Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Arch Microbiol ; 206(9): 381, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153128

RESUMO

The bacterial type II toxin-antitoxin (TA) system is a rich genetic element that participates in various physiological processes. Aeromonas veronii is the main bacterial pathogen threatening the freshwater aquaculture industry. However, the distribution of type II TA system in A. veronii was seldom documented and its roles in the life activities of A. veronii were still unexplored. In this study, a novel type II TA system AvtA-AvtT was predicted in a fish pathogen Aeromonas veronii biovar sobria with multi-drug resistance using TADB 2.0. Through an Escherichia coli host killing and rescue assay, we demonstrated that AvtA and AvtT worked as a genuine TA system, and the predicted toxin AvtT actually functioned as an antitoxin while the predicted antitoxin AvtA actually functioned as a toxin. The binding ability of AvtA with AvtT proteins were confirmed by dot blotting analysis and co-immunoprecipitation assay. Furthermore, we found that the toxin and antitoxin labelled with fluorescent proteins were co-localized. In addition, it was found that the transcription of AvtAT bicistronic operon was repressed by the AvtAT protein complex. Deletion of avtA gene and avtT gene had no obvious effect on the drug susceptibility. This study provides first characterization of type II TA system AvtA-AvtT in aquatic pathogen A. veronii.


Assuntos
Aeromonas veronii , Proteínas de Bactérias , Sistemas Toxina-Antitoxina , Aeromonas veronii/genética , Aeromonas veronii/metabolismo , Sistemas Toxina-Antitoxina/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Óperon , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Antitoxinas/genética , Antitoxinas/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39062822

RESUMO

Currently, it is widely accepted that the type III secretion system (T3SS) serves as the transport platform for bacterial virulence factors, while flagella act as propulsion motors. However, there remains a noticeable dearth of comparative studies elucidating the functional disparities between these two mechanisms. Entomopathogenic nematode symbiotic bacteria (ENS), including Xenorhabdus and Photorhabdus, are Gram-negative bacteria transported into insect hosts by Steinernema or Heterorhabdus. Flagella are conserved in ENS, but the T3SS is only encoded in Photorhabdus. There are few reports on the function of flagella and the T3SS in ENS, and it is not known what role they play in the infection of ENS. Here, we clarified the function of the T3SS and flagella in ENS infection based on flagellar inactivation in X. stockiae (flhDC deletion), T3SS inactivation in P. luminescens (sctV deletion), and the heterologous synthesis of the T3SS of P. luminescens in X. stockiae. Consistent with the previous results, the swarming movement of the ENS and the formation of biofilms are dominated by the flagella. Both the T3SS and flagella facilitate ENS invasion and colonization within host cells, with minimal impact on secondary metabolite formation and secretion. Unexpectedly, a proteomic analysis reveals a negative feedback loop between the flagella/T3SS assembly and the type VI secretion system (T6SS). RT-PCR testing demonstrates the T3SS's inhibition of flagellar assembly, while flagellin expression promotes T3SS assembly. Furthermore, T3SS expression stimulates ribosome-associated protein expression.


Assuntos
Flagelos , Simbiose , Sistemas de Secreção Tipo III , Flagelos/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Sistemas de Secreção Tipo III/genética , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Xenorhabdus/metabolismo , Xenorhabdus/genética , Xenorhabdus/fisiologia , Regulação Bacteriana da Expressão Gênica , Photorhabdus/metabolismo , Photorhabdus/patogenicidade , Photorhabdus/genética , Photorhabdus/fisiologia , Nematoides/microbiologia , Nematoides/metabolismo , Biofilmes/crescimento & desenvolvimento
3.
Microorganisms ; 12(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543679

RESUMO

Aeromonas salmonicida is an important pathogen that causes furunculosis in trout and salmon with high morbidity and mortality, resulting in significant economic losses in aquaculture. Overuse of antibiotics has led to the continuous emergence of drug-resistant strains. Hence, there is an urgent need to find an alternative environmentally friendly antimicrobial agent. In this study, we isolated a virulent phage of A. salmonicida, named ASG01, which belongs to the Myoviridae family and maintains lytic activity at a pH value range from 4 to 12 and in the temperature range from 30 °C to 60 °C. The whole genomic sequence of ASG01 showed 82% similarity to Aeromonas phage pAh6-C. The cell wall hydrolase (Cwh)-encoding gene from the genome of ASG01 was predicted and heterologously expressed. Notably, in the absence of additional phage genes, endogenous expression of Cwh could lyse E. coli cells and greatly inhibit the growth of tested fish pathogenic bacteria. The lytic activity of Cwh was eliminated when the predicted active site was mutated. These results indicate that Cwh of ASG01 possessed excellent lytic activity and a wide antibacterial spectrum, suggesting its potential as an effective enzybiotic.

4.
World J Microbiol Biotechnol ; 40(3): 101, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38366186

RESUMO

Xenorhabdus, known for its symbiotic relationship with Entomopathogenic nematodes (EPNs), belongs to the Enterobacteriaceae family. This dual-host symbiotic nematode exhibits pathogenic traits, rendering it a promising biocontrol agent against insects. Our prior investigations revealed that Xenorhabdus stockiae HN_xs01, isolated in our laboratory, demonstrates exceptional potential in halting bacterial growth and displaying anti-tumor activity. Subsequently, we separated and purified the supernatant of the HN_xs01 strain and obtained a new compound with significant inhibitory activity on tumor cells, which we named XNAE. Through LC-MS analysis, the mass-to-nucleus ratio of XNAE was determined to be 254.24. Our findings indicated that XNAE exerts a time- and dose-dependent inhibition on B16 and HeLa cells. After 24 h, its IC50 for B16 and HeLa cells was 30.178 µg/mL and 33.015 µg/mL, respectively. Electron microscopy revealed conspicuous damage to subcellular structures, notably mitochondria and the cytoskeleton, resulting in a notable reduction in cell numbers among treated tumor cells. Interestingly, while XNAE exerted a more pronounced inhibitory effect on B16 cells compared to HeLa cells, it showed no discernible impact on HUVEC cells. Treatment of B16 cells with XNAE induced early apoptosis and led to cell cycle arrest in the G2 phase, as evidenced by flow cytometry analysis. The impressive capability of X. stockiae HN_xs01 in synthesizing bioactive secondary metabolites promises to significantly expand the reservoir of natural products. Further exploration to identify the bioactivity of these compounds holds the potential to shed light on their roles in bacteria-host interaction. Overall, these outcomes underscore the promising potential of XNAE as a bioactive compound for tumor treatment.


Assuntos
Nematoides , Xenorhabdus , Animais , Humanos , Xenorhabdus/metabolismo , Células HeLa , Nematoides/microbiologia , Enterobacteriaceae , Simbiose
5.
Appl Microbiol Biotechnol ; 107(17): 5439-5451, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37428187

RESUMO

Pirin family proteins perform a variety of biological functions and widely exist in all living organisms. A few studies have shown that Pirin family proteins may be involved in the biosynthesis of antibiotics in actinomycetes. However, the function of Pirin-like proteins in S. spinosa is still unclear. In this study, the inactivation of the sspirin gene led to serious growth defects and the accumulation of H2O2. Surprisingly, the overexpression and knockout of sspirin slightly accelerated the consumption and utilization of glucose, weakened the TCA cycle, delayed sporulation, and enhanced sporulation in the later stage. In addition, the overexpression of sspirin can enhance the ß-oxidation pathway and increase the yield of spinosad by 0.88 times, while the inactivation of sspirin hardly produced spinosad. After adding MnCl2, the spinosad yield of the sspirin overexpression strain was further increased to 2.5 times that of the wild-type strain. This study preliminarily revealed the effects of Pirin-like proteins on the growth development and metabolism of S. spinosa and further expanded knowledge of Pirin-like proteins in actinomycetes. KEY POINTS: • Overexpression of the sspirin gene possibly triggers carbon catabolite repression (CCR) • Overexpression of the sspirin gene can promote the synthesis of spinosad • Knockout of the sspirin gene leads to serious growth and spinosad production defects.


Assuntos
Actinobacteria , Saccharopolyspora , Peróxido de Hidrogênio/metabolismo , Saccharopolyspora/metabolismo , Actinobacteria/metabolismo , Macrolídeos/metabolismo , Combinação de Medicamentos
6.
Enzyme Microb Technol ; 162: 110150, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36335861

RESUMO

Filamentous fungi are widely used in the field of recombinant protein expression due to their well-established protein modification systems and excellent secretion capacities. Although Penicillium oxalicum has been developed as an expression host, its potential for efficient and convenient protein production has not been fully exploited. In this study, we obtained an engineered strain by dominant activation of the G protein PGA3 using a point-mutation method based on the low extracellular background P. oxalicum host Δ13A-OamyR. This genetically modified strain, OamyR-QL, with faster cell growth and a more efficient Pamy15A promoter, will be used to construct a novel expression system. The relevant genes and pathways involved in the response to the G protein dominant activation in the engineered strain were revealed by RNA sequencing. Moreover, the transcription activator AmyR was overexpressed in OamyR-QL, resulting in a dramatically enhanced efficiency of the Pamy15A promoter. The construction of an efficient, low-background system by utilizing the G protein-AmyR regulatory pathway provides not only a theoretical reference for the genetic engineering of other filamentous fungal strains, but also a preferable option for the efficient and high purity expression of recombinant proteins in filamentous fungi.


Assuntos
Celulase , Penicillium , Regulação Fúngica da Expressão Gênica , Celulase/metabolismo , Fatores de Transcrição/genética
7.
Appl Microbiol Biotechnol ; 106(23): 7857-7866, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36326838

RESUMO

Xenorhabdus can produce a large number of secondary metabolites with insecticidal, bacteriostatic, and antitumor activities. Efficient gene editing tools will undoubtedly facilitate the functional genomics research and bioprospecting in Xenorhabdus. In this study, BlastP analysis using the amino acid sequences of Redαß or RecET recombinases as queries resulted in the identification of an operon (XBJ1_operon 0213) containing RecET-like recombinases encoding genes from the genome of Xenorhabdus bovienii strain SS-2004. Three proteins encoded by this operon was indispensable for full activity of recombineering, namely XBJ1-1173 (RecE-like protein), XBJ1-1172 (RecT-like protein), and XBJ1-1171 (single-strand annealing protein). Using this newly developed recombineering system, a gene cluster responsible for biosynthesis of a novel secondary metabolite (Min16) was identified from X. stockiae HN_xs01 strain. Min16 which exhibited antibacterial and cytotoxic activities was determined to be a cyclopeptide composed of Acyl-Phe-Thr-Phe-Pro-Pro-Leu-Val by using high-resolution mass spectrometry and nuclear magnetic resonance analysis, and was designated as changshamycin. This host-specific recombineering system was proven to be effective for gene editing in Xenorhabdus, allowing for efficient discovery of novel natural products with attractive bioactivities. KEY POINTS: • Screening and identification of efficient gene editing tools from Xenorhabdus • Optimization of the Xenorhabdus electroporation parameters • Discovery of a novel cyclopeptide compound with multiple biological activities.


Assuntos
Produtos Biológicos , Xenorhabdus , Xenorhabdus/genética , Recombinases/genética , Recombinases/metabolismo , Produtos Biológicos/metabolismo , Óperon , Peptídeos Cíclicos/metabolismo
8.
Front Bioeng Biotechnol ; 10: 984197, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159678

RESUMO

Xenorhabdus are symbionts of soil entomopathogenic nematodes of the genus Steinernema presenting two distinct forms in their life cycle, and can produce a broad range of bioactive compounds. In this study, a novel Xenorhabdus stockiae strain HN_xs01 was isolated from a soil sample via an entrapment method using Galleria melonella nematodes. The supernatants of strain HN_xs01 exhibited antimicrobial properties against Gram-negative and Gram-positive bacteria, and insecticidal properties against Helicoverpa armigera larvae, and antitumor properties as well. Moreover, three linear rhabdopeptides (1, 2 and 3) were identified from strain HN_xs01 using nuclear magnetic resonance analysis, which exhibited significant cytotoxic activity against the human epithelial carcinoma cell line A431 and the human chronic myelogenous leukemia cell line K562. Some bacteria have been reported to colonize the tumor region, and we determined that HN_xs01 could grow in tumor xenografts in this study. HN_xs01 invaded and replicated in B16 melanoma cells grafted into C57BL/6 mice, resulting in tumor inhibition. Moreover, strain HN_xs01 not only merely aggregated in the tumor environment, but also prevented pulmonary metastasis. It caused fragmentation of vessels and cell apoptosis, which contributed to its antitumor effect. In conclusion, X. stockiae HN_xs01 is a novel tumor-targeting strain with potential applications in medicinal and agricultural fields.

9.
Microb Pathog ; 169: 105646, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35716927

RESUMO

Aeromonas veronii AvX005 is a pathogenic bacterium with high toxicity to grass carp (Ctenopharyngodon idellus). The expression levels of g-type (goose-type lysozyme, Lys-g) and c-type lysozyme (chicken-type lysozyme, Lys-c) in the spleen of grass carp infected with AvX005 were significantly increased by approximately 4.5 times and 27 times, respectively. The recombinant proteins rLys-g and rLys-c produced in a recombinant expression system of Escherichia coli showed significant antibacterial activity against the pathogenic bacteria AvX005. A challenge test was conducted after rLys-g and rLys-c were expressed in grass carp L8824 liver cells, and compared with the survival rate of the control cells (46.3%), the survival rate of the experimental cells (77.6% for rLys-g and 68.6% for rLys-c) was significantly increased. Grass carp were infected with AvX005 on the second day after delivering pcDNA3.1-lys-g and pcDNA-lys-c with the Quil A/cholesterol/DDA/Carbopol (QCDC) adjuvant, and both pcDNA3.1-lys-g and pcDNA-lys-c provided 70% relative protection for grass carp. The activity of lysozyme and alkaline phosphatase in the serum of grass carp was significantly increased after injection of DNA. The expression of the immune factors IgM, C3 and IL8 in the kidney was upregulated to varying degrees for pcDNA3.1-lys-g and immune factors C3 and IgM was upregulated for pcDNA-lys-c. The results indicated that pcDNA3.1-lys-g and pcDNA-lys-c may be used as immunostimulants to protect grass carp from the pathogenic bacterium AvX005.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Resinas Acrílicas , Adjuvantes Imunológicos/farmacologia , Aeromonas hydrophila/fisiologia , Aeromonas veronii , Animais , Carpas/metabolismo , Colesterol , Doenças dos Peixes/microbiologia , Imunidade Inata , Imunoglobulina M , Muramidase/genética , Muramidase/farmacologia , Saponinas de Quilaia
10.
Biotechnol Biofuels Bioprod ; 15(1): 62, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641999

RESUMO

BACKGROUND: Starch is a very abundant and renewable carbohydrate and an important feedstock for industrial applications. However, most starch-based products are not cost-efficient due to the high energy input needed in traditional enzymatic starch conversion processes. Raw-starch-digesting enzymes (RSDEs) from filamentous fungi have great commercial value in starch processing. However, the regulatory mechanisms associated with their production in filamentous fungi remain unknown. RESULTS: In this study, we reported the novel finding that cellulolytic fungus Penicillium oxalicum 114-2 has broad RSDE activity. Four regulators, including the amylase transcription activator AmyR, the catabolite repression repressor CreA, the group III G protein α subunit PGA3, and the nonhistone chromosomal protein HepA, have been found to play a crucial regulatory role in RSDE expression. Enzymatic assays revealed that RSDE production significantly increased after the overexpression of AmyR and HepA, the deletion of CreA and the dominant activation of PGA3. RT-qPCR analysis demonstrated that there is a mutual regulation mode between the four regulators, and then formed a cascade regulation mechanism that is involved in RSDE expression. Comparative transcriptomic analysis between the wild-type strain and genetically engineered strains revealed differentially expressed genes that may mediate the RSDE expression. CONCLUSIONS: The four different types of regulators were systematically investigated and found to form a regulatory network controlling RSDE gene expression. Our results provide a new insight into the regulatory mechanism of fungal amylolytic enzyme expression and offer a theoretical basis to rationally improve the RSDE yield in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA