Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Biol Sex Differ ; 15(1): 40, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750585

RESUMO

BACKGROUND: Recent studies have shown that prenatal BPA exposure altered the transcriptome profiles of autism-related genes in the offspring's hippocampus, disrupting hippocampal neuritogenesis and causing male-specific deficits in learning. However, the sex differences in the effects of prenatal BPA exposure on the developing prefrontal cortex, which is another brain region highly implicated in autism spectrum disorder (ASD), have not been investigated. METHODS: We obtained transcriptome data from RNA sequencing analysis of the prefrontal cortex of male and female rat pups prenatally exposed to BPA or control and reanalyzed. BPA-responsive genes associated with cortical development and social behaviors were selected for confirmation by qRT-PCR analysis. Neuritogenesis of primary cells from the prefrontal cortex of pups prenatally exposed to BPA or control was examined. The social behaviors of the pups were assessed using the two-trial and three-chamber tests. The male-specific impact of the downregulation of a selected BPA-responsive gene (i.e., Sema5a) on cortical development in vivo was interrogated using siRNA-mediated knockdown by an in utero electroporation technique. RESULTS: Genes disrupted by prenatal BPA exposure were associated with ASD and showed sex-specific dysregulation. Sema5a and Slc9a9, which were involved in neuritogenesis and social behaviors, were downregulated only in males, while Anxa2 and Junb, which were also linked to neuritogenesis and social behaviors, were suppressed only in females. Neuritogenesis was increased in males and showed a strong inverse correlation with Sema5a and Slc9a9 expression levels, whereas, in the females, neuritogenesis was decreased and correlated with Anxa2 and Junb levels. The siRNA-mediated knockdown of Sema5a in males also impaired cortical development in utero. Consistent with Anxa2 and Junb downregulations, deficits in social novelty were observed only in female offspring but not in males. CONCLUSION: This is the first study to show that prenatal BPA exposure dysregulated the expression of ASD-related genes and functions, including cortical neuritogenesis and development and social behaviors, in a sex-dependent manner. Our findings suggest that, besides the hippocampus, BPA could also exert its adverse effects through sex-specific molecular mechanisms in the offspring's prefrontal cortex, which in turn would lead to sex differences in ASD-related neuropathology and clinical manifestations, which deserves further investigation.


Assuntos
Compostos Benzidrílicos , Fenóis , Córtex Pré-Frontal , Efeitos Tardios da Exposição Pré-Natal , Caracteres Sexuais , Comportamento Social , Animais , Feminino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Fenóis/toxicidade , Fenóis/efeitos adversos , Masculino , Compostos Benzidrílicos/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Transtorno Autístico/genética , Transtorno Autístico/induzido quimicamente , Ratos Sprague-Dawley , Ratos , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/genética
2.
Sci Rep ; 13(1): 7225, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142620

RESUMO

Glutamate-induced neurotoxicity in the HT22 mouse hippocampal neuronal cell line has been recognized as a valuable cell model for the study of neurotoxicity associated with neurodegenerative diseases including Alzheimer's disease (AD). However, the relevance of this cell model for AD pathogenesis and preclinical drug screening remains to be more elucidated. While there is increasing use of this cell model in a number of studies, relatively little is known about its underlying molecular signatures in relation to AD. Here, our RNA sequencing study provides the first transcriptomic and network analyses of HT22 cells following glutamate exposure. Several differentially expressed genes (DEGs) and their relationships specific to AD were identified. Additionally, the usefulness of this cell model as a drug screening system was assessed by determining the expression of those AD-associated DEGs in response to two medicinal plant extracts, Acanthus ebracteatus and Streblus asper, that have been previously shown to be protective in this cell model. In summary, the present study reports newly identified AD-specific molecular signatures in glutamate-injured HT22 cells, suggesting that this cell can be a valuable model system for the screening and evaluation of new anti-AD agents, particularly from natural products.


Assuntos
Doença de Alzheimer , Ácido Glutâmico , Camundongos , Animais , Ácido Glutâmico/toxicidade , Ácido Glutâmico/metabolismo , Estresse Oxidativo/fisiologia , Transcriptoma , Neurônios/metabolismo , Linhagem Celular , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Hipocampo/metabolismo
3.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108679

RESUMO

Alu elements are transposable elements that can influence gene regulation through several mechanisms; nevertheless, it remains unclear whether dysregulation of Alu elements contributes to the neuropathology of autism spectrum disorder (ASD). In this study, we characterized transposable element expression profiles and their sequence characteristics in the prefrontal cortex tissues of ASD and unaffected individuals using RNA-sequencing data. Our results showed that most of the differentially expressed transposable elements belong to the Alu family, with 659 loci of Alu elements corresponding to 456 differentially expressed genes in the prefrontal cortex of ASD individuals. We predicted cis- and trans-regulation of Alu elements to host/distant genes by conducting correlation analyses. The expression level of Alu elements correlated significantly with 133 host genes (cis-regulation, adjusted p < 0.05) associated with ASD as well as the cell survival and cell death of neuronal cells. Transcription factor binding sites in the promoter regions of differentially expressed Alu elements are conserved and associated with autism candidate genes, including RORA. COBRA analyses of postmortem brain tissues showed significant hypomethylation in global methylation analyses of Alu elements in ASD subphenotypes as well as DNA methylation of Alu elements located near the RNF-135 gene (p < 0.05). In addition, we found that neuronal cell density, which was significantly increased (p = 0.042), correlated with the expression of genes associated with Alu elements in the prefrontal cortex of ASD. Finally, we determined a relationship between these findings and the ASD severity (i.e., ADI-R scores) of individuals with ASD. Our findings provide a better understanding of the impact of Alu elements on gene regulation and molecular neuropathology in the brain tissues of ASD individuals, which deserves further investigation.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno Autístico/genética , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Elementos Alu/genética , Elementos de DNA Transponíveis , Metilação de DNA , Epigênese Genética , Córtex Pré-Frontal/metabolismo
4.
Biol Sex Differ ; 14(1): 8, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803626

RESUMO

BACKGROUND: Bisphenol A (BPA) has been linked to susceptibility to autism spectrum disorder (ASD). Our recent studies have shown that prenatal BPA exposure disrupted ASD-related gene expression in the hippocampus, neurological functions, and behaviors associated with ASD in a sex-specific pattern. However, the molecular mechanisms underlying the effects of BPA are still unclear. METHODS: Transcriptome data mining and molecular docking analyses were performed to identify ASD-related transcription factors (TFs) and their target genes underlying the sex-specific effects of prenatal BPA exposure. Gene ontology analysis was conducted to predict biological functions associated with these genes. The expression levels of ASD-related TFs and targets in the hippocampus of rat pups prenatally exposed to BPA were measured using qRT-PCR analysis. The role of the androgen receptor (AR) in BPA-mediated regulation of ASD candidate genes was investigated using a human neuronal cell line stably transfected with AR-expression or control plasmid. Synaptogenesis, which is a function associated with genes transcriptionally regulated by ASD-related TFs, was assessed using primary hippocampal neurons isolated from male and female rat pups prenatally exposed to BPA. RESULTS: We found that there was a sex difference in ASD-related TFs underlying the effects of prenatal BPA exposure on the transcriptome profiles of the offspring hippocampus. In addition to the known BPA targets AR and ESR1, BPA could directly interact with novel targets (i.e., KDM5B, SMAD4, and TCF7L2). The targets of these TFs were also associated with ASD. Prenatal BPA exposure disrupted the expression of ASD-related TFs and targets in the offspring hippocampus in a sex-dependent manner. Moreover, AR was involved in the BPA-mediated dysregulation of AUTS2, KMT2C, and SMARCC2. Prenatal BPA exposure altered synaptogenesis by increasing synaptic protein levels in males but not in females, but the number of excitatory synapses was increased in female primary neurons only. CONCLUSIONS: Our findings suggest that AR and other ASD-related TFs are involved in sex differences in the effects of prenatal BPA exposure on transcriptome profiles and synaptogenesis in the offspring hippocampus. These TFs may play an essential role in an increased ASD susceptibility associated with endocrine-disrupting chemicals, particularly BPA, and the male bias of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Gravidez , Ratos , Animais , Feminino , Masculino , Humanos , Transcriptoma , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/genética , Caracteres Sexuais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Simulação de Acoplamento Molecular , Hipocampo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/farmacologia
5.
Sci Rep ; 12(1): 13970, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978033

RESUMO

Long interspersed nucleotide element-1 (LINE-1) and Alu elements are retrotransposons whose abilities cause abnormal gene expression and genomic instability. Several studies have focused on DNA methylation profiling of gene regions, but the locus-specific methylation of LINE-1 and Alu elements has not been identified in autism spectrum disorder (ASD). Here we interrogated locus- and family-specific methylation profiles of LINE-1 and Alu elements in ASD whole blood using publicly-available Illumina Infinium 450 K methylation datasets from heterogeneous ASD and ASD variants (Chromodomain Helicase DNA-binding 8 (CHD8) and 16p11.2del). Total DNA methylation of repetitive elements were notably hypomethylated exclusively in ASD with CHD8 variants. Methylation alteration in a family-specific manner including L1P, L1H, HAL, AluJ, and AluS families were observed in the heterogeneous ASD and ASD with CHD8 variants. Moreover, LINE-1 and Alu methylation within target genes is inversely related to the expression level in each ASD variant. The DNA methylation signatures of the LINE-1 and Alu elements in ASD whole blood, as well as their associations with the expression of ASD-related genes, have been identified. If confirmed in future larger studies, these findings may contribute to the identification of epigenomic biomarkers of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Elementos Alu/genética , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Metilação de DNA , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética
6.
Front Genet ; 13: 929471, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035158

RESUMO

Environmental exposures to endocrine disrupting compounds (EDCs) such as the organochlorines have been linked with various diseases including neurodevelopmental disorders. Autism spectrum disorder (ASD) is a highly complex neurodevelopmental disorder that is considered strongly genetic in origin due to its high heritability. However, the rapidly rising prevalence of ASD suggests that environmental factors may also influence risk for ASD. In the present study, whole genome bisulfite sequencing was used to identify genome-wide differentially methylated regions (DMRs) in a total of 52 sperm samples from a cohort of men from the Faroe Islands (Denmark) who were equally divided into high and low exposure groups based on their serum levels of the long-lived organochlorine 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE), a primary breakdown product of the now banned insecticide dichlorodiphenyltrichloroethane (DDT). Aside from being considered a genetic isolate, inhabitants of the Faroe Islands have a native diet that potentially exposes them to a wide range of seafood neurotoxicants in the form of persistent organic pollutants (POPs). The DMRs were mapped to the human genome using Bismark, a 3-letter aligner used for methyl-seq analyses. Gene ontology, functional, and pathway analyses of the DMR-associated genes showed significant enrichment for genes involved in neurological functions and neurodevelopmental processes frequently impacted by ASD. Notably, these genes also significantly overlap with autism risk genes as well as those previously identified in sperm from fathers of children with ASD in comparison to that of fathers of neurotypical children. These results collectively suggest a possible mechanism involving altered methylation of a significant number of neurologically relevant ASD risk genes for introducing epigenetic changes associated with environmental exposures into the sperm methylome. Such changes may provide the potential for transgenerational inheritance of ASD as well as other disorders.

7.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34947998

RESUMO

Bisphenol A (BPA) is an environmental risk factor for autism spectrum disorder (ASD). BPA exposure dysregulates ASD-related genes in the hippocampus and neurological functions of offspring. However, whether prenatal BPA exposure has an impact on genes in the prefrontal cortex, another brain region highly implicated in ASD, and through what mechanisms have not been investigated. Here, we demonstrated that prenatal BPA exposure disrupts the transcriptome-interactome profiles of the prefrontal cortex of neonatal rats. Interestingly, the list of BPA-responsive genes was significantly enriched with known ASD candidate genes, as well as genes that were dysregulated in the postmortem brain tissues of ASD cases from multiple independent studies. Moreover, several differentially expressed genes in the offspring's prefrontal cortex were the targets of ASD-related transcription factors, including AR, ESR1, and RORA. The hypergeometric distribution analysis revealed that BPA may regulate the expression of such genes through these transcription factors in a sex-dependent manner. The molecular docking analysis of BPA and ASD-related transcription factors revealed novel potential targets of BPA, including RORA, SOX5, TCF4, and YY1. Our findings indicated that prenatal BPA exposure disrupts ASD-related genes in the offspring's prefrontal cortex and may increase the risk of ASD through sex-dependent molecular mechanisms, which should be investigated further.


Assuntos
Transtorno do Espectro Autista/genética , Compostos Benzidrílicos/efeitos adversos , Perfilação da Expressão Gênica/métodos , Fenóis/efeitos adversos , Córtex Pré-Frontal/química , Efeitos Tardios da Exposição Pré-Natal/genética , Fatores de Transcrição/genética , Animais , Transtorno do Espectro Autista/induzido quimicamente , Modelos Animais de Doenças , Receptor alfa de Estrogênio/genética , Feminino , Regulação da Expressão Gênica , Simulação de Acoplamento Molecular , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Receptores Androgênicos/genética , Análise de Sequência de RNA , Caracteres Sexuais
8.
Sci Rep ; 11(1): 1241, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441873

RESUMO

Our recent study has shown that prenatal exposure to bisphenol A (BPA) altered the expression of genes associated with autism spectrum disorder (ASD). In this study, we further investigated the effects of prenatal BPA exposure on ASD-related genes known to regulate neuronal viability, neuritogenesis, and learning/memory, and assessed these functions in the offspring of exposed pregnant rats. We found that prenatal BPA exposure increased neurite length, the number of primary neurites, and the number of neurite branches, but reduced the size of the hippocampal cell body in both sexes of the offspring. However, in utero exposure to BPA decreased the neuronal viability and the neuronal density in the hippocampus and impaired learning/memory only in the male offspring while the females were not affected. Interestingly, the expression of several ASD-related genes (e.g. Mief2, Eif3h, Cux1, and Atp8a1) in the hippocampus were dysregulated and showed a sex-specific correlation with neuronal viability, neuritogenesis, and/or learning/memory. The findings from this study suggest that prenatal BPA exposure disrupts ASD-related genes involved in neuronal viability, neuritogenesis, and learning/memory in a sex-dependent manner, and these genes may play an important role in the risk and the higher prevalence of ASD in males subjected to prenatal BPA exposure.


Assuntos
Transtorno do Espectro Autista/metabolismo , Compostos Benzidrílicos/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Fenóis/toxicidade , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Caracteres Sexuais , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Feminino , Hipocampo/patologia , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Ratos Wistar
9.
Autism ; 25(4): 887-910, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33256464

RESUMO

LAY ABSTRACT: This study investigates altered DNA methylation that may contribute to autism spectrum disorders. DNA methylation is an epigenetic mechanism for regulating the level at which genes are expressed, and is thus complementary to genetics and gene expression analyses which look at the variations in gene structure and gene products in cells. Here, we identify DNA methylation differences between autistic and sex-matched non-autistic siblings, focusing on a subgroup of severely affected individuals with language impairment to reduce the clinical heterogeneity among the cases. Our results show significant differentially methylated genes between the sibling groups that are enriched in autism risk genes as well as in signaling and biochemical pathways previously associated with the pathobiology of autism spectrum disorders. Moreover, we show for the first time that these differences are in part sex dependent, with differentially methylated genes in females associated with pathways that implicate mitochondrial dysfunction and metabolic disorders that may offer some protection to females against autism spectrum disorders. Further investigations of sex differences are required to develop a fuller understanding of the pathobiology, gene regulatory mechanisms, and differential susceptibility of males and females toward autism spectrum disorders.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Metilação de DNA/genética , Feminino , Humanos , Masculino , Redes e Vias Metabólicas/genética , Caracteres Sexuais
10.
Front Neurol ; 11: 578972, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281715

RESUMO

Autism spectrum disorder (ASD) describes a collection of neurodevelopmental disorders characterized by core symptoms that include social communication deficits and repetitive, stereotyped behaviors often coupled with restricted interests. Primary challenges to understanding and treating ASD are the genetic and phenotypic heterogeneity of cases that complicates all omics analyses as well as a lack of information on relationships among genes, pathways, and autistic traits. In this study, we re-analyze existing transcriptomic data from simplex families by subtyping individuals with ASD according to multivariate cluster analyses of clinical ADI-R scores that encompass a broad range of behavioral symptoms. We also correlate multiple ASD traits, such as deficits in verbal and non-verbal communication, play and social skills, ritualistic behaviors, and savant skills, with expression profiles using Weighted Gene Correlation Network Analyses (WGCNA). Our results show that subtyping greatly enhances the ability to identify differentially expressed genes involved in specific canonical pathways and biological functions associated with ASD within each phenotypic subgroup. Moreover, using WGCNA, we identify gene modules that correlate significantly with specific ASD traits. Network prediction analyses of the genes in these modules reveal canonical pathways as well as neurological functions and disorders relevant to the pathobiology of ASD. Finally, we compare the WGCNA-derived data on autistic traits in simplex families with analogous data from multiplex families using transcriptomic data from our previous studies. The comparison reveals overlapping trait-associated pathways as well as upstream regulators of the module-associated genes that may serve as useful targets for a precision medicine approach to ASD.

11.
Int J Mol Sci ; 21(18)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961747

RESUMO

Autism spectrum disorder (ASD) describes a group of neurodevelopmental disorders with core deficits in social communication and manifestation of restricted, repetitive, and stereotyped behaviors. Despite the core symptomatology, ASD is extremely heterogeneous with respect to the severity of symptoms and behaviors. This heterogeneity presents an inherent challenge to all large-scale genome-wide omics analyses. In the present study, we address this heterogeneity by stratifying ASD probands from simplex families according to the severity of behavioral scores on the Autism Diagnostic Interview-Revised diagnostic instrument, followed by re-analysis of existing DNA methylation data from individuals in three ASD subphenotypes in comparison to that of their respective unaffected siblings. We demonstrate that subphenotyping of cases enables the identification of over 1.6 times the number of statistically significant differentially methylated regions (DMR) and DMR-associated genes (DAGs) between cases and controls, compared to that identified when all cases are combined. Our analyses also reveal ASD-related neurological functions and comorbidities that are enriched among DAGs in each phenotypic subgroup but not in the combined case group. Moreover, relational gene networks constructed with the DAGs reveal signaling pathways associated with specific functions and comorbidities. In addition, a network comprised of DAGs shared among all ASD subgroups and the combined case group is enriched in genes involved in inflammatory responses, suggesting that neuroinflammation may be a common theme underlying core features of ASD. These findings demonstrate the value of phenotype definition in methylomic analyses of ASD and may aid in the development of subtype-directed diagnostics and therapeutics.


Assuntos
Transtorno do Espectro Autista , Metilação de DNA/genética , Redes Reguladoras de Genes , Fenótipo , Irmãos , Transdução de Sinais/genética , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Feminino , Humanos , Masculino
12.
Sci Rep ; 10(1): 9487, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32528016

RESUMO

Our recent study revealed that prenatal exposure to bisphenol A (BPA) disrupted the transcriptome profiles of genes in the offspring hippocampus. In addition to genes linked to autism, several genes associated with Alzheimer's disease (AD) were found to be differentially expressed, although the association between BPA-responsive genes and AD-related genes has not been thoroughly investigated. Here, we demonstrated that in utero BPA exposure also disrupted the transcriptome profiles of genes associated with neuroinflammation and AD in the hippocampus. The level of NF-κB protein and its AD-related target gene Bace1 were significantly increased in the offspring hippocampus in a sex-dependent manner. Quantitative RT-PCR analysis also showed an increase in the expression of Tnf gene. Moreover, the reanalysis of transcriptome profiling data from several previously published BPA studies consistently showed that BPA-responsive genes were significantly associated with top AD candidate genes. The findings from this study suggest that maternal BPA exposure may increase AD risk in offspring by dysregulating genes associated with AD neuropathology and inflammation and reveal a possible relationship between AD and autism, which are linked to the same environmental factor. Sex-specific effects of prenatal BPA exposure on the susceptibility of AD deserve further investigation.


Assuntos
Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/genética , Compostos Benzidrílicos/agonistas , Fenóis/agonistas , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Transcriptoma/efeitos dos fármacos , Animais , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/genética , Feminino , Perfilação da Expressão Gênica/métodos , Hipocampo/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/genética , Masculino , Exposição Materna , NF-kappa B/genética , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Ratos , Ratos Wistar
13.
Int J Mol Sci ; 20(15)2019 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-31382655

RESUMO

Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder characterized by impaired social communication coupled with stereotyped behaviors and restricted interests. Despite the high concordance rate for diagnosis, there is little information on the magnitude of genetic contributions to specific ASD behaviors. Using behavioral/trait severity scores from the Autism Diagnostic Interview-Revised (ADI-R) diagnostic instrument, we compared the phenotypic profiles of mono- and dizygotic twins where both co-twins were diagnosed with ASD or only one twin had a diagnosis. The trait distribution profiles across the respective twin populations were first used for quantitative trait association analyses using publicly available genome-wide genotyping data. Trait-associated single nucleotide polymorphisms (SNPs) were then used for case-control association analyses, in which cases were defined as individuals in the lowest (Q1) and highest (Q4) quartiles of the severity distribution curves for each trait. While all of the ASD-diagnosed twins exhibited similar trait severity profiles, the non-autistic dizygotic twins exhibited significantly lower ADI-R item scores than the non-autistic monozygotic twins. Case-control association analyses of twins stratified by trait severity revealed statistically significant SNPs with odds ratios that clearly distinguished individuals in Q4 from those in Q1. While the level of shared genomic variation is a strong determinant of the severity of autistic traits in the discordant non-autistic twins, the similarity of trait profiles in the concordantly autistic dizygotic twins also suggests a role for environmental influences. Stratification of cases by trait severity resulted in the identification of statistically significant SNPs located near genes over-represented within autism gene datasets.


Assuntos
Transtorno do Espectro Autista/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Locos de Características Quantitativas/genética , Transtorno do Espectro Autista/patologia , Criança , Feminino , Heterogeneidade Genética , Genótipo , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Índice de Gravidade de Doença , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética
14.
Sci Rep ; 9(1): 3038, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816183

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder inexplicably biased towards males. Although prenatal exposure to bisphenol A (BPA) has recently been associated with the ASD risk, whether BPA dysregulates ASD-related genes in the developing brain remains unclear. In this study, transcriptome profiling by RNA-seq analysis of hippocampi isolated from neonatal pups prenatally exposed to BPA was conducted and revealed a list of differentially expressed genes (DEGs) associated with ASD. Among the DEGs, several ASD candidate genes, including Auts2 and Foxp2, were dysregulated and showed sex differences in response to BPA exposure. The interactome and pathway analyses of DEGs using Ingenuity Pathway Analysis software revealed significant associations between the DEGs in males and neurological functions/disorders associated with ASD. Moreover, the reanalysis of transcriptome profiling data from previously published BPA studies consistently showed that BPA-responsive genes were significantly associated with ASD-related genes. The findings from this study indicate that prenatal BPA exposure alters the expression of ASD-linked genes in the hippocampus and suggest that maternal BPA exposure may increase ASD susceptibility by dysregulating genes associated with neurological functions known to be negatively impacted in ASD, which deserves further investigations.


Assuntos
Transtorno do Espectro Autista/genética , Compostos Benzidrílicos/toxicidade , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Fenóis/toxicidade , Efeitos Tardios da Exposição Pré-Natal/genética , Animais , Animais Recém-Nascidos , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/patologia , Modelos Animais de Doenças , Feminino , Fatores de Transcrição Forkhead/metabolismo , Hipocampo/patologia , Humanos , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/patologia , RNA-Seq , Ratos , Fatores Sexuais
15.
Mol Autism ; 9: 27, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29686828

RESUMO

Background: Alu elements are a group of repetitive elements that can influence gene expression through CpG residues and transcription factor binding. Altered gene expression and methylation profiles have been reported in various tissues and cell lines from individuals with autism spectrum disorder (ASD). However, the role of Alu elements in ASD remains unclear. We thus investigated whether Alu elements are associated with altered gene expression profiles in ASD. Methods: We obtained five blood-based gene expression profiles from the Gene Expression Omnibus database and human Alu-inserted gene lists from the TranspoGene database. Differentially expressed genes (DEGs) in ASD were identified from each study and overlapped with the human Alu-inserted genes. The biological functions and networks of Alu-inserted DEGs were then predicted by Ingenuity Pathway Analysis (IPA). A combined bisulfite restriction analysis of lymphoblastoid cell lines (LCLs) derived from 36 ASD and 20 sex- and age-matched unaffected individuals was performed to assess the global DNA methylation levels within Alu elements, and the Alu expression levels were determined by quantitative RT-PCR. Results: In ASD blood or blood-derived cells, 320 Alu-inserted genes were reproducibly differentially expressed. Biological function and pathway analysis showed that these genes were significantly associated with neurodevelopmental disorders and neurological functions involved in ASD etiology. Interestingly, estrogen receptor and androgen signaling pathways implicated in the sex bias of ASD, as well as IL-6 signaling and neuroinflammation signaling pathways, were also highlighted. Alu methylation was not significantly different between the ASD and sex- and age-matched control groups. However, significantly altered Alu methylation patterns were observed in ASD cases sub-grouped based on Autism Diagnostic Interview-Revised scores compared with matched controls. Quantitative RT-PCR analysis of Alu expression also showed significant differences between ASD subgroups. Interestingly, Alu expression was correlated with methylation status in one phenotypic ASD subgroup. Conclusion: Alu methylation and expression were altered in LCLs from ASD subgroups. Our findings highlight the association of Alu elements with gene dysregulation in ASD blood samples and warrant further investigation. Moreover, the classification of ASD individuals into subgroups based on phenotypes may be beneficial and could provide insights into the still unknown etiology and the underlying mechanisms of ASD.


Assuntos
Elementos Alu , Transtorno do Espectro Autista/genética , Metilação de DNA , Epigênese Genética , Redes Reguladoras de Genes , Transcriptoma , Estudos de Casos e Controles , Células Cultivadas , Feminino , Genoma Humano , Humanos , Masculino
16.
Horm Behav ; 101: 13-21, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29042182

RESUMO

Recent research on the etiology of autism spectrum disorder (ASD) has shifted in part from a singular focus on genetic causes to the involvement of environmental factors and their gene interactions. This shift in focus is a result of the rapidly increasing prevalence of ASD coupled with the incomplete penetrance of this disorder in monozygotic twins. One such area of environmentally focused research is the association of exposures to endocrine disrupting compounds (EDCs) with elevated risk for ASD. EDCs are exogenous chemicals that can alter endogenous hormone activity and homeostasis, thus potentially disrupting the action of sex and other natural hormones at all stages of human development. Inasmuch as sex hormones play a fundamental role in brain development and sexual differentiation, exposure to EDCs in utero during critical stages of development can have lasting neurological and other physiological influences on the developing fetus and, ultimately, the child as well as adult. This review will focus on the possible contributions of EDCs to autism risk and pathogenesis by first discussing the influence of endogenous sex hormones on the autistic phenotype, followed by a review of documented human exposures to EDCs and associations with behaviors relevant to ASD. Mechanistic links between EDC exposures and aberrant neurodevelopment and behaviors are then considered, with emphasis on EDC-induced transcriptional profiles derived from animal and cellular studies. Finally, this review will discuss possible mechanisms through which EDC exposure can lead to persistent changes in gene expression and phenotype, which may in turn contribute to transgenerational inheritance of ASD.


Assuntos
Transtorno do Espectro Autista/etiologia , Disruptores Endócrinos/toxicidade , Exposição Ambiental/efeitos adversos , Animais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/epidemiologia , Criança , Disruptores Endócrinos/efeitos adversos , Exposição Ambiental/estatística & dados numéricos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Interação Gene-Ambiente , Hormônios/fisiologia , Humanos , Padrões de Herança/efeitos dos fármacos , Padrões de Herança/genética , Fatores de Risco
17.
Curr Behav Neurosci Rep ; 3(3): 264-274, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28093577

RESUMO

PURPOSE OF REVIEW: Evidence has linked neuropsychiatric disorders with epigenetic marks as either a biomarker of disease, biomarker of exposure, or mechanism of disease processes. Neuropsychiatric epidemiologic studies using either target brain tissue or surrogate blood tissue each have methodological challenges and distinct advantages. RECENT FINDINGS: Brain tissue studies are challenged by small sample sizes of cases and controls, incomplete phenotyping, post-mortem timing, and cellular heterogeneity, but the use of a primary disease relevant tissue is critical. Blood-based studies have access to much larger sample sizes and more replication opportunities, as well as the potential for longitudinal measurements, both prior to onset and during the course of treatments. Yet, blood studies also are challenged by cell-type heterogeneity, and many question the validity of using peripheral tissues as a brain biomarker. Emerging evidence suggests that these limitations to blood-based epigenetic studies are surmountable, but confirmation in target tissue remains important. SUMMARY: Epigenetic mechanisms have the potential to help elucidate biology connecting experiential risk factors with neuropsychiatric disease manifestation. Cross-tissue studies as well as advanced epidemiologic methods should be employed to more effectively conduct neuropsychiatric epigenetic research.

18.
Mol Autism ; 6: 7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26056561

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by significant impairment in reciprocal social interactions and communication coupled with stereotyped, repetitive behaviors and restricted interests. Although genomic and functional studies are beginning to reveal some of the genetic complexity and underlying pathobiology of ASD, the consistently reported male bias of ASD remains an enigma. We have recently proposed that retinoic acid-related orphan receptor alpha (RORA), which is reduced in the brain and lymphoblastoid cell lines of multiple cohorts of individuals with ASD and oppositely regulated by male and female hormones, might contribute to the sex bias in autism by differentially regulating target genes, including CYP19A1 (aromatase), in a sex-dependent manner that can also lead to elevated testosterone levels, a proposed risk factor for autism. METHODS: In this study, we examine sex differences in RORA and aromatase protein levels in cortical tissues of unaffected and affected males and females by re-analyzing pre-existing confocal immunofluorescence data from our laboratory. We further investigated the expression of RORA and its correlation with several of its validated transcriptional targets in the orbital frontal cortex and cerebellum as a function of development using RNAseq data from the BrainSpan Atlas of the Developing Human Brain. In a pilot study, we also analyzed the expression of Rora and the same transcriptional targets in the cortex and cerebellum of adult wild-type male and female C57BL/6 mice. RESULTS: Our findings suggest that Rora/RORA and several of its transcriptional targets may exhibit sexually dimorphic expression in certain regions of the brain of both mice and humans. Interestingly, the correlation coefficients between Rora expression and that of its targets are much higher in the cortex of male mice relative to that of female mice. A strong positive correlation between the levels of RORA and aromatase proteins is also seen in the cortex of control human males and females as well as ASD males, but not ASD females. CONCLUSIONS: Based on these studies, we suggest that disruption of Rora/RORA expression may have a greater impact on males, since sex differences in the correlation of RORA and target gene expression indicate that RORA-deficient males may experience greater dysregulation of genes relevant to ASD in certain brain regions during development.

19.
Artigo em Inglês | MEDLINE | ID: mdl-24363828

RESUMO

Autism spectrum disorders (ASD) are neurodevelopmental disorders which are currently diagnosed solely on the basis of abnormal stereotyped behavior as well as observable deficits in communication and social functioning. Although a variety of candidate genes have been identified on the basis of genetic analyses and up to 20% of ASD cases can be collectively associated with a genetic abnormality, no single gene or genetic variant is applicable to more than 1-2 percent of the general ASD population. In this report, we apply class prediction algorithms to gene expression profiles of lymphoblastoid cell lines (LCL) from several phenotypic subgroups of idiopathic autism defined by cluster analyses of behavioral severity scores on the Autism Diagnostic Interview-Revised diagnostic instrument for ASD. We further demonstrate that individuals from these ASD subgroups can be distinguished from nonautistic controls on the basis of limited sets of differentially expressed genes with a predicted classification accuracy of up to 94% and sensitivities and specificities of ~90% or better, based on support vector machine analyses with leave-one-out validation. Validation of a subset of the "classifier" genes by high-throughput quantitative nuclease protection assays with a new set of LCL samples derived from individuals in one of the phenotypic subgroups and from a new set of controls resulted in an overall class prediction accuracy of ~82%, with ~90% sensitivity and 75% specificity. Although additional validation with a larger cohort is needed, and effective clinical translation must include confirmation of the differentially expressed genes in primary cells from cases earlier in development, we suggest that such panels of genes, based on expression analyses of phenotypically more homogeneous subgroups of individuals with ASD, may be useful biomarkers for diagnosis of subtypes of idiopathic autism.

20.
Mol Autism ; 4(1): 39, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24119295

RESUMO

BACKGROUND: Our independent cohort studies have consistently shown the reduction of the nuclear receptor RORA (retinoic acid-related orphan receptor-alpha) in lymphoblasts as well as in brain tissues from individuals with autism spectrum disorder (ASD). Moreover, we have found that RORA regulates the gene for aromatase, which converts androgen to estrogen, and that male and female hormones regulate RORA in opposite directions, with androgen suppressing RORA, suggesting that the sexually dimorphic regulation of RORA may contribute to the male bias in ASD. However, the molecular mechanisms through which androgen and estrogen differentially regulate RORA are still unknown. METHODS: Here we use functional knockdown of hormone receptors and coregulators with small interfering RNA (siRNA) to investigate their involvement in sex hormone regulation of RORA in human neuronal cells. Luciferase assays using a vector containing various RORA promoter constructs were first performed to identify the promoter regions required for inverse regulation of RORA by male and female hormones. Sequential chromatin immunoprecipitation methods followed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analyses of RORA expression in hormone-treated SH-SY5Y cells were then utilized to identify coregulators that associate with hormone receptors on the RORA promoter. siRNA-mediated knockdown of interacting coregulators was performed followed by qRT-PCR analyses to confirm the functional requirement of each coregulator in hormone-regulated RORA expression. RESULTS: Our studies demonstrate the direct involvement of androgen receptor (AR) and estrogen receptor (ER) in the regulation of RORA by male and female hormones, respectively, and that the promoter region between -10055 bp and -2344 bp from the transcription start site of RORA is required for the inverse hormonal regulation. We further show that AR interacts with SUMO1, a reported suppressor of AR transcriptional activity, whereas ERα interacts with the coactivator NCOA5 on the RORA promoter. siRNA-mediated knockdown of SUMO1 and NCOA5 attenuate the sex hormone effects on RORA expression. CONCLUSIONS: AR and SUMO1 are involved in the suppression RORA expression by androgen, while ERα and NCOA5 collaborate in the up-regulation of RORA by estrogen. While this study offers a better understanding of molecular mechanisms involved in sex hormone regulation of RORA, it also reveals another layer of complexity with regard to gene regulation in ASD. Inasmuch as coregulators are capable of interacting with a multitude of transcription factors, aberrant expression of coregulator proteins, as we have seen previously in lymphoblasts from individuals with ASD, may contribute to the polygenic nature of gene dysregulation in ASD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA