Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
ACS Nano ; 18(26): 17175-17184, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38875126

RESUMO

High-performance tactile sensors with skin-sensing properties are crucial for intelligent perception in next-generation smart devices. However, previous studies have mainly focused on the sensitivity and response range of tactile sensation while neglecting the ability to recognize object softness. Therefore, achieving a precise perception of the softness remains a challenge. Here, we report an integrated tactile sensor consisting of a central hole gradient structure pressure sensor and a planar structure strain sensor. The recognition of softness and tactile perception is achieved through the synergistic effect of pressure sensors that sense the applied pressure and strain sensors that recognize the strain of the target object. The results indicate that the softness evaluation parameter (SC) of the integrated structural tactile sensor increases from 0.14 to 0.47 along with Young's modulus of the object decreasing from 2.74 to 0.45 MPa, demonstrating accurate softness recognition. It also exhibits a high sensitivity of 10.55 kPa-1 and an ultrawide linear range of 0-1000 kPa, showing an excellent tactile sensing capability. Further, an intelligent robotic hand system based on integrated structural tactile sensors was developed, which can identify the softness of soft foam and glass and grasp them accurately, indicating human skin-like sensing and grasping capabilities.


Assuntos
Robótica , Tato , Humanos , Robótica/instrumentação , Pele , Dispositivos Eletrônicos Vestíveis , Módulo de Elasticidade , Pressão
2.
Adv Mater ; : e2400248, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742698

RESUMO

Single-crystal metal foils with high-index facets are currently being investigated owing to their potential application in the epitaxial growth of high-quality van der Waals film materials, electrochemical catalysis, gas sensing, and other fields. However, the controllable synthesis of large single-crystal metal foils with high-index facets remains a great challenge because high-index facets with high surface energy are not preferentially formed thermodynamically and kinetically. Herein, single-crystal nickel foils with a series of high-index facets are efficiently prepared by applying prestrain energy engineering technique, with the largest single-crystal foil exceeding 5×8 cm2 in size. In terms of thermodynamics, the internal mechanism of prestrain regulation on the formation of high-index facets is proposed. Molecular dynamics simulation is utilized to replicate and explain the phenomenon of multiple crystallographic orientations resulting from prestrain regulation. Additionally, large-sized and high-quality graphite films are successfully fabricated on single-crystal Ni(012) foils. Compared to the polycrystalline nickel, the graphite/single-crystal Ni(012) foil composites show more than five-fold increase in thermal conductivity, thereby showing great potential applications in thermal management. This study hence presents a novel approach for the preparation of single-crystal nickel foils with high-index facets, which is beneficial for the epitaxial growth of certain two-dimensional materials.

3.
Nanotechnology ; 35(32)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38688246

RESUMO

The exploration and synthesis of novel materials are integral to scientific and technological progress. Since the prediction and synthesis of two-dimensional (2D) materials, it is expected to play an important role in the application of industrialization and the information age, resulting from its excellent physical and chemical properties. Currently, researchers have effectively utilized a range of material synthesis techniques, including mechanical exfoliation, redox reactions, chemical vapor deposition, and chemical vapor transport, to fabricate two-dimensional materials. However, despite their rapid development, the widespread industrial application of 2D materials faces challenges due to demanding synthesis requirements and high costs. To address these challenges, assisted growth techniques such as salt-assisted, gas-assisted, organic-assisted, and template-assisted growth have emerged as promising approaches. Herein, this study gives a summary of important developments in recent years in the assisted growth synthesis of 2D materials. Additionally, it highlights the current difficulties and possible benefits of the assisted-growth approach for 2D materials. It also highlights novel avenues of development and presents opportunities for new lines of investigation.

4.
Langmuir ; 40(13): 7139-7146, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38504400

RESUMO

Quest for ultrathin and highly effective anticorrosion coating films is critical for both fundamental community of materials science and industrial economics. A two-dimensional hexagonal boron nitride (h-BN) film is a newly developed effective anticorrosion material due to its superior impermeability, thermal stability, and chemical stability. However, research in growth and anticorrosion properties of large-area dense h-BN coating films still lies in its infancy. Here, we report on the synthesis of a large-area and continuous dense few-layer (∼4) h-BN coating film onto a metal surface by chemical vapor deposition (CVD) and its anticorrosion properties both in air and seawater environments. Cu coated in h-BN, which functions as an anticorrosive coating, exhibits an impressively reduced corrosion rate (CR) in a 3.5% NaCl solution (which mimics a seawater environment) when compared to bare Cu (approximately 27 times). At 200 °C, the h-BN coating can prevent Cu foil's surface from oxidizing, although doing so will cause a significant amount of oxide particles to simultaneously form on the bare Cu surface. In the meantime, the performance of the h-BN film remains unaltered after 100 days in an atmospheric environment, demonstrating the ultrahigh stability and corrosion resistance of the as-grown h-BN film.

5.
Oncol Lett ; 26(3): 387, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37559579

RESUMO

[This retracts the article DOI: 10.3892/ol.2020.11852.].

6.
Adv Sci (Weinh) ; 10(20): e2301341, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37196417

RESUMO

Multifunctional capability and low coupling electronic skin (e-skin) is of great significance in advanced robot systems interacting with the human body or the external environment directly. Herein, a multifunctional e-skin system via vertical integrated different sensing materials and structures is presented. The multifunctional e-skin has capacity sensing the proximity, pressure, temperature, and relative humidity simultaneously, with scope of 100-0 mm, 0-30 N, 20-120 °C and 20-70%, respectively. The sensitivity of the four kinds of sensors can be achieved to 0.72 mm-1 , 16.34 N-1 , 0.0032 °C-1 , and 15.2 pF/%RH, respectively. The cross-coupling errors are less than 1.96%, 1.08%, 2.65%, and 1.64%, respectively, after temperature compensation. To be state-of-the-art, a commercial robot is accurately controlled via the multifunctional e-skin system in the complicated environment. The following and safety controlling exhibit both accuracy and high dynamic features. To improve the sensing performance to the insulating objects, machine learning is employed to classify the conductivity during the object approaching, leading to set the threshold in dynamic. The accuracy for isolating the insulator increases from 18% to 88%. Looking forward, the multifunctional e-skin system has broader applications in human-machine collaboration and industrial safety production technology.


Assuntos
Robótica , Dispositivos Eletrônicos Vestíveis , Humanos , Pele , Eletrônica , Temperatura
7.
J Colloid Interface Sci ; 640: 610-618, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36878078

RESUMO

The multiple requirements of optical transmittance, high shielding effectiveness, and long-term stability bring considerable challenge to electromagnetic interference (EMI) shielding in the fields of visualization windows, transparent optoelectronic devices, and aerospace equipment. To this end, attempts were hereby made, and based on high-quality single crystal graphene (SCG)/hexagonal boron nitride (h-BN) heterostructure, transparent EMI shielding films with weak secondary reflection, nanoscale ultra-thin thickness and long-term stability were finally realized by a composite structure. In this novel structure, SCG was adopted as the absorption layer, while sliver nanowires (Ag NWs) film acted as the reflection layer. These two layers were placed on different sides of the quartz to form a cavity, which achieved the dual coupling effect, so that the electromagnetic wave was reflected multiple times to form more absorption loss. Among the absorption dominant shielding films, the composite structure in this work demonstrated stronger shielding effectiveness of 28.76 dB with a higher light transmittance of 80.6%. In addition, under the protection of the outermost h-BN layer, the decline range of the shielding performance of the shielding film was extensively reduced after 30 days of exposure to air and maintained long-term stability. Overall, this study provides an outstanding EMI shielding material with great potential for practical applications in electronic devices protection.

8.
Small Methods ; 7(1): e2200966, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36440646

RESUMO

Self-powered photodetectors have attracted widespread attention due to their low power consumption which can be driven by the built-in electric field instead of external power, but it is very difficult to achieve high responsivity and fast response speed concurrently. Here, a self-powered photodetector with light-induced electric field enhancement based on a 2D InSe/WSe2 /SnS2 van der Waals heterojunction is designed. The light-induced electric field derived from the photo-generated electrons of SnS2 accumulated at the SnS2 /WSe2 interface produces an additional negative gate voltage applied to the WSe2 layer, which enhances the built-in electric field in the InSe/WSe2 /SnS2 heterojunction. Accordingly, the photocurrent and photoresponse speed of the heterostructure device are largely improved. The self-powered photodetector based on the InSe/WSe2 /SnS2 heterostructure exhibits a high responsivity of 550 mA W-1 , which is a 50 times increase compared to the InSe/WSe2 photodetector, and the response speed (110/120 µs) is one order of magnitude faster than that of the InSe/WSe2 photodetector. The high responsivity and fast speed are caused by the stronger built-in electric field modulated by a light-induced electric field, which can separate carriers effectively and reduce drift times. This device architecture can provide a new avenue to fabricate high-responsivity, fast self-power photodetectors by utilizing the van der Waals heterojunction.

9.
ACS Appl Mater Interfaces ; 14(50): 55839-55849, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36511344

RESUMO

Near-infrared (NIR) synaptic devices integrate NIR optical sensitivity and synaptic plasticity, emulating the basic biomimetic function of the human visual system and showing great potential in NIR artificial vision systems. However, the lack of semiconductor materials with appropriate band gaps for NIR photodetection and effective strategies for fabricating devices with synaptic behaviors limit the further development of NIR synaptic devices. Here, a two-terminal NIR synaptic device consisting of the In2Se3/MoS2 heterojunction has been constructed, and it exhibits fundamental synaptic functions. The reduced band gap and potential barrier of In2Se3/MoS2 heterojunctions are essential for NIR synaptic plasticity. In addition, the NIR synaptic properties of In2Se3/MoS2 heterojunctions under strain have been studied systematically. The ΔEPSC of the In2Se3/MoS2 synaptic device can be improved from 38.4% under no strain to 49.0% under a 0.54% strain with a 1060 nm illumination for 1 s at 100 mV. Furthermore, the artificial NIR vision system consisting of a 10 × 10 In2Se3/MoS2 device array has been fabricated, exhibiting image sensing, learning, and storage functions under NIR illumination. This research provides new ideas for the design of flexible NIR synaptic devices based on 2D materials and presents many opportunities in artificial intelligence and NIR vision systems.


Assuntos
Inteligência Artificial , Molibdênio , Humanos , Biomimética , Aprendizagem , Sinapses
10.
ACS Nano ; 16(12): 21293-21302, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36468786

RESUMO

Two-dimensional (2D) materials have attracted great attention in the field of photodetection due to their excellent electronic and optoelectronic properties. However, the weak optical absorption caused by atomically thin layers and the short lifetime of photocarriers limit their optoelectronic performance, especially for weak light detection. In this work, we design a high-gain photodetector induced by carrier recirculation based on a vertical InSe/GaSe heterojunction. In this architecture, the photogenerated holes are trapped in GaSe due to the built-in electric field, suppressing the recombination rate of photocarriers, so the electrons can recirculate for multiple times in the InSe channel following the generation of a single electron-hole pair, resulting a high photoconductive gain (107). The responsivity and detectivity of the InSe/GaSe heterojunction can reach 1037 A/W and 8.6 × 1013 Jones, which are 1 order of magnitude higher than those of individual InSe. More importantly, the InSe/GaSe heterojunction can respond to weaker light (1 µW/cm2) compared to individual InSe (10 µW/cm2). Utilizing GaSe as the channel and InSe as the electrons trapped layer, the same experimental phenomenon is achieved. This work can provide an approach for designing a highly sensitive device utilizing a 2D van der Waals heterojunction, and it also possesses wide applicability for other materials.

11.
Mov Disord ; 37(9): 1807-1816, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36054272

RESUMO

BACKGROUND: The diagnostic criteria for Parkinson's disease (PD) remain complex, which is especially problematic for nonmovement disorder experts. A test is required to establish a diagnosis of PD with improved accuracy and reproducibility. OBJECTIVE: The study aimed to investigate the sensitivity and specificity of tests using sniffer dogs to diagnose PD. METHODS: A prospective, diagnostic case-control study was conducted in four tertiary medical centers in China to evaluate the accuracy of sniffer dogs to distinguish between 109 clinically established medicated patients with PD, 654 subjects without PD, 37 drug-naïve patients with PD, and 185 non-PD controls. The primary outcomes were sensitivity and specificity of sniffer dog's identification. RESULTS: In the study with patients who were medicated, when two or all three sniffer dogs yielded positive detection results in a sample tested, the index test sensitivity, specificity, and positive and negative likelihood ratios were 91% (95% CI: 84%-96%), 95% (95% CI: 93%-97%), and 19.16 (95% CI: 13.52-27.16) and 0.10 (95% CI: 0.05-0.17), respectively. The corresponding sensitivity, specificity, and positive and negative likelihood ratios in patients who were drug-naïve were 89% (95% CI: 75%-96%), 86% (95% CI: 81%-91%), and 6.6 (95% CI: 4.51-9.66) and 0.13 (95% CI: 0.05-0.32), respectively. CONCLUSIONS: Tests using sniffer dogs may be a useful, noninvasive, fast, and cost-effective method to identify patients with PD in community screening and health prevention checkups as well as in neurological practice. © 2022 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Animais , Estudos de Casos e Controles , Cães , Humanos , Doença de Parkinson/diagnóstico , Estudos Prospectivos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Cães Trabalhadores
12.
ACS Nano ; 16(5): 8440-8448, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35435675

RESUMO

Two-dimensional (2D) InSe is a good candidate for high-performance photodetectors due to its good light absorption and electrical transport properties. However, 2D InSe photodetectors usually endure a large driving voltage, and 2D InSe-based heterojunction photodetectors require complex fabrication processes. Here, we demonstrate high-performance self-powered InSe-based photoelectrochemical (PEC) photodetectors using electrochemical intercalated ultrathin InSe nanosheets. The ultrathin InSe nanosheets have good crystallinity with a uniform thickness of 1.4-2.1 nm, lateral size up to 18 µm, and yield of 82%. The self-powered InSe-based PEC photodetectors show broadband photoresponse ranging from 365 to 850 nm. The photoresponse of InSe-based PEC photodetectors is boosted by suppressing p-type doping of the intercalator with annealing, which improves the electrical properties and facilitates electron transport from InSe to the electrode. The self-powered annealed InSe (A-InSe) PEC photodetectors show a high responsivity of 10.14 mA/W and fast response speed of 2/37 ms. Moreover, the self-powered PEC photodetectors have good stability under UV-NIR irradiation. Furthermore, the photoresponse can be effectively tuned by the concentration and kind of electrolyte. The facile large-scale fabrication and good photoresponse demonstrate that 2D ultrathin InSe can be applied in high-performance optoelectronic devices.

13.
ACS Appl Mater Interfaces ; 14(14): 16453-16461, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35373556

RESUMO

Tuning the optical and electrical properties of two-dimensional (2D) hexagonal boron nitride (hBN) is critical for its successful application in optoelectronics. Herein, we report a new methodology to significantly enhance the optoelectronic properties of hBN monolayers by substitutionally doping with sulfur (S) on a molten Au substrate using chemical vapor deposition. The S atoms are more geometrically and energetically favorable to be doped in the N sites than in the B sites of hBN, and the S 3p orbitals hybridize with the B 2p orbitals, forming a new conduction band edge that narrows its band gap. The band edge positions change with the doping concentration of S atoms. The conductivity increases up to 1.5 times and enhances the optoelectronic properties, compared to pristine hBN. A photodetector made of a 2D S-doped hBN film shows an extended wavelength response from 260 to 280 nm and a 50 times increase in its photocurrent and responsivity with light illumination at 280 nm. These enhancements are mainly due to the improved light absorption and increased electrical conductivity through doping with sulfur. This S-doped hBN monolayer film can be used in the next-generation electronics, optoelectronics, and spintronics.

14.
Nanoscale ; 14(11): 4204-4215, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35234771

RESUMO

Two-dimensional (2D) integrated circuits based on graphene (Gr) heterostructures have emerged as next-generation electronic devices. However, it is still challenging to produce high-quality and large-area Gr/hexagonal boron nitride (h-BN) vertical heterostructures with clear interfaces and precise layer control. In this work, a two-step metallic alloy-assisted epitaxial growth approach has been demonstrated for producing wafer-scale vertical hexagonal boron nitride/graphene (h-BN/Gr) heterostructures with clear interfaces. The heterostructures maintain high uniformity while scaling up and thickening. The layer number of both h-BN and graphene can be independently controlled by tuning the growth process. Furthermore, conductance measurements confirm that electrical hysteresis disappears on h-BN/Gr field-effect transistors, which is attributed to the h-BN dielectric surface. Our work blazes a trail toward next-generation graphene-based analog devices.

15.
ACS Appl Mater Interfaces ; 14(5): 7175-7183, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35099924

RESUMO

Two-dimensional (2D) bismuth oxychalcogenide (Bi2O2X, X refers to S, Se, and Te) is one type of rising semiconductor with excellent electrical transport properties, high photoresponse, and good air stability. However, the research on 2D Bi2O2S is limited. In this work, ultrathin Bi2O2S nanosheets are synthesized by a facile and eco-friendly chemical synthesis method at room temperature. The thickness and lateral sizes are 2-4 nm and 20-40 nm, respectively. The 2D ultrathin Bi2O2S nanosheets have a broad absorption spectrum from ultraviolet (UV) to near-infrared (NIR). Photoelectrochemical (PEC) photodetectors based on 2D Bi2O2S nanosheets are fabricated by a simple drop-casting method. The 2D Bi2O2S-based PEC photodetectors show excellent photodetection performance with a broad photoresponse spectrum from 365 to 850 nm, a high responsivity of 13.0 mA/W, ultrafast response times of 10/45 ms, and good long-term stability at a bias voltage of 0.6 V, which are superior to most 2D material-based PEC photodetectors. Further, the 2D Bi2O2S PEC photodetector can function as a high-performance self-powered broadband photodetector. Moreover, the photoresponse performance can be effectively tuned by the concentration and the kind of electrolyte. Our results demonstrate that 2D Bi2O2S nanosheets hold great promise for application in high-performance optoelectronic devices.

16.
Nanotechnology ; 33(10)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34818634

RESUMO

The monolayer MoS2based photodetectors have been widely investigated, which show limited photoelectric performances due to its low light absorption and uncontrollable adsorbates. In this paper, we present a MoS2-based hybrid nanoscrolls device, in which one-dimensional nanoscrollsof MoS2is hybridized with carbon quantum dots (CQDs). This device architecture effectively enhanced the photodetection performance. The photoresponsivity and detectivity values of MoS2/CQDs-NS photodetectors are respectively 1793 A W-1and 5.97 × 1012Jones, which are 830-fold and 268-fold higher than those of pristine MoS2under 300 nm illumination atVds = 5 V. This research indicates a significant progress in fabricating high-performance MoS2photodetectors.

17.
Adv Mater ; 33(52): e2104960, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34655120

RESUMO

Biomimetic eyes, with their excellent imaging functions such as large fields of view and low aberrations, have shown great potentials in the fields of visual prostheses and robotics. However, high power consumption and difficulties in device integration severely restrict their rapid development. In this study, an artificial synaptic device consisting of a molybdenum disulfide (MoS2 ) film coated with an electron injection enhanced indium (In) layer is proposed to increase the channel conductivity and reduce the power consumption. This artificial synaptic device achieves an ultralow power consumption of 68.9 aJ per spike, which is several hundred times lower than those of the optical artificial synapses reported in literature. Furthermore, the multilayer and polycrystalline MoS2 film shows persistent photoconductivity performance, effectively resulting in short-term plasticity, long-term plasticity, and their transitions between each other. A 5 × 5 In/MoS2 synaptic device array is constructed into a hemispherical electronic retina, demonstrating its impressive image sensing and learning functions. This research provides a new methodology for effective control of artificial synaptic devices, which have great opportunities used in bionic retinas, robots, and visual prostheses.

18.
Small ; 17(45): e2104459, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34622561

RESUMO

With the rapid development of artificial intelligence and neural network computing, the requirement for information storage in computing is gradually increasing. Floating gate memories based on 2D materials has outstanding characteristics such as non-volatility, optical writing, and optical storage, suitable for application in photonic in-memory computing chips. Notably, the optoelectronic memory requires less optical writing energy, which means lower power consumption and greater storage levels. Here, the authors report an optoelectronic memory based on SnS2 /h-BN/graphene heterostructure with an extremely low photo-generated hole tunneling barrier of 0.23 eV. This non-volatile multibit floating gate memory shows a high switching ratio of 106 and a large memory window range of 64.8 V in the gate range ±40 V. And the memory device can achieve multilevel storage states of 50 under a low power light pulses of 0.32 nW and small light pulse width of 50 ms. Thanks to the Fowler-Nordheim tunneling of the photo-generated holes, the optical writing energy of the optoelectronic memory has been successfully reduced by one to three orders of magnitude compared to existing 2D materials-based systems.

19.
Small ; 17(17): e2007739, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33739614

RESUMO

2D organic crystals exhibit efficient charge transport and field-effect characteristics, making them promising candidates for high-performance nanoelectronics. However, the strong Fermi level pinning (FLP) effect and large Schottky barrier between organic semiconductors and metals largely limit device performance. Herein, by carrying out temperature-dependent transport and Kelvin probe force microscopy measurements, it is demonstrated that the introducing of 2D metallic 1T-TaSe2 with matched band-alignment as electrodes for F16 CuPc nanoflake filed-effect transistors leads to enhanced field-effect characteristics, especially lowered Schottky barrier height and contact resistance at the contact and highly efficient charge transport within the channel, which are attributed to the significantly suppressed FLP effect and appropriate band alignment at the nonbonding van der Waals (vdW) hetero-interface. Moreover, by taking advantage of the improved contact behavior with 1T-TaSe2 contact, the optoelectronic performance of F16 CuPc nanoflake-based phototransistor is drastically improved, with a maximum photoresponsivity of 387 A W-1 and detectivity of 3.7 × 1014 Jones at quite a low Vds of 1 V, which is more competitive than those of the reported organic photodetectors and phototransistors. The work provides an avenue to improve the electrical and optoelectronic properties of 2D organic devices by introducing 2D metals with appropriate work function for vdW contacts.

20.
Lab Chip ; 21(2): 254-271, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33337457

RESUMO

Different acoustic wave modes are required for effective implementation of biosensing and liquid actuation functions in an acoustic wave-based lab-on-a-chip. For efficient sensing in liquids, shear waves (either a thickness-shear bulk wave or a shear-horizontal surface acoustic wave) can achieve a high sensitivity, without significant loss of acoustic wave energy. On the other hand, longitudinal bulk waves or out-of-plane displacement waves (such as Rayleigh waves) enable efficient sampling functions and liquid manipulation. However, there are significant challenges in developing a lab-on-a-chip to efficiently generate multiple wave modes and perform both these functions on a single piezoelectric substrate, especially when a single crystalline orientation is available. This paper highlights the latest progress in the theories and techniques to deliver both sensing and microfluidic manipulation functions using engineered inclined-angled piezoelectric films, allowing for the simultaneous generation of longitudinal (or Rayleigh) and thickness-shear bulk (or shear-horizontal surface acoustic) waves. Challenges and theoretical constraints for generating various wave modes in the inclined films and techniques to efficiently produce inclined columnar and inclined crystalline piezoelectric films using sputtering deposition methods are presented. Applications of different wave modes in the inclined film-based lab-on-chips with multiple sensing and acoustofluidic functions are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA