Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EJNMMI Res ; 14(1): 78, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210186

RESUMO

BACKGROUND: Parkinson's disease (PD) is a prevalent neurodegenerative disorder worldwide, diagnosed based on classic symptoms like motor dysfunction and cognitive impairments. With the development of various radioactive ligands, positron emission tomography (PET) imaging combined with specific radiolabelling probes has proven to be effective in aiding clinical PD diagnosis. Among these probes, 2ß-Carbomethoxy-3ß-(4-chlorophenyl)-8-(2-[18F]-fluoroethyl) nortropane ([18F]FECNT) has been utilized as a PET tracer to image dopamine transporter (DAT) integrity in striatal presynaptic dopaminergic terminals. However, the presence of brain-penetrant radioactive metabolites produced by [18F]FECNT may impact the accuracy of PET imaging. In previous research, we developed 2ß-Carbomethoxy-3ß-(4-chlorophenyl)-8-(2-[18F]-fluoroethyl-1,1,2,2-d4) nortropane ([18F]FECNT-d4), a deuterated derivative with enhanced stability in plasma and the striatum, along with a slower washout rate. In this study, we further investigated the potential of [18F]FECNT-d4 to detect dopaminergic neuron degeneration in Parkinson's disease. This involved PET imaging in unilaterally-lesioned PD model rats and in vitro autoradiography conducted on postmortem brain sections. RESULTS: PET images revealed reduced specific uptake in the ipsilateral striatum of rats stereotactically injected with 6-hydroxydopamine hydrochloride (6-OHDA). Compared to the sham group, the ratio of standardized uptake value (SUV) in the ipsilateral to contralateral striatum decreased by 13%, 23%, and 63% in the mild, moderate, and severe lesioned groups, respectively. Dopaminergic denervation observed in PET imaging was further supported by behavioral assessments, immunostaining, and monoamine concentration tests. Moreover, the microPET results exhibited positive correlations with these measurements, except for the apomorphine-induced rotational behavior test, which showed a negative correlation. Additionally, [18F]FECNT-d4 uptake was approximately 40% lower in the postmortem striatal sections of a PD patient compared to a healthy subject. Furthermore, estimated human dosimetry (effective dose equivalent: 5.06 E-03 mSv/MBq), extrapolated from rat biodistribution data, remained below the current Food and Drug Administration limit for radiation exposure. CONCLUSION: Our findings demonstrate that [18F]FECNT-d4 accurately estimates levels of dopaminergic neuron degeneration in the 6-OHDA-induced PD rat model and effectively distinguishes between PD patients and healthy individuals. This highly sensitive and safe PET probe holds promising potential for clinical application in the diagnosis and monitoring of Parkinson's disease.

2.
Nucl Med Biol ; 118-119: 108334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37028197

RESUMO

INTRODUCTION: The dopamine transporter (DAT) is vitally correlated with Parkinson's disease (PD) and other neurodegenerative diseases. Non-invasive imaging of DAT contributes to early diagnosis and monitoring of related diseases. Recently, we reported a deuterated [18F]fluoroethyl tropane analogue [18F]FECNT-d4 as a potential DAT PET imaging agent. The objective of this work was to extend the investigation by comparing four deuterated [18F]fluoroethyl tropane derivatives ([18F]2a-d) to develop metabolically stable DAT radioligands. METHODS: Four fluoroethyl substituted phenyl-tropane compounds 1a-d and deuterated compounds 2a-d were synthesized and their IC50 values to DAT were evaluated. The [18F]fluoroethyl ligands [18F]1a-d and [18F]2a-d were obtained from corresponding labeling precursors by one-step radio-labeling reactions and investigated in terms of lipophilicity and in vitro binding affinity studies. [18F]1d and [18F]2d were then selected for further evaluations by in vivo metabolism study, biodistribution, ex vivo autoradiography, and microPET imaging studies. RESULTS: [18F]1a-d and [18F]2a-d were obtained in radiochemical yield of 11-32 % with molar activities of 28-54 GBq/µmol. The 1d and 2d exhibited relatively high affinity to DAT (IC50: 1.9-2.1 nM). Ex vivo autoradiography and microPET studies showed that [18F]2d selectively localized on DAT-rich striatal regions and the specific signal could be blocked by DAT inhibitor. Biodistribution results showed that [18F]2d consistently exhibited a higher ratio of the target to non-target (striatum/cerebellum) than [18F]1d. Furthermore, metabolism study indicated that the in vivo metabolic stability of [18F]2d was superior to that of [18F]1d. CONCLUSION: Our findings suggested that the deuterated compound [18F]2d might be a potential probe for DAT PET imaging in the brain.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Tropanos , Encéfalo/metabolismo , Diagnóstico por Imagem , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Ligantes , Distribuição Tecidual , Tropanos/química , Tropanos/farmacologia , Masculino , Animais , Ratos , Ratos Sprague-Dawley
3.
Bioorg Med Chem Lett ; 62: 128630, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35182773

RESUMO

The dopamine D3 receptor (D3R) is highly expressed in the limbic regions of the brain and closely related to a variety of neurological disorders including Parkinson's disease, schizophrenia and drug-seeking behavior. In vivo imaging of D3R with radio-labelled tracers and positron emission tomography (PET) has become a powerful technique in related disorders. In this study, we synthesized three novel aromatically 18F-labelled phenylpiperazine-like D3R selective radioactive ligands ([18F]5b, [18F]8b and [18F]11b) and developed a simple, rapid and efficient 18F-labelling method by condition optimization. Radiosynthesis of [18F]5b, [18F]8b and [18F]11b was achieved by 18F-fluorination from nitroarene precursors. Final radiochemical purities of [18F]5b, [18F]8b and [18F]11b solution were > 99% and remained good stability (> 98% for up to 6 h) in PBS and FBS. PET imaging and cellular binding studies revealed that [18F]8b had a higher D3R affinity than [18F]5b and [18F]11b. Autoradiography and biodistribution studies of the brain showed that [18F]8b had medium intensity specific accumulation in the striatum and cortex. Meanwhile, the low skeletal uptake of [18F]8b revealed a good in vivo stability with negligible defluorination. These results indicated that [18F]8b might be a potential 18F-labelled D3R PET imaging agent.


Assuntos
Dopamina , Receptores de Dopamina D3 , Radioisótopos de Flúor , Ligantes , Tomografia por Emissão de Pósitrons/métodos , Receptores de Dopamina D3/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA