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Lolium/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Salinidade , Metabolismo Secundário , Estresse Fisiológico
12.
Front Plant Sci ; 7: 179, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26925085

RESUMO

Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress.

13.
BMC Plant Biol ; 15: 216, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26362029

RESUMO

BACKGROUND: Cold stress is regarded as a key factor limiting widespread use for bermudagrass (Cynodon dactylon). Therefore, to improve cold tolerance for bermudagrass, it is urgent to understand molecular mechanisms of bermudagrass response to cold stress. However, our knowledge about the molecular responses of this species to cold stress is largely unknown. The objective of this study was to characterize the transcriptomic response to low temperature in bermudagrass by using RNA-Seq platform. RESULTS: Ten cDNA libraries were generated from RNA samples of leaves from five different treatments in the cold-resistant (R) and the cold-sensitive (S) genotypes, including 4 °C cold acclimation (CA) for 24 h and 48 h, freezing (-5 °C) treatments for 4 h with or without prior CA, and controls. When subjected to cold acclimation, global gene expressions were initiated more quickly in the R genotype than those in the S genotype. The R genotype activated gene expression more effectively in response to freezing temperature after 48 h CA than the S genotype. The differentially expressed genes were identified as low temperature sensing and signaling-related genes, functional proteins and transcription factors, many of which were specifically or predominantly expressed in the R genotype under cold treatments, implying that these genes play important roles in the enhanced cold hardiness of bermudagrass. KEGG pathway enrichment analysis for DEGs revealed that photosynthesis, nitrogen metabolism and carbon fixation pathways play key roles in bermudagrass response to cold stress. CONCLUSIONS: The results of this study may contribute to our understanding the molecular mechanism underlying the responses of bermudagrass to cold stress, and also provide important clues for further study and in-depth characterization of cold-resistance breeding candidate genes in bermudagrass.


Assuntos
Temperatura Baixa , Cynodon/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Adaptação Fisiológica , Cynodon/genética , Genótipo , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Transcriptoma
14.
BMC Genomics ; 16: 575, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26238595

RESUMO

BACKGROUND: Soil salinity is one of the most significant abiotic stresses affecting plant shoots and roots growth. The adjustment of root architecture to spatio-temporal heterogeneity in salinity is particularly critical for plant growth and survival. Bermudagrass (Cynodon dactylon) is a widely used turf and forage perennial grass with a high degree of salinity tolerance. Salinity appears to stimulate the growth of roots and decrease their mortality in tolerant bermudagrass. To estimate a broad spectrum of genes related to root elongation affected by salt stress and the molecular mechanisms that control the positive response of root architecture to salinity, we analyzed the transcriptome of bermudagrass root tips in response to salinity. RESULTS: RNA-sequencing was performed in root tips of two bermudagrass genotypes contrasting in salt tolerance. A total of 237,850,130 high quality clean reads were generated and 250,359 transcripts were assembled with an average length of 1115 bp. Totally, 103,324 unigenes obtained with 53,765 unigenes (52 %) successfully annotated in databases. Bioinformatics analysis indicated that major transcription factor (TF) families linked to stress responses and growth regulation (MYB, bHLH, WRKY) were differentially expressed in root tips of bermudagrass under salinity. In addition, genes related to cell wall loosening and stiffening (xyloglucan endotransglucosylase/hydrolases, peroxidases) were identified. CONCLUSIONS: RNA-seq analysis identified candidate genes encoding TFs involved in the regulation of lignin synthesis, reactive oxygen species (ROS) homeostasis controlled by peroxidases, and the regulation of phytohormone signaling that promote cell wall loosening and therefore root growth under salinity.


Assuntos
Cynodon/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Tolerância ao Sal/genética , Transcriptoma , Parede Celular/genética , Parede Celular/metabolismo , Análise por Conglomerados , Biologia Computacional/métodos , Cynodon/metabolismo , Perfilação da Expressão Gênica , Anotação de Sequência Molecular , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Reprodutibilidade dos Testes , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Ecotoxicology ; 24(6): 1330-40, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26135319

RESUMO

Glycinebetaine (GB) is an important organic osmolyte that accumulates in many plant species in response to abiotic stresses including heavy metals. The objective of this study was to investigate whether exogenous GB would ameliorate the adverse effect of cadmium (Cd) stress on perennial ryegrass (Lolium perenne). Fifty-three days old seedlings were exposed to hydroponic culture for 7 days with six treatments: T1 (control), T2 (0 mM Cd + 20 mM GB), T3 (0 mM Cd + 50 mM GB), T4 (0.5 mM Cd + 0 mM GB), T5 (0.5 mM Cd + 20 mM GB), T6 (0.5 mM Cd + 50 mM GB). Cd stress resulted in a remarkable decrease in turf quality, vertical shoot growth rate (VSGR), normalized relative transpiration (NRT) and Chlorophyll (Chl) content; with significant increases in electric conductivity (EL), malondialdehyde (MDA) content, superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) activity, oxalic and tartaric acid content. Exogenous application of GB decreased EL and MDA content in Cd stressed plants, and increased turf quality, VSGR, NRT, Chl content, SOD, CAT, POD activity, oxalic, tartaric acid content, and the gene expression level of SOD and POD when compared with Cd stressed without GB. Perennial ryegrass with 20 mM GB application suppressed the Cd accumulation in both shoots and roots. A lower translocation factor of Cd was found in GB treated plants than non-GB treated plants, and the lowest translocation factor was observed in the 20 mM GB application. These results suggested that GB could alleviate the detrimental effect of Cd on perennial ryegrass and the amelioration was mainly related to the elevation in SOD, CAT, and POD at enzyme and gene expression levels, which reduced Cd content in shoots and improved cell membrane stability by reducing oxidation of membrane lipids. These findings lead us to conclude that application of GB with 20 mM is the best strategy to ameliorate the detrimental impacts of Cd stress on perennial ryegrass.


Assuntos
Betaína/farmacologia , Cádmio/toxicidade , Lolium/efeitos dos fármacos , Lolium/metabolismo , Poluentes do Solo/toxicidade , Relação Dose-Resposta a Droga , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo
16.
PLoS One ; 10(7): e0133054, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26186338

RESUMO

Tall fescue is widely used in temperate regions throughout the world as a dominant forage grass as well as a turfgrass, in pastoral and turf industry. However, the utilization of tall fescue was limited because of its leaf roughness, poor regeneration ability and poor stress resistance. New cultivars were desirable in modern pastoral industries exceed the potential of existing cultivars. Therefore, well understanding the agronomic traits and describing germplasms would help to overcome these constraints, and morphological evaluation of tall fescue germplasm is the key component in selecting rational parents for hybridization breeding. However, describing the morphological traits of tall fescue germplasm is costly and time-consuming. Fortunately, biotechnology approaches can supplement conventional breeding efforts for tall fescue improvement. Association mapping, as a powerful approach to identify association between agronomic traits and molecular markers has been widely used for enhancing the utilization, conservation and management of the tall fescue germplasms. Therefore, in the present research, 115 tall fescue accessions from different origins (25 accessions are cultivars; 31 accessions from America; 32 accessions from European; 7 accessions from Africa; 20 accessions from Asia), were evaluated for agronomic traits and genetic diversity with 90 simple sequence repeat (SSR) markers. The panel displayed significant variation in spike count per plant (SCP) and spike weight (SW). However, BCS performed the lowest CV among all the observed agronomic traits. Three subpopulations were identified within the collections but no obvious relative kinship (K) was found. The GLM model was used to describe the association between SSR and agronomic traits. Fifty-one SSR markers associated with agronomic traits were observed. Twelve single-associated markers were associated with PH; six single-associated markers were associated with BCS; eight single-associated markers were associated with SW; five single-associated markers were associated with SC; seven single-associated markers were associated with SCP; three single-associated markers were associated with SL. Especially, we observed that the genetic variation of SW was explained 11.6 % by M37 marker. It is interesting to observe that nine markers (M1, M2, M35, M54 marker was associated with both BCS and SC; M3, M4 markers were associated with BCS, SW, and SC; M19 marker was associated with both pH and PD, M40 marker was associated with both SCP and SW; and M193 marker was associated with both PH and SL) were associated with more than two agronomic traits. Notably, Branch count per spike (BCS) was explained by four markers (M1, M2, M3, and M4) exceeding 10 %. These identified marker alleles associated with agronomic traits could provide important information and markers for molecular-assisted breeding that facilitate the breeding process in tall fescue.


Assuntos
Festuca/genética , Repetições de Microssatélites , Característica Quantitativa Herdável , Alelos , Variação Genética , Genótipo , Fenótipo
17.
Physiol Plant ; 155(2): 166-179, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25418373

RESUMO

Salinity is one of the major environmental factors affecting plant growth and survival by modifying source and sink relationships at physiological and metabolic levels. Individual metabolite levels and/or ratios in sink and source tissues may reflect the complex interplay of metabolic activities in sink and source tissues at the whole-plant level. We used a non-targeted gas chromatography-mass spectrometry (GC-MS) approach to study sink and source tissue-specific metabolite levels and ratios from bermudagrass under salinity stress. Shoot growth rate decreased while root growth rate increased which lead to an increased root/shoot growth rate ratio under salt stress. A clear shift in soluble sugars (sucrose, glucose and fructose) and metabolites linked to nitrogen metabolism (glutamate, aspartate and asparagine) in favor of sink roots was observed, when compared with sink and source leaves. The higher shifts in soluble sugars and metabolites linked to nitrogen metabolism in favor of sink roots may contribute to the root sink strength maintenance that facilitated the recovery of the functional equilibrium between shoot and root, allowing the roots to increase competitive ability for below-ground resource capture. This trait could be considered in breeding programs for increasing salt tolerance, which would help maintain root functioning (i.e. water and nutrient absorption, Na+ exclusion) and adaptation to stress.

18.
PLoS One ; 9(12): e115279, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25545719

RESUMO

Metabolic responses to cadmium (Cd) may be associated with variations in Cd tolerance in plants. The objectives of this study were to examine changes in metabolic profiles in bermudagrass in response to Cd stress and to identify predominant metabolites associated with differential Cd tolerance using gas chromatography-mass spectrometry. Two genotypes of bermudagrass with contrasting Cd tolerance were exposed to 0 and 1.5 mM CdSO4 for 14 days in hydroponics. Physiological responses to Cd were evaluated by determining turf quality, growth rate, chlorophyll content and normalized relative transpiration. All these parameters exhibited higher tolerance in WB242 than in WB144. Cd treated WB144 transported more Cd to the shoot than in WB242. The metabolite analysis of leaf polar extracts revealed 39 Cd responsive metabolites in both genotypes, mainly consisting of amino acids, organic acids, sugars, fatty acids and others. A difference in the metabolic profiles was observed between the two bermudagrass genotypes exposed to Cd stress. Seven amino acids (norvaline, glycine, proline, serine, threonine, glutamic acid and gulonic acid), four organic acids (glyceric acid, oxoglutaric acid, citric acid and malic acid,) and three sugars (xylulose, galactose and talose) accumulated more in WB242 than WB144. However, compared to the control, WB144 accumulated higher quantities of sugars than WB242 in the Cd regime. The differential accumulation of these metabolites could be associated with the differential Cd tolerance in bermudagrass.


Assuntos
Cádmio/toxicidade , Cynodon/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Aminoácidos/metabolismo , Cynodon/genética , Cynodon/crescimento & desenvolvimento , Cynodon/metabolismo , Genótipo , Transpiração Vegetal/efeitos dos fármacos , Estresse Fisiológico
19.
Chemosphere ; 117: 786-92, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25461949

RESUMO

Phytoremediation utilizing plants and microbes has been increasingly adopted as a green technology for cleaning up heavy metal polluted soils. Cd polluted soil and native bermudagrass from Liuyang and Zhuzhou in Hunan province of China were collected to investigate microbial diversity and isolate Cd resistant fungi, and then to determine the effect of Cd resistant fungi on Cd tolerance and transportation of bermudagrass. The functional diversity of microorganisms was evaluated using the BIOLOG Eco method. Cd-resistant fungi strain was isolated and identified as Aspergillus aculeatus based on the ribosomal internal transcribed spacer region sequence analysis. Bermudagrass was exposed to control, Cd only, and Cd plus A. aculeatus (Cd + A. aculeatus) with growth matrix (sawdust/sand = 3/1 in volume). Results indicated that Cd + A. aculeatus treated bermudagrass exhibited a higher photosynthetic activity compared to Cd only treated plants. Inoculation of A. aculeatus resulted in a decrease in stem and leaf Cd concentrations, to a greater extent for Cd-sensitive than for Cd-tolerant genotype. However, inoculation of A. aculeatus increased root Cd concentration under Cd stress conditions, significantly elevated soil pH, and decreased soil water-soluble Cd concentration. These results suggested that A. aculeatus might be potentially applied to improve Cd tolerance and to reduce Cd transportation to shoot of bermudagrass.


Assuntos
Aspergillus/fisiologia , Cádmio/metabolismo , Cynodon/efeitos dos fármacos , Cynodon/microbiologia , Microbiologia do Solo , Poluentes do Solo/metabolismo , Aspergillus/efeitos dos fármacos , Aspergillus/genética , Cádmio/toxicidade , Cynodon/crescimento & desenvolvimento , Cynodon/metabolismo , DNA Fúngico/genética , DNA Intergênico/genética , Dados de Sequência Molecular , Fotossíntese , Reação em Cadeia da Polimerase , Distribuição Aleatória , Análise de Sequência de DNA , Poluentes do Solo/toxicidade
20.
PLoS One ; 9(6): e99385, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24914540

RESUMO

Grassland managements can affect carbon (C) and nitrogen (N) storage in grassland ecosystems with consequent feedbacks to climate change. We investigated the impacts of compound fertilization and clipping on grass biomass, plant and soil (0-20 cm depth) C, N storage, plant and soil C: N ratios, soil microbial activity and diversity, and C, N sequestration rates in grassland in situ in the National Dalaoling Forest Park of China beginning July, 2011. In July, 2012, the fertilization increased total biomass by 30.1%, plant C by 34.5%, plant N by 79.8%, soil C by 18.8% and soil N by 23.8% compared with the control, respectively. Whereas the clipping decreased total biomass, plant C and N, soil C and N by 24.9%, 30.3%, 39.3%, 18.5%, and 19.4%, respectively, when compared to the control. The plant C: N ratio was lower for the fertilization than for the control and the clipping treatments. The soil microbial activity and diversity indices were higher for the fertilization than for the control. The clipping generally exhibited a lower level of soil microbial activity and diversity compared to the control. The principal component analysis indicated that the soil microbial communities of the control, fertilization and clipping treatments formed three distinct groups. The plant C and N sequestration rates of the fertilization were significantly higher than the clipping treatment. Our results suggest that fertilization is an efficient management practice in improving the C and N storage of the grassland ecosystem via increasing the grass biomass and soil microbial activity and diversity.


Assuntos
Carbono/análise , Fertilizantes , Pradaria , Nitrogênio/análise , Microbiologia do Solo , Bactérias/crescimento & desenvolvimento , Biodiversidade , Biomassa , China , Cor , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA