Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Ethnopharmacol ; 308: 116299, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36842721

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Curcumae Longae Rhizoma (CLR) is a safe natural herbal medicine, and which has been widely used for centuries as functional food and health products, but its effects on angiogenesis and related underlying mechanism remain unclear. AIM OF THE STUDY: The abnormal angiogenesis is closely related with various diseases, and therefore the precise control of angiogenesis is of great importance. The well-known angiogenic factor, vascular endothelial growth factor (VEGF), mediates angiogenesis and induces multiple signalling pathways via binding to VEGF receptor (VEGFR). The attenuation of VEGF-triggered angiogenic-related signalling pathways may relieve various diseases through suppression of angiogenesis. Here, we aimed to elucidate that CLR extract could exert striking anti-angiogenic activities both in vitro and in vivo. MATERIALS AND METHODS: The viability of human umbilical vascular endothelial cell (HUVEC) was examined by LDH and MTT assays. Migrative and invasive ability of the endothelial cells were independently evaluated by wound healing and transwell assays. The activities of CLR extract on in vitro angiogenesis was tested by tube formation assay. In vivo vascularization was determined by using zebrafish embryo model in the present of CLR extract. Western blotting was applied to determine the phosphorylated levels of VEGFR2, PI3K, AKT and eNOS. Besides, the levels of nitric oxide (NO) and reactive oxygen species (ROS) were separately evaluated by Griess assay and 2'7'-dichlorofluorescein diacetate reaction. In addition, the cell migrative ability of cancer cell was estimated by using cultured human colon carcinoma cells (HT-29 cell line), and immunofluorescence assay was applied to evaluate the effect of CLR extract on nuclear translocation of NF-κB p65 subunit in the VEGF-treated HT-29 cultures. RESULTS: CLR extract significantly suppressed a series of VEGF-mediated angiogenic responses, including endothelial cell proliferation, migration, invasion, and tube formation. Moreover, CLR extract reduced in vivo sub-intestinal vessel formation in zebrafish embryo model. Mechanistically, the extract of CLR attenuated the VEGF-triggered signalling, as demonstrated by decreased level of phosphorylated VEGFR2 and subsequently inactivated its downstream regulators, e.g. phospho-PI3K, phospho-AKT and phospho-eNOS. The production of NO and formation of ROS were markedly inhibited in HUVECs. Furthermore, CLR extract suppressed cell migration and NF-κB translocation in cultured HT-29 cells. CONCLUSIONS: These preclinical findings demonstrate that the extract of CLR remarkably attenuates angiogenesis and which has great potential as a natural drug candidate with excellent anti-angiogenic activity.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Fator A de Crescimento do Endotélio Vascular , Animais , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Peixe-Zebra , Fosfatidilinositol 3-Quinases/metabolismo , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais da Veia Umbilical Humana , Extratos Vegetais/farmacologia , Movimento Celular , Proliferação de Células , Inibidores da Angiogênese/farmacologia
2.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742898

RESUMO

Retinopathy of prematurity (ROP) is a severe eye disease leading to blindness. Abnormal vessel formation is the pathological hallmark of neovascular ROP. In forming vessels, vascular endothelial growth factor (VEGF) is an important stimulator. The current anti-ROP therapy has focused on bevacizumab, a monoclonal antibody against VEGF, and pazopanib, a tyrosine kinase inhibitor on the VEGF receptor (VEGFR). Several lines of evidence have proposed that natural compounds may be more effective and safer for anti-VEGF function. Resveratrol, a common natural compound, binds to VEGF and blocks its interaction with VEGFR, thereafter suppressing angiogenesis. Here, we evaluate the efficacy of intravitreal injection, or topical instillation (eye drops), of resveratrol into the eyes of mice suffering from oxygen-induced retinopathy, i.e., developing ROP. The treatment of resveratrol significantly relieved the degree of vascular distortion, permeability and hyperplasia; the efficacy could be revealed by both methods of resveratrol application. In parallel, the treatments of resveratrol inhibited the retinal expressions of VEGF, VEGFR and CD31. Moreover, the applied resveratrol significantly relieved the damage caused by oxygen radicals through upregulating the level of superoxide dismutase (SOD) and downregulating the level of malondialdehyde (MDA) in the retina. Taken together, the potential therapeutic benefit of resveratrol in pro-angiogenic diseases, including retinopathy, can be considered.


Assuntos
Retinopatia da Prematuridade , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Bevacizumab/uso terapêutico , Camundongos , Neovascularização Patológica/tratamento farmacológico , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/patologia , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
3.
Phytomedicine ; 80: 153400, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33157413

RESUMO

BACKGROUND: Vascular Endothelial Growth Factors (VEGFs) are a group of growth factor in regulating development and maintenance of blood capillary. The VEGF family members include VEGF-A, placenta growth factor (PGF), VEGF-B, VEGF-C and VEGF-D. VEGF receptor activation leads to multiple complex signaling pathways, particularly in inducing angiogenesis. Besides, VEGF is produced by macrophages and T cells, which is playing roles in inflammation. In macrophages, VEGF receptor-3 (VEGFR-3) and its ligand VEGF-C are known to attenuate the release of pro-inflammatory cytokines. METHODS: Immunoprecipitation and molecular docking assays showed the binding interaction of kaempferol-3-O-rutinoside and VEGF-C. Western blotting and qRT-PCR methods were applied to explore the potentiating effect of kaempferol-3-O-rutinoside in VEGF-C-mediated expressions of proteins and genes in endothelial cells and LPS-induced macrophages. Enzyme-linked immunosorbent assay (ELISA) was employed to reveal the release of proinflammatory cytokines in LPS-induced macrophages. Immunofluorescence assay was performed to determine the effect of kaempferol-3-O-rutinoside in regulating nuclear translocation of NF-κB p65 subunit in the VEGF-C-treated cultures. In addition, Transwell® motility assay was applied to detect the ability of cell migration after drug treatment in LPS-induced macrophages. RESULTS: We identified kaempferol-3-O-rutinoside, a flavonoid commonly found in vegetable and fruit, was able to act on cultured macrophages in inhibiting inflammatory response, and the inhibition was mediated by its specific binding to VEGF-C. The kaempferol-3-O-rutinoside-bound VEGF-C showed high potency to trigger the receptor activation. In LPS-treated cultured macrophages, applied kaempferol-3-O-rutinoside potentiated inhibitory effects of exogenous applied VEGF-C on the secretions of pro-inflammatory cytokines, i.e. IL-6 and TNF-α, as well as expressions of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). This inhibition was in parallel to transcription and translocation of NF-κB. Moreover, the binding of kaempferol-3-O-rutinoside with VEGF-C suppressed the LPS-induced migration of macrophage. CONCLUSION: Taken together, our results suggested the pharmacological roles of kaempferol-3-O-rutinoside in VEGF-C-mediated anti-inflammation.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Quempferóis/metabolismo , Quempferóis/farmacologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Quempferóis/química , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7
4.
Front Pharmacol ; 11: 1045, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765267

RESUMO

BACKGROUND: Shexiang Baoxin Pill (SBP), a formulated traditional Chinese medicine (TCM), has been widely used to treat cardiovascular diseases for years. This herbal mixture has been shown to promote differentiation of cultured neuronal cells. Here, we aimed to investigate the effects of SBP in attenuating cognitive impairment in APP/PS1 transgenic mice. METHODS: Ethanol and water extracts of SBP, denoted as SBPEtOH and SBPwater, were standardized and applied onto cultured rat pheochromocytoma PC12 cells. The potential effect of SBPEtOH extract in attenuating the cognitive impairments in APP/PS1 transgenic mice was shown by following lines of evidence: (i) inhibition of Aß fibril formation, (ii) suppression of secretions of cytokines, and (iii) improvement of behavioral tests by Morris water maze. RESULTS: SBPwater and SBPEtOH inhibited the formation of ß-amyloid fibrils and protected the Aß-induced cytotoxicity in cultured PC12 cells. In APP/PS1 transgenic mice, the treatment of SBPEtOH inhibited expressions of NO, NOS, AChE, as well as aggregation of Aß. Besides, the levels of pro-inflammatory cytokines were suppressed by SBP treatment in the transgenic mice. Importantly, the behavioral tests by Morris Water maze indicated that SBP attenuated cognitive impairments in APP/PS1 transgenic mice. CONCLUSION: The current result has supported the notion that SPB might ameliorate the cognitive impairment through multiple targets, suggesting that SBP could be considered as a promising anti-AD agent.

5.
Molecules ; 25(17)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824997

RESUMO

Piceatannol is also named as trans-3,4,3',5'-tetrahydroxy-stilbene, which is a natural analog of resveratrol and a polyphenol existing in red wine, grape and sugar cane. Piceatannol has been proved to possess activities of immunomodulatory, anti-inflammatory, antiproliferative and anticancer. However, the effect of piceatannol on VEGF-mediated angiogenesis is not known. Here, the inhibitory effects of piceatannol on VEGF-induced angiogenesis were tested both in vitro and in vivo models of angiogenesis. In human umbilical vein endothelial cells (HUVECs), piceatannol markedly reduced the VEGF-induced cell proliferation, migration, invasion, as well as tube formation without affecting cell viability. Furthermore, piceatannol significantly inhibited the formation of subintestinal vessel in zebrafish embryos in vivo. In addition, we identified the underlying mechanism of piceatannol in triggering the anti-angiogenic functions. Piceatannol was proposed to bind with VEGF, thus attenuating VEGF in activating VEGF receptor and blocking VEGF-mediated downstream signaling, including expressions of phosphorylated eNOS, Erk and Akt. Furthermore, piceatannol visibly suppressed ROS formation, as triggered by VEGF. Moreover, we further determined the outcome of piceatannol binding to VEGF in cancer cells: piceatannol significantly suppressed VEGF-induced colon cancer proliferation and migration. Thus, these lines of evidence supported the conclusion that piceatannol could down regulate the VEGF-mediated angiogenic functions with no cytotoxicity via decreasing the amount of VEGF binding to its receptors, thus affecting the related downstream signaling. Piceatannol may be developed into therapeutic agents or health products to reduce the high incidence of angiogenesis-related diseases.


Assuntos
Inibidores da Angiogênese/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Estilbenos/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fosforilação , Ligação Proteica , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Peixe-Zebra
6.
Fish Shellfish Immunol ; 106: 71-78, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32738512

RESUMO

A new cell line derived from dorsal fin of rabbit fish Siganus fuscescens was developed and characterized. The cell line was isolated from the dorsal fin, named as rabbit fish fin (RFF) cell line, and which was sub-cultured for 50 cycles since the development. This cell line was tested for growth in different temperatures and serum concentrations, and the best growing condition was at 20% serum at 28 °C. In cultured RFF cells, amplification of 18S rRNA from genomic DNA and immunostaining of cellular cytokeratin confirmed the proper identity of S. fuscescens fish. After 30th passage of cultures, the cells were exposed to challenge of inflammation, triggered by LPS, and hypoxia, mimicked by CoCl2. Cultured RFF cells showed robust sensitive responses to inflammation and hypoxia in directing the expressions of cytokines and hypoxia inducible factor-1α (HIF-1α). The water extract of aerial part of Scutellaria baicalensis (SBA) has been shown in rabbit fish to prevent inflammation. Here, we extended this notion of testing the efficacy of SBA extract in the developed cultured RFF cells. Application of SBA extract inhibited the expression of LPS-induced inflammatory cytokines, i.e. IL-1ß, IL-6, as well as the signaling of NF-κB. The application of CoCl2 in cultured RFF cells triggered the hypoxia-induced cell death and up regulation of HIF-1α. As expected, applied SBA extract in the cultures prevented the hypoxia-induced signaling. Our results show the established RFF cell line may be served as an ideal in vitro model in drug screening relating to inflammation and hypoxia. Additionally, we are supporting the usage of SBA herbal extract in fish aquaculture, which possesses efficacy against inflammation and hypoxia.


Assuntos
Anti-Inflamatórios/farmacologia , Doenças dos Peixes/imunologia , Perciformes/imunologia , Extratos Vegetais/farmacologia , Animais , Linhagem Celular , Hipóxia/imunologia , Hipóxia/veterinária , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Inflamação/imunologia , Inflamação/veterinária , NF-kappa B/imunologia , Scutellaria baicalensis , Transdução de Sinais/efeitos dos fármacos
7.
Front Pharmacol ; 11: 526, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32410995

RESUMO

Kaempferol is a major flavonoid in Ginkgo Folium and other edible plants, which is being proposed here to have roles in angiogenesis. Angiogenesis is important in both physiological and pathological development. Here, kaempferol was shown to bind with vascular endothelial growth factor (VEGF), probably in the heparin binding domain of VEGF: this binding potentiated the angiogenic functions of VEGF in various culture models. Kaempferol potentiated the VEGF-induced cell motility in human umbilical vein endothelial cells (HUVECs), as well as the sub-intestinal vessel sprouting in zebrafish embryos and formation of microvascular in rat aortic ring. In cultured HUVECs, application of kaempferol strongly potentiated the VEGF-induced phosphorylations of VEGFR2, endothelial nitric oxide synthase (eNOS) and extracellular signal-regulated kinase (Erk) in time-dependent and concentration-dependent manners, and in parallel the VEGF-mediated expressions of matrix metalloproteinases (MMPs), MMP-2 and MMP-9, were significantly enhanced. In addition, the potentiation effect of kaempferol was revealed in VEGF-induced migration of skin cell and monocyte. Taken together, our results suggested the pharmacological roles of kaempferol in potentiating VEGF-mediated functions should be considered.

8.
Cancers (Basel) ; 11(12)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757048

RESUMO

Ginkgetin, a biflavone from Ginkgo biloba leaf, and resveratrol, a polyphenol found in grape and wine, are two phytochemicals being identified for its binding to vascular endothelial growth factor (VEGF): the binding, therefore, resulted in the alteration of the physiological roles of VEGF-mediated angiogenesis. The bindings of ginkgetin and resveratrol were proposed on different sites of VEGF, but both of them suppressed the angiogenic properties of VEGF. The suppressive activities of ginkgetin and resveratrol in VEGF-mediated angiogenesis were supported by several lines of evidence including (i) inhibiting the formation of sub-intestinal vessel in zebrafish embryos and microvascular sprouting in rat aortic ring; and (ii) suppressing the phosphorylations of VEGFR2, Akt, eNOS, and Erk as well as expressions of matrix metalloproteinases (MMPs), MMP-2, and MMP-9 in human umbilical vein endothelial cells (HUVECs). Here, we showed the synergy of ginkgetin and resveratrol in suppressing the VEGF-induced endothelial cell proliferation, migration, invasion, and tube formation. The synergy of ginkgetin and resveratrol was further illustrated in HT-29 colon cancer xenograft nude mice. Ginkgetin and resveratrol, when applied together, exerted a synergistic anti-tumor effect of 5-fluorouracil with decreasing microvessel density of tumors. In parallel, the combination of ginkgetin and resveratrol synergistically relieved the 5-fluorouracil-induced inflammatory response by suppressing expressions of COX-2 and inflammatory cytokines. Thus, the anti-angiogenic roles of ginkgetin and/or resveratrol could provide effective therapeutic strategy in cancer, similar to that of Avastin, in suppressing the VEGF-mediated angiogenesis during cancer development.

9.
Front Pharmacol ; 10: 1130, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649530

RESUMO

Background: Shexiang Baoxin Pill (SBP) is a well-known composite formula of traditional Chinese medicine (TCM), which is commonly used today in treating cardiovascular diseases. SBP consists of seven materials thereof, including Moschus, extract of Ginseng Radix et Rhizoma, Bovis Calculus Artifactus, Cinnamomi Cortex, Styrax, Bufonis Venenum, and Borneolum Syntheticum. Here, we are investigating the potential roles of SBP in inducing neuron differentiation, i.e., seeking possible application in neurodegenerative diseases. Methods: Water and ethanol extracts of SBP, denoted as SBPwater and SBPEtOH, respectively, as well as its individual herbal materials, were standardized and applied onto cultured rat pheochromocytoma PC12 cells. The potential effect of SBP extracts in neuronal differentiation was suggested by following parameters: (i) induction of neurite outgrowth of PC12 cells, (ii) increase of neurofilament expression, and (iii) activation of transcription of neurofilament. Results: The treatments of SBPwater and SBPEtOH, or extracts from individual herbal materials, with or without low concentration of nerve growth factor (NGF), could potentiate the differentiation of cultured PC12 cells. The differentiation was indicated by increase of neurite outgrowth, as well as expression of neurofilaments. In addition, application of H89, a protein kinase A (PKA) inhibitor, suppressed the SBP-induced neurofilament expressions, as well as the phosphorylation of cAMP-responsive element binding protein (CREB) in cultures. Conclusion: SBP is proposed to possess trophic activity in modulating neuronal differentiation of PC12 cells, and this induction is shown to be mediated partly by a cAMP-PKA signaling pathway. These results indicate the neurite-promoting SBP could be useful in developing potential drug in treating or preventing neurodegenerative diseases.

10.
Neurosci Lett ; 707: 134308, 2019 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-31153972

RESUMO

Acori Tatarinowii Rhizoma (ATR, the dried rhizome of Acorus tatarinowii Schott.) is a traditional Chinese medicine widely used to treat brain diseases, e.g. depression, forgetfulness, anxiety and epilepsy. Several lines of evidence support that ATR has neuronal beneficial functions in animal models, but its action mechanism in cellular level is unknown. Here, we identified α-asarone and ß-asarone could be the major active ingredients of ATR, which, when applied onto cultured rat astrocytes, significantly stimulated the expression and secretion of neurotrophic factors, i.e. nerve growth factor (NGF), brain derived neurotrophic factor (BDNF) and glial derived neurotrophic factor (GDNF), in dose-dependent manners. These results suggested that the neuronal action of ATR, triggered by asarone, might be mediated by an increase of expression of neurotrophic factors in astrocytes, which therefore could support the clinical usage of ATR. In addition, application of PKA inhibitor, H89, in cultured astrocytes partially blocked the asarone-induced neurotrophic factor expression, suggesting the involvement of PKA signaling. The results proposed that α-asarone and ß-asarone from ATR could serve as potential candidates for drug development in neurodegenerative diseases.


Assuntos
Acorus/química , Anisóis/farmacologia , Astrócitos/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Fatores de Crescimento Neural/metabolismo , Derivados de Alilbenzenos , Animais , Anisóis/isolamento & purificação , Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator de Crescimento Neural/metabolismo , Ratos Sprague-Dawley , Rizoma/química
11.
J Sep Sci ; 42(15): 2500-2509, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31115147

RESUMO

Short-chain fatty acids are currently the most studied metabolites of gut microbiota, but the analysis of them, simultaneously, is still challenging due to their unique property and wide concentration range. Here, we developed a sensitive and versatile high-performance liquid chromatography with ultraviolet detection method, using pre-column derivatization and solid-phase extraction segmental elution, for the quantification of both major and trace amounts of short-chain fatty acids in human feces. Short-chain fatty acids were converted to 3-nitrophenylhydrazine-derived analytes, and then solid-phase extraction segmental elution was used for extraction of major analytes and enrichment of trace analytes. The method validation showed limits of quantitation ˂0.04 mM, and coefficient of determination > 0.998 at a wide range of 0.04-8.0 mM. The intra- and interday precision of analytes were all within accepted criteria, and the recoveries were 96.12 to 100.75% for targeted analytes in fecal samples. This method was successfully applied in quantification of eight analytes in human feces, which therefore could provide a sensitive and versatile high-performance liquid chromatography with ultraviolet detection method for precise and accurate quantitation of short-chain fatty acids in human feces.


Assuntos
Ácidos Graxos Voláteis/análise , Fezes/química , Extração em Fase Sólida , Cromatografia Líquida de Alta Pressão , Humanos
12.
FASEB J ; 33(1): 532-544, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29989844

RESUMO

Polydatin, also called piceid, is a stilbenoid glucoside of a resveratrol derivative. It derives mainly from the root and rhizome of Polygonum cuspidatum Sieb. et Zucc. Although the role of P. cuspidatum root in angiogenesis has been reported, the active chemical or chemicals responsible for such function is not known. Here, polydatin was proposed to bind VEGF, which therefore altered the functions of VEGF in angiogenesis. Several lines of evidence supported the pharmaceutical effects of polydatin in VEGF-induced angiogenesis. In human umbilical vein endothelial cells, polydatin inhibited VEGF-stimulated cell proliferation, cell migration, and tube formation. Moreover, polydatin showed suppressive effects on the subintestinal vessel formation in zebrafish embryos. In signaling cascades, polydatin application attenuated VEGF-induced phosphorylations of VEGF receptor 2 and JNK. Moreover, the VEGF-induced phosphorylations of Akt, eNOS, and Erk were significantly decreased in the presence of polydatin. In parallel, the formation of reactive oxygen species, triggered by VEGF, was markedly decreased under polydatin application. Thus, our results supported the angiogenic roles of polydatin, as well as its signaling mechanism in blocking VEGF-mediated responses. The current study provides support for the possible development of polydatin as a potential therapeutic agent for treatment and prevention of angiogenesis-related diseases.-Hu, W.-H., Wang, H.-Y., Kong, X.-P., Xiong, Q.-P., Poon, K. K.-M., Xu, L., Duan, R., Chan, G. K.-L., Dong, T. T.-X., Tsim, K. W.-K. Polydatin suppresses VEGF-induced angiogenesis through binding with VEGF and inhibiting its receptor signaling.


Assuntos
Inibidores da Angiogênese/farmacologia , Movimento Celular , Proliferação de Células , Glucosídeos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Estilbenos/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Células Endoteliais da Veia Umbilical Humana , Humanos , Fosforilação , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra
13.
J Agric Food Chem ; 67(4): 1127-1137, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30525561

RESUMO

Resveratrol is a polyphenol commonly found in plants and food health products, such as grape and red wine, and was identified for its binding to vascular endothelial growth factor (VEGF) by using HerboChips screening. The binding, therefore, resulted in alterations of VEGF binding to its receptor and revealed the roles of VEGF in angiogenesis. Several lines of evidence gave support to the inhibitory activities of resveratrol in VEGF-triggered angiogenesis. In human umbilical vein endothelial cells (HUVECs), compared with a VEGF-induced group, resveratrol, at a high concentration, suppressed VEGF-mediated endothelial cell proliferation, cell migration, cell invasion, and tube formation by 80 ± 9.01%, 140 ± 3.78%, 110 ± 7.51%, and 120 ± 10.26%, respectively. Moreover, resveratrol inhibited the subintestinal vessel formation in zebrafish embryo. In signaling cascades, application of resveratrol in HUVECs reduced the VEGF-triggered VEGF receptor 2 phosphorylation and c-Jun N-terminal kinase phosphorylation. Moreover, the VEGF-mediated phosphorylations of endothelial nitric oxide synthase, protein kinase B, and extracellular signal-regulated kinase were obviously decreased by (3 ± 0.37)-, (2 ± 0.27)- and (6 ± 0.23)-fold, respectively, in the presence of resveratrol at high concentration. Parallelly, the VEGF-induced reactive oxygen species formation was significantly decreased by 50 ± 7.88% to 120 ± 14.82% under resveratrol treatment. Thus, our results provided support to the antiangiogenic roles of resveratrol, as well as its related signaling mechanisms, in attenuating the VEGF-mediated responses. The present results supported possible development of resveratrol, which should be considered as a therapeutic agent in terms of prevention and clinical treatment of diseases related to angiogenesis.


Assuntos
Inibidores da Angiogênese/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Resveratrol/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Fosforilação/efeitos dos fármacos , Receptores de Fatores de Crescimento do Endotélio Vascular/química , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Resveratrol/química , Resveratrol/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/química , Peixe-Zebra
14.
Phytomedicine ; 42: 135-143, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29655679

RESUMO

BACKGROUND: Polygoni Cuspidati Rhizoma et Radix (PCRR; the root and rhizome of Polygonum cuspidatum Sieb. et Zucc) is a traditional Chinese medicine for the treatment of inflammation, hyperlipemia, favus, jaundice and scald. HYPOTHESIS/PURPOSE: The extract of PCRR inhibits vascular endothelial growth factor (VEGF)-induced angiogenesis. The hypothesis is supported by analysis of PCRR extract and investigation of pharmacological role and signaling mechanism of PCRR extract in regulating angiogenic responses. STUDY DESIGN: The PCRR ethanolic extract was examined for its inhibitory effects on angiogenesis based on VEGF-treated human umbilical vein endothelial cells and in zebrafish model METHODS: The effects and signaling mechanism of a standardized ethanolic extract of PCRR were tested on cell proliferation, migration and tube formation in VEGF-treated human umbilical vein endothelial cells, and which was further validated in zebrafish embryo model. RESULTS: The treatment of PCRR extract in cultured endothelial cells inhibited VEGF-induced cell proliferation, cell migration and tube formation in a dose-dependent manner and also suppressed the formation of sub-intestinal vessels in zebrafish embryos. Moreover, the applied PCRR extract suppressed VEGF-induced phosphorylations of VEGF receptor 2 (VEGFR2) and JNK. Thus, the site of effect triggered by PCRR was proposed to be mediated by VEGFR2. To further support this notion, the phosphorylations of Erk, Akt and eNOS, induced by VEGF, were markedly reduced under the challenge of PCRR extract: the reductions were subsequently further decreased in the present of inhibitors of Erk, Akt and eNOS. In parallel, the formation of ROS induced by VEGF in cultured endothelial cells was markedly reduced in the present of PCRR extract. CONCLUSION: Collectively, our studies demonstrated the pharmacological role and signaling mechanism of PCRR in regulation of angiogenic responses, which supported further evaluation and development of PCRR as a potential therapeutic agent for the treatment and prevention of diseases related with angiogenesis.


Assuntos
Inibidores da Angiogênese/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Embrião não Mamífero/irrigação sanguínea , Embrião não Mamífero/efeitos dos fármacos , Fallopia japonica/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Patológica/tratamento farmacológico , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação/efeitos dos fármacos , Rizoma/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA