Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Clin J Am Soc Nephrol ; 19(5): 573-582, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423528

RESUMO

INTRODUCTION: The aim of this study was to test whether a combined risk score on the basis of genetic risk and serology can improve the prediction of kidney failure in phospholipase A2 receptor (PLA2R)-associated primary membranous nephropathy. METHODS: We performed a retrospective analysis of 519 biopsy-proven PLA2R-associated primary membranous nephropathy patients with baseline eGFR ≥25 ml/min per 1.73 m 2 . The combined risk score was calculated by combining the genetic risk score with PLA2R ELISA antibody titers. The primary end point was kidney disease progression defined as a 50% reduction in eGFR or kidney failure. Cox proportional hazard regression analysis and C-statistics were applied to compare the performance of PLA2R antibody, genetic risk score, and combined risk score, as compared with clinical factors alone, in predicting primary outcomes. RESULTS: The median age was 56 years (range, 15-82 years); the male-to-female ratio was 1:0.6, the median eGFR at biopsy was 99 ml/min per 1.73 m 2 (range: 26-167 ml/min per 1.73 m 2 ), and the median proteinuria was 5.3 g/24 hours (range: 1.5-25.8 g/24 hours). During a median follow-up of 67 (5-200) months, 66 (13%) had kidney disease progression. In Cox proportional hazard regression models, PLA2R antibody titers, genetic risk score, and combined risk score were all individually associated with kidney disease progression with and without adjustments for age, sex, proteinuria, eGFR, and tubulointerstitial lesions. The best-performing clinical model to predict kidney disease progression included age, eGFR, proteinuria, serum albumin, diabetes, and tubulointerstitial lesions (C-statistic 0.76 [0.69-0.82], adjusted R 2 0.51). Although the addition of PLA2R antibody titer improved the performance of this model (C-statistic: 0.78 [0.72-0.84], adjusted R 2 0.61), replacing PLA2R antibody with the combined risk score improved the model further (C-statistic: 0.82 [0.77-0.87], adjusted R 2 0.69, difference of C-statistics with clinical model=0.06 [0.03-0.10], P < 0.001; difference of C-statistics with clinical-serologic model=0.04 [0.01-0.06], P < 0.001). CONCLUSIONS: In patients with PLA2R-associated membranous nephropathy, the combined risk score incorporating inherited risk alleles and PLA2R antibody enhanced the prediction of kidney disease progression compared with PLA2R serology and clinical factors alone.


Assuntos
Progressão da Doença , Taxa de Filtração Glomerular , Glomerulonefrite Membranosa , Receptores da Fosfolipase A2 , Humanos , Glomerulonefrite Membranosa/genética , Glomerulonefrite Membranosa/imunologia , Glomerulonefrite Membranosa/sangue , Receptores da Fosfolipase A2/imunologia , Receptores da Fosfolipase A2/genética , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto , Idoso , Adolescente , Adulto Jovem , Idoso de 80 Anos ou mais , Medição de Risco , Prognóstico , Fatores de Risco , Autoanticorpos/sangue , Valor Preditivo dos Testes , Predisposição Genética para Doença , Estratificação de Risco Genético
2.
Water Res ; 246: 120681, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37801982

RESUMO

The synergistic effect of protein-silica complexation leads to exacerbated membrane fouling in the membrane desalination process, exceeding the individual impacts of silica scaling or protein fouling. However, the molecular-level dynamics of silica binding to proteins and the resulting structural changes in both proteins and silica remain poorly understood. This study investigates the complexation process between silica and proteins-negatively charged bovine serum albumin (BSA) and positively charged lysozyme (LYZ) at neutral pH-using infrared spectroscopy (IR), in situ attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and multiple computational simulations. The findings reveal that both protein and silica structures undergo changes during the complexation process, with calcium ions in the solution significantly exacerbating these alterations. In particular, in situ ATR-FTIR combined with two-dimensional correlation spectroscopy analysis shows that BSA experiences more pronounced unfolding, providing additional binding sites for silica adsorption compared to LYZ. The adsorbed proteins promote silica polymerization from lower-polymerized to higher-polymerized species. Furthermore, molecular dynamics simulations demonstrate greater conformational variation in BSA through root-mean-square-deviation analysis and the bridging role of calcium ions via mean square displacement analysis. Molecular docking and density functional theory calculations identify the binding sites and energy of silica on proteins. In summary, this research offers a comprehensive understanding of the protein-silica complexation process, contributing to the knowledge of synergistic behaviors of inorganic scaling and organic fouling on membrane surfaces. The integrated approach used here may also be applicable for exploring other complex complexation processes in various environments.


Assuntos
Cálcio , Dióxido de Silício , Simulação de Acoplamento Molecular , Soroalbumina Bovina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Íons , Adsorção
3.
Orthop Surg ; 15(12): 3136-3145, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37853938

RESUMO

OBJECTIVES: Diabetes mellitus (DM) is correlated with poor clinical outcomes in spinal surgery. However, the effect of it on screw stabilization has not been investigated. The aim of this study was to evaluate the screw loosening rate and postoperative outcomes in diabetic patients and to identify potential risk factors associated with loosening. METHODS: This was a retrospective study. Two hundred and forty-three patients who received cervical or lumbar internal fixation between 2015 and 2019 were enrolled. Screw loosening was assessed on radiography, and clinical outcomes were evaluated by the improvement of visual analogue scale (VAS), Oswestry disability index (ODI) or Japanese Orthopaedic Association (JOA) scores. The relationship of DM, screw loosening and clinical outcomes were analyzed with chi-square tests and regression analyses. RESULTS: One hundred and twenty-two patients (50.2%) with diabetes were included in this study. Diabetes led to the increase of the rate of screw loosening in the lumbar spine, while the loosening rate did not vary significantly in the cervical spine. The occurrence of screw loosening in the lumbar spine was more likely to be associated with clinical outcomes for motor performance including walking and sitting. However, no significant effect on JOA and VAS scores in the cervical spine of screw loosening was found. Moreover, the history of DM affected the outcomes of the patients who underwent spinal surgery. CONCLUSION: DM had an adverse effect on screw stabilization. The impaired improvement of clinical outcomes in diabetics after spinal surgery was related to screw loosening. In addition to the direct effects on operative wounds and neural function, the impact on the screws due to DM was also worth noting.


Assuntos
Diabetes Mellitus , Parafusos Pediculares , Fusão Vertebral , Humanos , Estudos Retrospectivos , Fusão Vertebral/efeitos adversos , Parafusos Ósseos/efeitos adversos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Resultado do Tratamento
4.
Nat Mater ; 22(10): 1218-1226, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37620645

RESUMO

Replacement or debottlenecking of the extremely energy-intensive cryogenic distillation technology for the separation of ethylene from ethane has been a long-standing challenge. Membrane technology could be a desirable alternative with potentially lower energy consumption. However, the current key obstacle for industrial implementation of membrane technology is the low mixed-gas selectivity of polymeric, inorganic or hybrid membrane materials, arising from the similar sizes of ethylene (3.75 Å) and ethane (3.85 Å). Here we report precise molecular sieving and plasticization-resistant carbon membranes made by pyrolysing a shape-persistent three-dimensional triptycene-based ladder polymer of intrinsic microporosity with unparalleled mixed-gas performance for ethylene/ethane separation, with a selectivity of ~100 at 10 bar feed pressure, and with long-term continuous stability for 30 days demonstrated. These submicroporous carbon membranes offer opportunities for membrane technology in a wide range of notoriously difficult separation applications in the petrochemical and natural gas industry.

5.
Front Nutr ; 10: 1127845, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37032786

RESUMO

Introduction: The ketogenic diet (KD), as a dietary intervention, has gained importance in the treatment of solid organ structural remodeling, but its role in renal fibrosis has not been explored. Methods: Male C57BL/6 mice were fed a normal diet or a KD for 6 weeks prior to unilateral ureteral obstruction (UUO), a well-established in vivo model of renal fibrosis in rodents. Seven days after UUO, serum and kidney samples were collected. Serum ß-hydroxybutyrate (ß-OHB) concentrations and renal fibrosis were assessed. NRK52E cells were treated with TGFß1, a fibrosis-inducing cytokine, and with or without ß-OHB, a ketone body metabolized by KD, to investigate the mechanism underlying renal fibrosis. Results: KD significantly enhanced serum ß-OHB levels in mice. Histological analysis revealed that KD alleviated structural destruction and fibrosis in obstructed kidneys and reduced the expression of the fibrosis protein markers α-SMA, Col1a1, and Col3a1. Expression of the rate-limiting enzymes involved in fatty acid oxidation (FAO), Cpt1a and Acox1, significantly decreased after UUO and were upregulated by KD. However, the protective effect of KD was abolished by etomoxir (a Cpt1a inhibitor). Besides, our study observed that KD significantly suppressed UUO-induced macrophage infiltration and the expression of IL-6 in the obstructive kidneys. In NRK52E cells, fibrosis-related signaling was increased by TGFß1 and reduced by ß-OHB. ß-OHB treatment restored the impaired expression of Cpt1a. The effect of ß-OHB was blocked by siRNA targeting free fatty acid receptor 3 (FFAR3), suggesting that ß-OHB might function through the FFAR3-dependent pathway. Discussion: Our results highlight that KD attenuates UUO-induced renal fibrosis by enhancing FAO via the FFAR3-dependent pathway, which provides a promising dietary therapy for renal fibrosis.

6.
J Nutr Biochem ; 118: 109335, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37023933

RESUMO

The ketogenic diet (KD), a high-fat and extremely low-carbohydrate dietary regimen, has long been acknowledged as a highly beneficial dietary therapy for the treatment of intractable epilepsy throughout the last decade. Because of its significant therapeutic potential for a variety of ailments, KD is increasingly attracting study interest. In renal fibrosis, KD has received little attention. This study aimed to determine whether KD protects against renal fibrosis in unilateral ureteral obstruction (UUO) models and the possible mechanisms. The ketogenic diet, according to our findings, reduces UUO-induced kidney injury and fibrosis in mice. KD dramatically decreased the number of F4/80+macrophages in kidneys. Next, immunofluorescence results revealed a reduction in the number of F4/80+Ki67+macrophages in the KD group. Furthermore, our study evaluated the impact of ß-hydroxybutyric acid (ß-OHB) in RAW246.7 macrophages in vitro. We found that ß-OHB inhibits macrophage proliferation. Mechanistically, ß-OHB inhibits macrophage proliferation may be via the FFAR3-AKT pathway. Collectively, our study indicated that KD ameliorates UUO-induced renal fibrosis by regulating macrophage proliferation. KD may be an effective therapy method for renal fibrosis due to its protective impact against the disorder.


Assuntos
Dieta Cetogênica , Nefropatias , Obstrução Ureteral , Camundongos , Animais , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo , Nefropatias/etiologia , Rim/metabolismo , Macrófagos/metabolismo , Fibrose , Proliferação de Células , Camundongos Endogâmicos C57BL
7.
Biomater Adv ; 147: 213307, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36746099

RESUMO

Type H vessel, a vascular subtype in bone, is a critical regulator of osteogenesis, but how material properties affect this organ-specific vessel remains unknown. Here, titania nanotubes were fabricated on bone implant surface to investigate the effects of nano-topography on type H vessels. In vivo, surface nanotubes with 20-100 nm diameters promoted the angiogenesis of type H vessels and bone regeneration in mouse femurs to different extents, with the best effects induced by 70 nm diameter. In vitro, bone-specific endothelial cells (BECs) and artery endothelial cells (AECs) presented significantly different behaviors on the same material. Nanotubes with 20 nm small diameters significantly improved the adhesion, proliferation, type H differentiation of BECs and their paracrine function to regulate pre-osteoblasts (POBs), possibly via binding integrin ß1 on the cell membrane, but these effects weakened when tube diameter increased, which conflicted with the results in vivo. Further study suggested that the better in vivo effects by larger diameters of 70-100 nm might be exerted indirectly through remodeling the regulation from POBs to BECs, highlighting the underappreciated indirect bio-effects of materials via intercellular communication. These suggest that nanoscale material topography makes significant impact on the angiogenesis of type H vessels, directly via binding integrins on the cell membrane of BECs and indirectly via modulating the regulation from osteoblastic cells to BECs, both in a size-dependent manner. Cells of the same type but from different tissues may show different responses to the same material, thus material properties should be tailored to the specific cell population. In research on material-tissue interactions, conclusions from in vitro experiments exposing a single type of cell to material might deviate from the truth in vivo, because materials may indirectly influence the targeted cells through modulating intercellular communication. These provide new insights into material-tissue interactions.


Assuntos
Comunicação Celular , Células Endoteliais , Camundongos , Animais , Regeneração Óssea , Diferenciação Celular , Osteogênese
8.
Pharmacol Res ; 189: 106680, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36746359

RESUMO

Acute kidney injury (AKI) is a common clinical complication. Cisplatin (Cis) is an effective chemotherapeutic drug; however, its acute nephrotoxicity often limits its application. The role of liraglutide (Lir), an agonist of the glucagon-like peptide-1 receptor (GLP-1R), has recently attracted increasing attention beyond glycemic regulation. This study showed that Lir significantly ameliorated Cis-induced kidney dysfunction and renal damage. However, this renoprotective effect was partially abolished in GLP-1R knockout (GLP-1R-/-) mice. Furthermore, we synthesized Lir metabolites, GLP-1 (9-37) and GLP-1 (28-37), and found that they also exerted reno-protective effects that were not impaired in GLP-1R-/- mice. We also demonstrated that Lir and its metabolites reduced cisplatin-induced apoptosis in human renal tubular epithelial cells (HK-2). After silencing GLP-1R expression in HK-2 cells with small interfering ribose nucleic acid (siRNA), the protective effect of Lir on HK-2 cells was inhibited, while the protective effects of GLP-1 (9-37) and GLP-1 (28-37) were not affected. Additionally, we demonstrated that Lir and its metabolites inhibited Cis-induced high-mobility group box 1 (HMGB1) nuclear-cytoplasmic translocation and release, and reduced inflammatory cytokines and HMGB1 receptor expression. The exogenous use of recombinant HMGB1 (rHMGB1) dramatically weakened the protective effects of Lir and its metabolites. In conclusion, our study shows that Lir significantly attenuated Cis-induced AKI through GLP-1R dependent and independent pathways, mediated by inhibiting nuclear-cytoplasmic translocation and release of HMGB1. Lir and its metabolites may be effective drugs for treating cisplatin-induced nephrotoxicity.


Assuntos
Injúria Renal Aguda , Proteína HMGB1 , Camundongos , Humanos , Animais , Liraglutida/farmacologia , Cisplatino , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Injúria Renal Aguda/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas
9.
FASEB J ; 37(2): e22749, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36688808

RESUMO

Tacrolimus (TAC)-induced renal injury is detrimental to long-term kidney function, but a treatment medication is not available. Glycyrrhizic acid (GA) is an active ingredient in licorice widely used to treat kidney disease. Thus, this study explored the mechanisms of renoprotection by GA on TAC-induced renal injury. C57BL/6 mice were subjected daily to TAC or a combination of TAC and GA for 4 weeks, and then renal function, histopathology, and autophagy were assessed to examine the effect of GA on a renal injury. Next, Human kidney proximal tubular epithelial (HK-2) cells were pretreated with GA for 2 h and then treated with TAC for 24 h. The effect of GA on TAC-induced HK-2 cell injury was assessed by measuring cell viability, apoptosis, autophagy, and lysosomes. Mice exposed to TAC and treated with GA had significantly greater improvements in renal function and tubulointerstitial fibrosis in comparison to mice not treated with GA. In addition, fibrosis-related protein expression, including α-smooth muscle actin and fibronectin, decreased after GA treatment. GA treatment also relieved autophagic clearance in TAC-induced renal injury. Several in vitro studies found that TAC inhibited cell viability, autophagy, lysosomal acidification, and promoted apoptosis. However, these results were less pronounced with GA pretreatment. In addition, bafilomycin A1 (which inhibits lysosomal function) reduced the protective effect of GA, indicating that lysosomal function plays an important role in this effect. Our data suggest that GA improves lysosomal function and regulates autophagy to protect against TAC-induced renal injury.


Assuntos
Nefropatias , Tacrolimo , Camundongos , Humanos , Animais , Tacrolimo/farmacologia , Ácido Glicirrízico/metabolismo , Ácido Glicirrízico/farmacologia , Camundongos Endogâmicos C57BL , Rim/metabolismo , Autofagia , Nefropatias/patologia
10.
Adv Healthc Mater ; 12(7): e2202210, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36465008

RESUMO

Osteoporotic vertebral fracture is jeopardizing the health of the aged population around the world, while the hypoxia microenvironment and oxidative damage of bone defect make it difficult to perform effective tissue regeneration. The balance of oxidative stress and the coupling of vessel and bone ingrowth are critical for bone regeneration. In this study, an injectable heterogeneous silk gel scaffold which can spatiotemporally and sustainedly release bone mesenchymal stem cell-derived small extracellular vesicles, HIF-1α pathway activator, and inhibitor is developed for bone repair and vertebral reinforcement. The initial enhancement of HIF-1α upregulates the expression of VEGF to promote angiogenesis, and the balance of reactive oxygen species level is regulated to effectively eliminate oxidative damage and abnormal microenvironment. The subsequent inhibition of HIF-1α avoids the overexpression of VEGF and vascular overgrowth. Meanwhile, complex macroporous structures and suitable mechanical support can be obtained within the silk gel scaffolds, which will promote in situ bone regeneration. These findings provide a new clinical translation strategy for osteoporotic vertebral augmentation on basis of hypoxia microenvironment improvement.


Assuntos
Osteogênese , Seda , Humanos , Idoso , Seda/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neovascularização Fisiológica , Hipóxia , Alicerces Teciduais/química , Subunidade alfa do Fator 1 Induzível por Hipóxia
11.
J Clin Med ; 13(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38202076

RESUMO

BACKGROUND: This study aimed to examine the clinicopathological profiles and prognosis of membranous nephropathy in different subtypes classified by serum PLA2R antibody (SAb) and glomerular PLA2R antigen staining (GAg). METHODS: A total of 372 biopsy-proven membranous nephropathy (MN) cases, unrelated to lupus, with urine protein > 2 g/24 h and eGFR > 25 mL/min/1.73 m2 were included and categorized into four groups according to the presence or absence of PLA2R antibody and glomerular PLA2R antigen staining. Clinical profiles were compared among four subtypes. Treatment response and renal outcomes were compared among four groups with primary MN. Cox and logistic regression models were used to examine the association between time-to-renal progression and early remission within 6 months in the four subgroups with primary MN. RESULTS: MN patients who were SAb-/GAg+ presented with a more severe disease onset, whereas those who were SAb-/GAg- had a mild clinical manifestation with a higher prevalence of MN-associated secondary causes. During a median follow-up of 79.2 months (IQR: 48.70-97.40), SAb+/GAg- was identified as an independent risk factor for renal progression [HR: 9.17, 95% CI: 2.26-37.16, p < 0.01] and early remission [OR: 0.06, 95% CI: 0.01-0.56, p = 0.01] in primary MN. Additionally, SAb-/GAg- with primary MN showed an independent association with spontaneous remission after adjusting for age, sex, baseline proteinuria, and eGFR (Before adjustment: OR: 8.33, 95% CI: 1.89-36.76, p = 0.0; after adjustment: OR: 12.25, 95% CI: 2.48-60.53, p < 0.01). CONCLUSION: Our findings indicated that SAb+/GAg-MN patients exhibited a more severe disease onset and had a poorer prognosis, necessitating an aggressive treatment approach. On the other hand, in the SAb-/GAg- group, the elimination of secondary causes should be considered, and a watchful waiting approach may be appropriate.

12.
J Nanobiotechnology ; 20(1): 522, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496422

RESUMO

Critical-sized bone defects are always difficult to treat, and they are associated with a significant burden of disease in clinical practice. In recent decades, due to the fast development of biomaterials and tissue engineering, many bioinspired materials have been developed to treat large bone defects. Due to the excellent osteoblastic ability of black phosphorous (BP), many BP-based biomaterials have been developed to treat bone defects. Therefore, there are abundant studies as well as a tremendous amount of research data. It is urgent to conduct evidence-based research to translate these research data and results into validated scientific evidence. Therefore, in our present study, a qualitative systematic review and a quantitative meta-analysis were performed. Eighteen studies were included in a systematic review, while twelve studies were included in the meta-analysis. Our results showed that the overall quality of experimental methods and reports of biomaterials studies was still low, which needs to be improved in future studies. Besides, we also proved the excellent osteoblastic ability of BP-based biomaterials. But we did not find a significant effect of near-infrared (NIR) laser in BP-based biomaterials for treating bone defects. However, the quality of the evidence presented by included studies was very low. Therefore, to accelerate the clinical translation of BP-based biomaterials, it is urgent to improve the quality of the study method and reporting in future animal studies. More evidence-based studies should be conducted to enhance the quality and clinical translation of BP-based biomaterials.


Assuntos
Materiais Biocompatíveis , Fósforo , Animais , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Fósforo/farmacologia , Regeneração Óssea , Engenharia Tecidual/métodos
13.
Comput Intell Neurosci ; 2022: 2586716, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755753

RESUMO

In order to explore the kinematics and muscle force characteristics of competitive Taijiquan arm manipulation, and solve the problems of arm trajectory and control in the process of manipulation, this study puts forward the sports biomechanical analysis of arm manipulation in competitive Taijiquan. The technical characteristics and muscle force characteristics of 15 athletes from the competitive Taijiquan team of Xi'an Institute of physical education were studied. Use Excel 2007 and SPSS17.0 to statistically analyze and process the original data. According to the actual needs, the data indicators are summarized. The combined movements of competitive Taijiquan arm manipulation are captured through high-speed photography, and the kinematic data are statistically analyzed, mainly from the two aspects of action amplitude change and action braking. The results show the action track length, relative track length, and action track length of each plane of the two combined hands. The order of the two combined action tracks is: combination 1 > combination 2, in which the action track in the sagittal plane is the longest in combination 1, and it can also be considered that the motion amplitude in the sagittal plane is the largest in combination 1. The average acceleration of group A in the first beat is 0.51 m/s2 smaller than that of group B, and the value is 0.22 m/s2 smaller. Therefore, the deceleration of group A is larger than that of group B, and the braking capacity of group A is slightly stronger than that of group B. In the second beat, the average acceleration of group B is 1.5722 m/s2 larger than that of group A, and the value is 0.210 m/s2 larger. The average acceleration of group A in the third, fourth, fifth, and sixth beats is 0.9, 3.728, 0.57, and 0.837 m/s2 smaller than that of group B, and the values are 0.466, 0.174, 0.250, and 0.003 m/s2 smaller, indicating that the braking capacity of group A in the third, fourth, fifth, sixth, and eighth beats is slightly stronger than that of group B. In the braking of each beat in combination 1 and combination 2 of group AB, the braking ability of arm manipulation of group A is stronger than that of group B. In competitive Taijiquan, the movement techniques of manipulation include: bouncing technology, braking technology, and control technology. For arm manipulation, athletes should have the ability of "braking" technology. In the correlation analysis of movement track length, RMS and I EMG, the score of athletes in group A is high, and there is no correlation between movement track length and RMS. There is a significant correlation between RMS and movement track length in group B, and the correlation degree is moderate. This shows that when the movement of group B athletes is completed, the muscles are in a state of tension, the movement skills are not mastered well, and the energy saving is not achieved. During training, we should pay more attention to the proprioception of muscles and form a correct way of muscle exertion.


Assuntos
Braço , Tai Chi Chuan , Aceleração , Braço/fisiologia , Fenômenos Biomecânicos , Humanos , Movimento/fisiologia
14.
Front Immunol ; 13: 869050, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450076

RESUMO

Ischemia-reperfusion injury (IRI) is a common complication associated with liver surgery, and macrophages play an important role in hepatic IRI. Liraglutide, a glucagon-like peptide-1 (GLP-1) analog primarily used to treat type 2 diabetes and obesity, regulates intracellular calcium homeostasis and protects the cardiomyocytes from injury; however, its role in hepatic IRI is not yet fully understood. This study aimed to investigate whether liraglutide can protect the liver from IRI and determine the possible underlying mechanisms. Our results showed that liraglutide pretreatment significantly alleviated the liver damage caused by ischemia-reperfusion (I/R), as evidenced by H&E staining, serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, and TUNEL staining. Furthermore, the levels of inflammatory cytokines elicited by I/R were distinctly suppressed by liraglutide pretreatment, accompanied by significant reduction in TNF-α, IL-1ß, and IL-6 levels. Furthermore, pretreatment with liraglutide markedly inhibited macrophage type I (M1) polarization during hepatic IRI, as revealed by the significant reduction in CD68+ levels in Kupffer cells (KCs) detected via flow cytometry. However, the protective effects of liraglutide on hepatic IRI were partly diminished in GLP-1 receptor-knockout (GLP-1R-/-) mice. Furthermore, in an in vitro study, we assessed the role of liraglutide in macrophage polarization by examining the expression profiles of M1 in bone marrow-derived macrophages (BMDMs) from GLP-1R-/- and C57BL/6J mice. Consistent with the results of the in vivo study, liraglutide treatment attenuated the LPS-induced M1 polarization and reduced the expression of M1 markers. However, the inhibitory effect of liraglutide on LPS-induced M1 polarization was largely abolished in BMDMs from GLP-1R-/- mice. Collectively, our study indicates that liraglutide can ameliorate hepatic IRI by inhibiting macrophage polarization towards an inflammatory phenotype via GLP-1R. Its protective effect against liver IRI suggests that liraglutide may serve as a potential drug for the clinical treatment of liver IRI.


Assuntos
Diabetes Mellitus Tipo 2 , Traumatismo por Reperfusão , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/metabolismo
15.
Pharmacol Res ; 178: 106161, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35259481

RESUMO

Renal fibrosis is a non-negligible pathological change in chronic kidney disease (CKD). Increasing evidence indicates that macrophage and gut-kidney axis are correlated with CKD. In this study, we manifest that pharmacological modulating macrophage phenotype via gut-kidney axis is conducive to the alleviation of renal fibrosis. Employing wild-type male mice with unilateral ureteral obstruction (UUO), renal fibrosis was dramatically mitigated in mice treated with antibiotics. And antibiotics application restricted the synthesis of intestinal flora metabolite Trimethylamine N-Oxide (TMAO). However, a 1.3% choline diet enhanced fibrosis. Then we further examined macrophage phenotype through the gut-kidney axis. In in vivo and in vitro culture experiments, the mRNA expression of Nos2, Tnf-α, Il-6, and Il-1ß increased under TMAO stimulation. Curbing the NLRP3 inflammasome countered TMAO-induced M1 polarization in bone marrow-derived macrophages. This finding demonstrates that NLRP3 plays a critical part in macrophage polarization. Because of the declining M1 polarization trend in the early stage, M2 macrophages undoubtedly decreased in the tissues. Our results revealed that some metabolites could regulate macrophage phenotype, which matters the severity of renal fibrosis. Thus, pharmacological targeting macrophage phenotype via gut-kidney axis may be a different strategy to treat renal fibrosis.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Insuficiência Renal Crônica , Animais , Antibacterianos/uso terapêutico , Modelos Animais de Doenças , Fibrose , Rim/patologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fenótipo , Insuficiência Renal Crônica/metabolismo
16.
Pharmacol Res ; 173: 105867, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34481074

RESUMO

Liraglutide, a glucagon-like peptide-1 receptor (GLP-1R) agonist, has been reported to exert protective effects against myocardial, hepatic, and gastric ischemia-reperfusion injury (IRI), but whether it can protect against renal IRI remains unknown. Here, a lethal renal IRI model was established with a 100% mortality rate in untreated mice. Treatment with liraglutide involving a regimen of multiple doses resulted in 100% survival, remarkable preservation of renal function, a significant reduction in pathological damage, and blunted upregulation of TNF-α, IL-1ß, IL-6, MCP-1, TLR-2, TLR-4, and RAGE mRNA. We found that liraglutide treatment dramatically inhibited ischemia-induced nucleocytoplasmic translocation and release of HMGB1. This inhibition was associated with a marked decrease (~ 60%) in nuclear histone acetyltransferase activity. In addition, the protective effects of liraglutide on renal IRI were largely abolished by the administration of exogenous HMGB1. When the GLP-1R antagonist exendin (9-39) was given to mice before each liraglutide administration, or GLP-1R-/- mice were used for the renal IRI experiments, the protective effect of liraglutide on renal IRI was partially reversed. Moreover, liraglutide pretreatment significantly inhibited HMGB1 nucleocytoplasmic translocation during hypoxic culture of HK-2 cells in vitro, but the addition of exendin (9-39) significantly eliminated this inhibition. We demonstrate here that liraglutide can exert a strong protective effect on lethal renal IRI in mice. This protection appears to be related to the inhibition of HMGB1 nuclear-cytoplasmic translocation and release and partially depends on GLP-1R. Thus, liraglutide may be therapeutically useful for the clinical prevention and treatment of organ IRI.


Assuntos
Hipoglicemiantes/uso terapêutico , Rim/irrigação sanguínea , Liraglutida/uso terapêutico , Substâncias Protetoras/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Linhagem Celular , Citocinas/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Proteína HMGB1/sangue , Proteína HMGB1/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Liraglutida/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peroxidase/metabolismo , Substâncias Protetoras/farmacologia , Transporte Proteico/efeitos dos fármacos , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
17.
Ren Fail ; 43(1): 1329-1337, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34541999

RESUMO

BACKGROUND: This study sought to investigate incidence and risk factors for acute kidney injury (AKI) in hospitalized COVID-19. METHODS: In this retrospective study, we enrolled 823 COVID-19 patients with at least two evaluations of renal function during hospitalization from four hospitals in Wuhan, China between February 2020 and April 2020. Clinical and laboratory parameters at the time of admission and follow-up data were recorded. Systemic renal tubular dysfunction was evaluated via 24-h urine collections in a subgroup of 55 patients. RESULTS: In total, 823 patients were enrolled (50.5% male) with a mean age of 60.9 ± 14.9 years. AKI occurred in 38 (40.9%) ICU cases but only 6 (0.8%) non-ICU cases. Using forward stepwise Cox regression analysis, we found eight independent risk factors for AKI including decreased platelet level, lower albumin level, lower phosphorus level, higher level of lactate dehydrogenase (LDH), procalcitonin, C-reactive protein (CRP), urea, and prothrombin time (PT) on admission. For every 0.1 mmol/L decreases in serum phosphorus level, patients had a 1.34-fold (95% CI 1.14-1.58) increased risk of AKI. Patients with hypophosphatemia were likely to be older and with lower lymphocyte count, lower serum albumin level, lower uric acid, higher LDH, and higher CRP. Furthermore, serum phosphorus level was positively correlated with phosphate tubular maximum per volume of filtrate (TmP/GFR) (Pearson r = 0.66, p < .001) in subgroup analysis, indicating renal phosphate loss via proximal renal tubular dysfunction. CONCLUSION: The AKI incidence was very low in non-ICU patients as compared to ICU patients. Hypophosphatemia is an independent risk factor for AKI in patients hospitalized for COVID-19 infection.


Assuntos
Injúria Renal Aguda/etiologia , COVID-19/complicações , Hipofosfatemia/complicações , Pneumonia Viral/complicações , Injúria Renal Aguda/epidemiologia , COVID-19/epidemiologia , China/epidemiologia , Feminino , Hospitalização , Humanos , Hipofosfatemia/epidemiologia , Incidência , Unidades de Terapia Intensiva , Testes de Função Renal , Masculino , Pessoa de Meia-Idade , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2
18.
Ann Transl Med ; 9(15): 1228, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34532365

RESUMO

BACKGROUND: Daidzein is a soybean isoflavone that has been shown in previous studies to have anti-inflammatory and antioxidant effects. However, it remains unknown whether daidzein plays a protective role against concanavalin A (Con A)-induced autoimmune hepatitis (AIH). METHODS: In this study, an animal model of AIH was constructed by intravenous injection of Con A (15 mg/kg). Daidzein (200 mg/kg/d) was intraperitoneally administered to mice for 3 days before the Con A injection. Alpha mouse liver 12 (AML-12) cells were incubated in the absence or presence of daidzein to determine whether daidzein can alleviate Con A-induced hepatotoxicity. RESULTS: The findings showed that pretreatment with daidzein significantly reduced Con A-induced oxidative stress and hepatocyte apoptosis in Con A-induced liver injury. Pretreatment with daidzein significantly prevented the decrease of intrahepatic protein levels of phosphorylated Akt (p-Akt), phosphorylated GSK3ß (p-GSK3ß), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NOQ1 (NAD(P)H quinone dehydrogenase 1) in response to Con A administration. Meanwhile, malondialdehyde (MDA) production was reduced, and glutathione peroxidase (GPX), superoxide dismutase (SOD) activity, and SOD2 mRNA expression were elevated in daidzein-pretreated livers. In in vitro experiments, daidzein pretreatment prevented Con A-induced murine hepatocyte death. This effect was partly diminished by an inhibitor of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. CONCLUSIONS: These results indicate that daidzein pretreatment attenuates Con A-induced liver injury through the Akt/GSK3ß/Nrf2 pathway. Our findings provide new insights into the use of plant-derived products for AIH treatment beyond immunosuppression.

19.
Ren Fail ; 43(1): 1115-1123, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34233570

RESUMO

INTRODUCTION: Acute kidney injury (AKI) in coronavirus disease 2019 (COVID-19) patients is associated with poor prognosis. Early prediction and intervention of AKI are vital for improving clinical outcome of COVID-19 patients. As lack of tools for early AKI detection in COVID-19 patients, this study aimed to validate the USCD-Mayo risk score in predicting hospital-acquired AKI in an extended multi-center COVID-19 cohort. METHODS: Five hundred seventy-two COVID-19 patients from Wuhan Tongji Hospital Guanggu Branch, Wuhan Leishenshan Hospital, and Wuhan No. Ninth Hospital was enrolled for this study. Patients who developed AKI or reached an outcome of recovery or death during the study period were included. Predictors were evaluated according to data extracted from medical records. RESULTS: Of all patients, a total of 44 (8%) developed AKI. The UCSD-Mayo risk score achieved excellent discrimination in predicting AKI with the C-statistic of 0.88 (95%CI: 0.84-0.91). Next, we determined the UCSD-Mayo risk score had good overall performance (Nagelkerke R2 = 0.32) and calibration in our cohort. Further analysis showed that the UCSD-Mayo risk score performed well in subgroups defined by gender, age, and several chronic comorbidities. However, the discrimination of the UCSD-Mayo risk score in ICU patients and patients with mechanical ventilation was not good which might be resulted from different risk factors of these patients. CONCLUSIONS: We validated the performance of UCSD-Mayo risk score in predicting hospital-acquired AKI in COVID-19 patients was excellent except for patients from ICU or patients with mechanical ventilation.


Assuntos
Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , COVID-19/complicações , Índice de Gravidade de Doença , Injúria Renal Aguda/mortalidade , Adulto , Idoso , COVID-19/mortalidade , China/epidemiologia , Feminino , Mortalidade Hospitalar , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Análise de Regressão , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2
20.
Theranostics ; 11(8): 3796-3812, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664862

RESUMO

Rationale: Mechanisms underlying the compromised bone formation in type 1 diabetes mellitus (T1DM), which causes bone fragility and frequent fractures, remain poorly understood. Recent advances in organ-specific vascular endothelial cells (ECs) identify type H blood vessel injury in the bone, which actively direct osteogenesis, as a possible player. Methods: T1DM was induced in mice by streptozotocin (STZ) injection in two severity degrees. Bony endothelium, the coupling of angiogenesis and osteogenesis, and bone mass quality were evaluated. Insulin, antioxidants, and NADPH oxidase (NOX) inhibitors were administered to diabetic animals to investigate possible mechanisms and design therapeutic strategies. Results: T1DM in mice led to the holistic abnormality of the vascular system in the bone, especially type H vessels, resulting in the uncoupling of angiogenesis and osteogenesis and inhibition of bone formation. The severity of osteopathy was positively related to glycemic levels. These pathological changes were attenuated by early-started, but not late-started, insulin therapy. ECs in diabetic bones showed significantly higher levels of reactive oxygen species (ROS) and NOX 1 and 2. Impairments of bone vessels and bone mass were effectively ameliorated by treatment with anti-oxidants or NOX2 inhibitors, but not by a NOX1/4 inhibitor. GSK2795039 (GSK), a NOX2 inhibitor, significantly supplemented the insulin effect on the diabetic bone. Conclusions: Diabetic osteopathy could be a chronic microvascular complication of T1DM. The impairment of type H vessels by NOX2-mediated endothelial oxidative stress might be an important contributor that can serve as a therapeutic target for T1DM-induced osteopathy.


Assuntos
Osso e Ossos/irrigação sanguínea , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , NADPH Oxidase 2/metabolismo , Animais , Antioxidantes/farmacologia , Fenômenos Biomecânicos , Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/fisiopatologia , Células Endoteliais/fisiologia , Insulina/administração & dosagem , Insulina/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , NADPH Oxidase 2/antagonistas & inibidores , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Osteoporose/etiologia , Osteoporose/patologia , Osteoporose/fisiopatologia , Estresse Oxidativo , Medicina de Precisão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA