RESUMO
Periodontitis and caries, while seemingly innocuous medical conditions, actually pose significant challenges because of their potential etiology with far more serious conditions. Efficacious treatment is hindered by bacterial antibiotic resistance. Standard AgNPs are ineffective against periodontal anaerobic bacteria, because they require oxidative dissolution to release Ag+ ions, which are the actual antimicrobial agents, but oxidation is not possible under anaerobic conditions. Prior studies on Ag-based periodontal antimicrobial materials either did not confirm a silver oxidation state or did not use strictly anaerobic growth media or both, causing spurious antimicrobial efficacy estimates. Here, we prove that silver ion-doped hydroxyapatite nanoparticles (AgHAp NPs) synthesized at various pHs contain an Ag+ oxidation state and directly release Ag+ even in a strictly anerobic medium. Thus, these AgHAp NPs exhibit direct antimicrobial activity against the fastidious anaerobic Gram-negative periodontal bacterium Fusobacterium nucleatum (F. nucleatum) and against caries-causing aerobic, Gram-positive bacterium Streptococcus mutans (S. mutans). The synthesis pH (6-11) correlates inversely with the Ag+ content (4.5-0.45 wt %) of AgHAp NPs and, hence, with antimicrobial efficacy, thus providing tunable efficacy for the target application. AgHAp NPs had greater antimicrobial efficacy than Ag0-containing AgNPs and were less cytotoxic to the mouse fibroblast L929 cell line. Thus, AgHAp NPs (especially AgHAp7) are superior to AgNPs as effective, broad-spectrum, biocompatible antimicrobials against both anaerobic periodontal and aerobic dental bacteria. AgHAp NP synthesis is also inexpensive and scalable, which are significant factors for treating large global populations of indigent people affected by periodontitis and dental caries.
RESUMO
As industrial and agricultural production depends on water supply, it is crucial for economic development. The available freshwater reserves on Earth are insufficient to meet humanity's growing demands. This study establishes a three-stage anoxic/oxic (A/O)-moving bed biofilm reactor (MBBR) system. The study evaluated the wastewater purification capacity of the system in summer and winter, examined the system's removal efficiency of 10 pharmaceuticals and personal care products (PPCPs) from the water, and analyzed the composition of microbial communities. Results indicate that the system effectively removes pollutants and PPCPs, with the aerobic tanks in the first two A/O stages playing a significant role in PPCP removal. The system is effective in removing four kinds of pollutants: AMP, IBU, CLR, and CAF, and the removal efficiency of CAF is up to 99.2%. Seasonal variations significantly affect the removal of PPCPs and bacterial growth, leading to changes in bacterial species. At the genus level, 41 bacterial types presented different effects in response to temperature changes, with Trichoderma and c_OM190_unclassified being the most affected. This study provides essential theoretical support for reducing pollutant levels and improving water recycling and economic efficiency.
RESUMO
Addressing osteoporosis-related bone defects, a supramolecular strategy is innovated for modifying carbon fiber reinforced polyether ether ketone (CF/PEEK) composites. By covalently attaching intelligent macromolecules via in situ RAFT polymerization, leveraging the unique pathological microenvironment in patients with iron-overloaded osteoporosis, intelligent supramolecular modified implant surface possesses multiple endogenous modulation capabilities. After implantation, surface brush-like macromolecules initially resist macrophage adhesion, thereby reducing the level of immune inflammation. Over time, the molecular chains undergo conformational changes due to Fe (III) mediated supramolecular self-assembly, transforming into mechanistic signals. These signals are then specifically transmitted to pre-osteoblast cell through the binding capacity of the KRSR short peptide at the molecular terminus, induced their osteogenic differentiation via the YAP/ß-catenin signaling axis. Furthermore, osteoblasts secrete alkaline phosphatase (ALP), which significantly hydrolyzes phosphate ester bonds in surface macromolecular side groups, resulting in the release of alendronate (ALN). This process further improves the local osteoporotic microenvironment. This intelligent surface modification tailors bone repair to individual conditions, automatically realize multiple endogenous regulation once implanted, and truly realize spontaneous activation of a series of responses conducive to bone repair in vivo. It is evidenced by improved bone regeneration in iron-overloaded osteoporotic rabbits and supported by in vitro validations.
Assuntos
Regeneração Óssea , Osteoblastos , Osteogênese , Osteoporose , Animais , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Coelhos , Osteogênese/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/metabolismo , Regeneração Óssea/efeitos dos fármacos , Alendronato/química , Alendronato/farmacologia , Diferenciação Celular/efeitos dos fármacos , Camundongos , Próteses e Implantes , Humanos , Polímeros/química , Polietilenoglicóis/químicaRESUMO
C-glycosylated flavones (CGFs) are the main flavonoids in duckweed (Lemna turionifera), known for their diverse pharmacological activities and nutritional values. However, the molecular mechanisms underlying flavonoid metabolism in duckweed remain poorly understood. This study identified a P1-Like R2R3-MYB transcription factor, LtP1L, as a crucial regulator of CGF biosynthesis and transport in L. turionifera. Over-expression of LtP1L led to a six-fold increase in CGF levels, whereas the CRISPR-mediated knockdown of LtP1L caused a drastic 74.3 % decrease in CGF contents compared with the wild type. LtP1L specifically activated the expression of genes encoding key enzymes involved in the biosynthesis of CGFs, including flavanone 3'-hydroxylases (F3'H), flavanone 2-hydroxylases (F2H), and C-glycosyltransferase (CGT). Meanwhile, LtP1L activated genes associated with phenylalanine and phenylpropanoid biosynthesis pathways, such as 3-deoxy-7-phosphoheptulonate synthase (DHS), phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarate: CoA ligase (4CL), redirecting carbon metabolic flux towards flavonoid pathway at the early stages of phenylalanine synthesis. In addition, LtP1L directly bound to a novel AC-like cis-element in the promoter of a tonoplast-localized ATP-binding cassette (ABC) transporter LtABCC4 and activated its expression. Furthermore, the preference of LtABCC4 for isoorientin over orientin during vacuolar transport was evidenced by the significant reduction of isoorientin compared to orientin in the Ltabcc4crispr lines. Altogether, LtP1L acts as a crucial transcriptional orchestrator in coordinating the biosynthesis and intracellular transport of CGFs in duckweed.
Assuntos
Flavonas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fatores de Transcrição , Glicosilação , Flavonas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Araceae/metabolismo , Araceae/genética , Transporte BiológicoRESUMO
The homeodomain-leucine zipper (HD-ZIP) transcription factors, representing one of the largest plant-specific superfamilies, play important roles in the response to various abiotic stresses. However, the functional roles of HD-ZIPs in abiotic stress tolerance and the underlying mechanisms remain relatively limited in Miscanthus sinensis. In this study, we isolated an HD-ZIP TF gene, MsHDZ23, from Miscanthus and ectopically expressed it in Arabidopsis. Transcriptome and promoter analyses revealed that MsHDZ23 responded to salt, alkali, and drought treatments. The overexpression (OE) of MsHDZ23 in Arabidopsis conferred higher tolerance to salt and alkali stresses compared to wild-type (WT) plants. Moreover, MsHDZ23 was able to restore the hb7 mutant, the ortholog of MsHDZ23 in Arabidopsis, to the WT phenotype. Furthermore, MsHDZ23-OE lines exhibited significantly enhanced drought stress tolerance, as evidenced by higher survival rates and lower water loss rates compared to WT. The improved drought tolerance may be attributed to the significantly smaller stomatal aperture in MsHDZ23-OE lines compared to WT. Furthermore, the accumulation of the malondialdehyde (MDA) under abiotic stresses was significantly decreased, accompanied by dramatically enhanced activities in several antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in the transgenic plants. Collectively, these results demonstrate that MsHDZ23 functions as a multifunctional transcription factor in enhancing plant resistance to abiotic stresses.
Assuntos
Arabidopsis , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Poaceae/genética , Poaceae/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Álcalis , SecasRESUMO
Salt stress detrimentally impacts plant growth, imperiling crop yield and food quality. Ameliorating plant resilience and productivity in saline environments is critical for global food security. Here, we report the positive effect of Arthrospira (Spirulina) on plant growth and salt tolerance in Arabidopsis and sweet sorghum. Arthrospira application greatly promotes seed germination and seedling growth in both species under salt stress conditions in a dosage-dependent manner. Application of 6 mg Arthrospira per plate significantly enhances K+/Na+ equilibrium and reactive oxygen species (ROS) scavenging in Arabidopsis, reducing salt-induced toxicity. The primary root length, survival rate, chlorophyll content, photosynthesis, plant height, biomass and yield were all improved in both species. Concurrently, Arthrospira demonstrated the synthesis of compatible solutes, such as trehalose (Tre) and glucosylglycerol (GG), contributing to heightened stress tolerance when co-cultivated with Arabidopsis on plates. Transcriptome analysis revealed dramatic up-/down- regulation of genes involved in phytohormone signal transduction, chlorophyll and photosynthesis metabolism, and phenylpropanoid metabolism in Arabidopsis. Furthermore, the application of Arthrospira exerted a positive influence on the rhizosphere bacteriome structure in sweet sorghum, crucial for nutrient cycling and soil health enhancement. Our findings uncovered the underlying mechanisms of algae-plants interaction in saline soil, proposing strategies to enhance crop productivity and soil quality, thereby addressing the urgent need for sustainable agriculture practices to mitigate salinity's repercussions amidst climate change challenges.
RESUMO
Biochar amendment has been proven as an effective measure in the remediation of degraded soils, but few reports were focused on the interactive effects and mechanisms of biochar and fertilizer co-application in the amelioration of saline-alkaline soils. In this study, different biochar and fertilizer combinations were applied to investigate the interactive effect on fertilizer use efficiency, soil properties, and Miscanthus growth in a coastal saline-alkaline soil. Compared to the fertilizer or acidic biochar application alone, the combined application of acidic biochar and fertilizer significantly improved soil nutrient availability, ameliorated soil properties in rhizosphere soil. Meanwhile, the bacterial community structure and soil enzyme activities were considerably ameliorated. Additionally, the activities of anti-oxidant enzymes were substantially enhanced and the expression of abiotic stress-associated genes was significantly up-regulated in Miscanthus plants. Ultimately, the combined application of acidic biochar and fertilizer significantly enhanced Miscanthus growth and biomass accumulation in the saline-alkaline soil. Overall, our findings suggest that the combined application of acidic biochar and fertilizer represents a feasible and effective approach for improving plant productivity in saline-alkaline soils.
Assuntos
Fertilizantes , Solo , Solo/química , Fertilizantes/análise , Carvão Vegetal/química , Biomassa , Poaceae , PlantasRESUMO
Current treatments of carbon fiber-reinforced polyetheretherketone (CFRPEEK) as orthopedic implants remain unsatisfactory due to the bioinert surface. The multifunctionalization of CFRPEEK, which endows it with regulating the immune inflammatory response, promoting angiogenesis, and accelerating osseointegration, is critical to the intricate bone healing process. Herein, a multifunctional zinc ion sustained-release biocoating, consisting of a carboxylated graphene oxide, zinc ion, and chitosan layer, covalently grafts on the surface of amino CFRPEEK (CP/GC@Zn/CS) to coordinate with the osseointegration process. The release behavior of zinc ions theoretically conforms to the different demands in the three stages of osseointegration, including the burst release of zinc ions in the early stage (7.27 µM, immunomodulation), continuous release in the middle stage (11.02 µM, angiogenesis), and slow release in the late stage (13.82 µM, osseointegration). In vitro assessments indicate that the multifunctional zinc ion sustained-release biocoating can remarkably regulate the immune inflammatory response, decrease the oxidative stress level, and promote angiogenesis and osteogenic differentiation. The rabbit tibial bone defect model further confirms that, compared to the unmodified group, the bone trabecular thickness of the CP/GC@Zn/CS group increases 1.32-fold, and the maximum push-out force improves 2.05-fold. In this study, a multifunctional zinc ion sustained-release biocoating constructed on the surface of CFRPEEK that conforms to the requirements of different osseointegration stages can be an attractive strategy for the clinical application of inert implants.
Assuntos
Osteogênese , Zinco , Animais , Coelhos , Fibra de Carbono , Zinco/farmacologia , Preparações de Ação Retardada/farmacologia , Polietilenoglicóis/farmacologia , Cetonas/farmacologia , Osseointegração , Anti-Inflamatórios/farmacologia , Íons/farmacologia , Propriedades de SuperfícieRESUMO
Primitive cells are believed to have been self-assembled vesicular structures with minimal metabolic components, that were capable of self-maintenance and self-propagation in early Earth geological settings. The coevolution and self-assembly of biomolecules, such as amphiphiles, peptides, and nucleic acids, or their precursors, were essential for protocell emergence. Here, we present a novel class of amphiphiles-amino acid-fatty alcohol esters-that self-assemble into stable primitive membrane compartments under a wide range of geochemical conditions. Glycine n-octyl ester (GOE) and isoleucine n-octyl ester (IOE), the condensation ester products of glycine or isoleucine with octanol (OcOH), are expected to form at a mild temperature by wet-dry cycles. The GOE forms micelles in acidic aqueous solutions (pH 2-7) and vesicles at intermediate pH (pH 7.3-8.2). When mixed with cosurfactants (octanoic acid [OcA]; OcOH, or decanol) in different mole fractions [XCosurfactant = 0.1-0.5], the vesicle stability range expands significantly to span the extremely acidic to mildly alkaline (pH 2-8) and extremely alkaline (pH 10-11) regions. Only a small mole fraction of cosurfactant [XCosurfactant = 0.1] is needed to make stable vesicular structures. Notably, these GOE-based vesicles are also stable in the presence of high concentrations of divalent cations, even at low pHs and in simulated Hadean seawater composition (without sulfate). To better understand the self-assembly behavior of GOE-based systems, we devised complementary molecular dynamics computer simulations for a series of mixed GOE/OcA systems under simulated acidic pHs. The resulting calculated critical packing parameter values and self-assembly behavior were consistent with our experimental findings. The IOE is expected to show similar self-assembly behavior. Thus, amino acid-fatty alcohol esters, a novel chimeric amphiphile class composed of an amino acid head group and a fatty alcohol tail, may have aided in building protocell membranes, which were stable in a wide variety of geochemical circumstances and were conducive to supporting replication and self-maintenance. The present work contributes to our body of work supporting our hypothesis for synergism and coevolution of (proto)biomolecules on early Earth.
Assuntos
Aminoácidos , Álcoois Graxos , Ésteres , Isoleucina , GlicinaRESUMO
The Arabidopsis seed coat mucilage is a polysaccharide-rich matrix synthesized by the seed coat epidermal cells. It is a specialized cell wall mainly composed of three types of polysaccharides (i. e. pectin, hemicellulose, and cellulose), and represents as an ideal model system for plant cell wall research. A large number of genes responsible for the synthesis and modification of cell wall polysaccharides have been identified using this model system. Moreover, a subset of regulators controlling mucilage production and modification have been characterized, and the underlying transcriptional regulatory mechanisms have been elucidated. This substantially contributes to the understanding of the molecular mechanisms underlying mucilage synthesis and modification. In this review, we concisely summarize the various genes and regulators involved in seed coat cell differentiation, mucilage biosynthesis and modification, and secondary cell wall formation. In particular, we put emphasis on the latest knowledge gained regarding the transcriptional regulation of mucilage production, which is composed of a hierarchal cascade with three-layer transcriptional regulators. Collectively, we propose an updated schematic framework of the genetic regulatory network controlling mucilage production and modification in the Arabidopsis mucilage secretory cells.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Mucilagem Vegetal , Arabidopsis/metabolismo , Mucilagem Vegetal/metabolismo , Redes Reguladoras de Genes , Polissacarídeos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pectinas/metabolismo , Sementes/genética , Sementes/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
DNA damage response (DDR) in eukaryotes is essential for the maintenance of genome integrity in challenging environments. The regulatory mechanisms of DDR have been well-established in yeast and humans. However, increasing evidence supports the idea that plants seem to employ different signaling pathways that remain largely unknown. Here, we report the role of MODIFIER OF SNC1, 4-ASSOCIATED COMPLEX SUBUNIT 5A (MAC5A) in DDR in Arabidopsis (Arabidopsis thaliana). Lack of MAC5A in mac5a mutants causes hypersensitive phenotypes to methyl methanesulfonate (MMS), a DNA damage inducer. Consistent with this observation, MAC5A can regulate alternative splicing of DDR genes to maintain the proper response to genotoxic stress. Interestingly, MAC5A interacts with the 26S proteasome (26SP) and is required for its proteasome activity. MAC core subunits are also involved in MMS-induced DDR. Moreover, we find that MAC5A, the MAC core subunits, and 26SP may act collaboratively to mediate high-boron-induced growth repression through DDR. Collectively, our findings uncover the crucial role of MAC in MMS-induced DDR in orchestrating growth and stress adaptation in plants.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dano ao DNA , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas R-SNARE/genética , Proteínas de Ligação a RNA/metabolismoRESUMO
The GRAS family genes encode plant-specific transcription factors that play important roles in a diverse range of developmental processes and abiotic stress responses. However, the information of GRAS gene family in the bioenergy crop Miscanthus has not been available. Here, we report the genome-wide identification of GRAS gene family in Micanthus sinensis. A total of 123 MsGRAS genes were identified, which were divided into ten subfamilies based on the phylogenetic analysis. The co-linearity analysis revealed that 59 MsGRAS genes experienced segmental duplication, forming 35 paralogous pairs. The expression of six MsGRAS genes in responding to salt, alkali, and mixed salt-alkali stresses was analyzed by transcriptome and real-time quantitative PCR (RT-qPCR) assays. Furthermore, the role of MsGRAS60 in salt and alkali stress response was characterized in transgenic Arabidopsis. The MsGRAS60 overexpression lines exhibited hyposensitivity to abscisic acid (ABA) treatment and resulted in compromised tolerance to salt and alkali stresses, suggesting that MsGRAS60 is a negative regulator of salt and alkali tolerance via an ABA-dependent signaling pathway. The salt and alkali stress-inducible MsGRAS genes identified serve as candidates for the improvement of abiotic stress tolerance in Miscanthus.
Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Álcalis/farmacologia , Álcalis/metabolismo , Arabidopsis/genética , Estresse Fisiológico/genética , Poaceae/genética , Poaceae/metabolismo , Cloreto de Sódio/metabolismo , Perfilação da Expressão GênicaRESUMO
Plant CCCH proteins participate in the control of multiple developmental and adaptive processes, but the regulatory mechanisms underlying these processes are not well known. In this study, we showed that the Arabidopsis (Arabidopsis thaliana) CCCH protein C3H15 negatively regulates cell elongation by inhibiting brassinosteroid (BR) signaling. Genetic and biochemical evidence showed that C3H15 functions downstream of the receptor BR INSENSITIVE 1 (BRI1) as a negative regulator in the BR pathway. C3H15 is phosphorylated by the GLYCOGEN SYNTHASE KINASE 3 -like kinase BR-INSENSITIVE 2 (BIN2) at Ser111 in the cytoplasm in the absence of BRs. Upon BR perception, C3H15 transcription is enhanced, and the phosphorylation of C3H15 by BIN2 is reduced. The dephosphorylated C3H15 protein accumulates in the nucleus, where C3H15 regulates transcription via G-rich elements (typically GGGAGA). C3H15 and BRASSINAZOLE RESISTANT 1 (BZR1)/BRI1-EMS-SUPPRESSOR 1 (BES1), two central transcriptional regulators of BR signaling, directly suppress each other and share a number of BR-responsive target genes. Moreover, C3H15 antagonizes BZR1 and BES1 to regulate the expression of their shared cell elongation-associated target gene, SMALL AUXIN-UP RNA 15 (SAUR15). This study demonstrates that C3H15-mediated BR signaling may be parallel to, or even attenuate, the dominant BZR1 and BES1 signaling pathways to control cell elongation. This finding expands our understanding of the regulatory mechanisms underlying BR-induced cell elongation in plants.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Fosforilação , Proteínas de Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Dedos de ZincoRESUMO
The mucilage surrounding hydrated Arabidopsis thaliana seeds is a specialized extracellular matrix composed mainly of the pectic polysaccharide rhamnogalacturonan I (RG-I). Although, several genes responsible for RG-I biosynthesis have been identified, the transcriptional regulatory mechanisms controlling RG-I production remain largely unknown. Here we report that the trihelix transcription factor DE1 BINDING FACTOR 1 (DF1) is a key regulator of mucilage RG-I biosynthesis. RG-I biosynthesis is significantly reduced in loss-of-function mutants of DF1. DF1 physically interacts with GLABRA2 (GL2) and both proteins transcriptionally regulate the expression of the RG-I biosynthesis genes MUCILAGE MODIFIED 4 (MUM4) and GALACTURONOSYLTRANSFERASE-LIKE5 (GATL5). Through chromatin immunoprecipitation-quantitative PCR and transcriptional activation assays, we uncover a cooperative mechanism of the DF1-GL2 module in activating MUM4 and GATL5 expression, in which DF1 binds to the promoters of MUM4 and GATL5 through interacting with GL2 and facilitates the transcriptional activity of GL2. The expression of DF1 and GL2 is directly regulated by TRANSPARENT TESTA GLABRA2 (TTG2) and, in turn, DF1 directly represses the expression of TTG2. Taken together, our data reveal that the transcriptional regulation of mucilage RG-I biosynthesis involves a regulatory module, comprising DF1, GL2, and TTG2.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Mucilagem Vegetal , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Pectinas , Mucilagem Vegetal/metabolismo , Polissacarídeos/metabolismo , Sementes/genética , Sementes/metabolismoRESUMO
Estimation of construction waste generation (CWG) at the field scale is a crucial but challenging task for effective construction waste management (CWM). Extant field-scale CWG modeling approaches have faced difficulties in obtaining accurate results due to a lack of detailed CWG data, and most of them fail to consider the complex relationship among predictive variables. This study attempts to tackle this issue by proposing a novel CWG modeling approach that integrates improved on-site measurement (IOM) and a support vector machine (SVM)-based prediction model. To achieve this goal, 206 ongoing commercial construction sites were investigated to obtain the predictor values and waste generation rates (WGRs) of five types of waste (i.e., inorganic nonmetallic waste, organic waste, metal waste, composite waste, and hazardous waste) generated at three construction stages (i.e., the understructure stage, superstructure stage, and finishing stage). The data were introduced to the SVM to develop the relationships between predictive variables and WGRs. An actual commercial building under construction was used to demonstrate the applicability of the proposed approach. The results showed that the superiority of the IOM can be used as a basis to implement robust CWG data collection. In addition, the SVM-based WGR prediction model (SWPM) can obtain more accurate prediction results (R2â¯=â¯86.87%) than the back-propagation neural network (R2â¯=â¯75.14%) and multiple linear regression (R2â¯=â¯61.93%).
Assuntos
Indústria da Construção , Gerenciamento de Resíduos , China , Materiais de Construção , Resíduos Perigosos , Máquina de Vetores de SuporteRESUMO
Homogalacturonan (HG), a component of pectin, is synthesized in the Golgi apparatus in its fully methylesterified form. It is then secreted into the apoplast where it is typically de-methylesterified by pectin methylesterases (PME). Secretion and de-esterification are critical for normal pectin function, yet the underlying transcriptional regulation mechanisms remain largely unknown. Here, we uncovered a mechanism that fine-tunes the degree of HG de-methylesterification (DM) in the mucilage that surrounds Arabidopsis thaliana seeds. We demonstrate that the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor (TF) ERF4 is a transcriptional repressor that positively regulates HG DM. ERF4 expression is confined to epidermal cells in the early stages of seed coat development. The adhesiveness of the erf4 mutant mucilage was decreased as a result of an increased DM caused by a decrease in PME activity. Molecular and genetic analyses revealed that ERF4 positively regulates HG DM by suppressing the expression of three PME INHIBITOR genes (PMEIs) and SUBTILISIN-LIKE SERINE PROTEASE 1.7 (SBT1.7). ERF4 shares common targets with the TF MYB52, which also regulates pectin DM. Nevertheless, the erf4-2 myb52 double mutant seeds have a wild-type mucilage phenotype. We provide evidence that ERF4 and MYB52 regulate downstream gene expression in an opposite manner by antagonizing each other's DNA-binding ability through a physical interaction. Together, our findings reveal that pectin DM in the seed coat is fine-tuned by an ERF4-MYB52 transcriptional complex.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Pectinas/metabolismo , Mucilagem Vegetal/metabolismo , Proteínas Repressoras/metabolismo , Sementes/metabolismo , Fatores Genéricos de Transcrição/metabolismo , Adesividade , Arabidopsis/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Reagentes de Ligações Cruzadas/química , Esterificação , Genes de Plantas , Mutação/genética , Motivos de Nucleotídeos/genética , Fenótipo , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Ligação Proteica , Proteínas Repressoras/genéticaRESUMO
Numerous proteins involved in cellulose biosynthesis and assembly have been functionally characterized. Nevertheless, we have a limited understanding of the mechanisms underlying the transcriptional regulation of the genes that encode these proteins. Here, we report that HOMEODOMAIN GLABROUS2 (HDG2), a Homeobox-Leucine Zipper IV transcription factor, regulates cellulose biosynthesis in Arabidopsis (Arabidopsis thaliana) seed coat mucilage. HDG2 is a transcriptional activator with the transactivation domain located within its Leucine-Zipper domain. Transcripts of HDG2 were detected specifically in seed coat epidermal cells with peak expression at 10 d postanthesis. Disruptions of HDG2 led to seed coat mucilage with aberrant morphology due to a reduction in its crystalline cellulose content. Electrophoretic mobility shift and yeast one-hybrid assays, together with chromatin immunoprecipitation and quantitative PCR, provided evidence that HDG2 directly activates CELLULOSE SYNTHASE5 (CESA5) expression by binding to the L1-box cis-acting element in its promoter. Overexpression of CESA5 partially rescued the mucilage defects of hdg2-3. Together, our data suggest that HDG2 directly activates CESA5 expression and thus is a positive regulator of cellulose biosynthesis in seed coat mucilage.
Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Celulose/biossíntese , Celulose/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mucilagem Vegetal/genética , Mucilagem Vegetal/metabolismo , Sementes/genética , Sementes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologiaRESUMO
As a major hemicellulose component of plant cell walls, xylans play a determining role in maintaining the wall structure. However, the mechanisms of transcriptional regulation of xylan biosynthesis remain largely unknown. Arabidopsis seed mucilage represents an ideal system for studying polysaccharide biosynthesis and modifications of plant cell walls. Here, we identify KNOTTED ARABIDOPSIS THALIANA 7 (KNAT7) as a positive transcriptional regulator of xylan biosynthesis in seed mucilage. The xylan content was significantly reduced in the mucilage of the knat7-3 mutant and this was accompanied by significantly reduced expression of the xylan biosynthesis-related genes IRREGULAR XYLEM 14 (IRX14) and MUCILAGE MODIFIED 5/MUCILAGE-RELATED 21 (MUM5/MUCI21). Electrophoretic mobility shift assays, yeast one-hybrid assays, and chromatin immunoprecipitation with quantitative PCR verified the direct binding of KNAT7 to the KNOTTED1 (KN1) binding site [KBS,TGACAG(G/C)T] in the promoters of IRX7, IRX14, and MUM5/MUCI21 in vitro, in vivo, and in planta. Furthermore, KNAT7 directly activated the expression of IRX14 and MUM5/MUCI21 in transactivation assays in mesophyll protoplasts, and overexpression of IRX14 or MUM5/MUCI21 in knat7-3 partially rescued the defects in mucilage adherence. Taken together, our results indicate that KNAT7 positively regulates xylan biosynthesis in seed-coat mucilage via direct activation of the expression of IRX14 and MUM5/MUCI21.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Mucilagem Vegetal , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Mucilagem Vegetal/metabolismo , Polissacarídeos , Proteínas Repressoras/metabolismo , Sementes/metabolismo , XilanosRESUMO
The homeodomain-leucine zipper (HD-ZIP) transcription factors are important regulators in various developmental processes and responses to environmental stimuli. Currently, little information is available for HD-ZIP gene family in Medicago truncatula. Here we perform a genome-wide analysis of HD-ZIP gene family in M. truncatula. Totally 52 M. truncatula HD-ZIPs (MtHDZs) were identified and classified into four distinctive subfamilies (I to IV). Members clustered in the same subfamily shared similar gene structure and protein motifs. Fifty-one MtHDZs were non-evenly distributed on eight chromosomes. Segmental duplication and purifying selection mainly contributed to the expansion and retention of M. truncatula HD-ZIP gene family. Expression profiling using the publicly available microarray data revealed that MtHDZ genes exhibited distinctive tissue-specific patterns and divergent responses to drought and salt stresses. In addition, the expression profile between each paralogous pair diverged differentially. Our results identified potential targets for the genetic improvement of abiotic stress tolerance in Medicago.
Assuntos
Perfilação da Expressão Gênica , Genes de Plantas , Medicago truncatula/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Secas , Filogenia , Regiões Promotoras Genéticas , Estresse Fisiológico/genéticaRESUMO
The polysaccharide pectin is a major component of the plant cell wall. The pectic glycan homogalacturonan (HG) is a proportionally small but important component of a specialized seed cell wall called mucilage. HG is synthesized in a highly methylesterified form, and, following secretion, is de-methylesterified by pectin methylesterases (PMEs). The degree of methylesterification of HG determines the structural and functional properties of pectin, but how methylesterification is regulated remains largely unknown. Here, we identified two BEL1-Like homeodomain (BLH) transcription factors, BLH2 and BLH4, as positive regulators of HG de-methylesterification in Arabidopsis (Arabidopsis thaliana) seed coat mucilage. BLH2 and BLH4 were significantly expressed in mucilage secretory cells during seed mucilage production. BLH2 and BLH4 single mutants exhibited no obvious mucilage phenotype, but the blh2 blh4 double mutant displayed significantly reduced mucilage adherence to the seed. Reduced mucilage adherence in blh2 blh4 was caused by decreased PME activity in the seed coat, which increased the degree of methylesterification of HG in mucilage. The expression of several PME metabolism-related genes, including PME58, PECTIN METHYLESTERASE INHIBITOR6, SEEDSTICK, and MYB52 was significantly altered in blh2 blh4 seeds. BLH2 and BLH4 directly activated PME58 expression by binding to its TGACAGGT cis-element. Moreover, pme58 mutants exhibited reduced mucilage adherence similar to that of blh2 blh4, and the blh2 blh4 pme58 triple mutant exhibited no additional mucilage adherence defects. Furthermore, overexpression of PME58 in blh2 blh4 rescued the mucilage adherence defect. Together, these results demonstrate that BLH2 and BLH4 redundantly regulate de-methylesterification of HG in seed mucilage by directly activating PME58.