Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Environ Sci Technol ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190430

RESUMO

Elimination of dilute gaseous toluene is one of the critical concerns within the field of indoor air remediation. The typical degradation route on titanium-based catalysts, "toluene-benzaldehyde-carbon dioxide", necessitates the oxidation of the methyl group as a prerequisite for photocatalytic toluene oxidation. However, the inherent planar adsorption configuration of toluene molecules, dominated by the benzene rings, leads to significant steric hindrance for the methyl group. This steric hindrance prevents the methyl group from contacting the active species on the catalyst surface, thereby limiting the removal of toluene under indoor conditions. To date, no effective strategy to control the steric hindrance of the methyl group has been identified. Herein, we showed a B-Ti-O interface that exhibits significantly enhanced toluene removal efficiency under indoor conditions. In-depth investigations revealed that, compared to typical Ti-based photocatalysts, the steric hindrance between the methyl group and the catalyst surface decreased from 3.42 to 3.03 Å on the designed interface. This reduction originates from the matching of orbital energy levels between Ti 3dz2 and C 2pz of the benzene ring. The decreased steric hindrance improved the efficiency of toluene being attacked by surface active species, allowing for rapid conversion into benzaldehyde and benzoic acid species for subsequent reactions. Our work provides novel insights into the steric hindrance effect in the elimination of aromatic volatile organic compounds.

2.
Nano Lett ; 24(28): 8679-8686, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38949784

RESUMO

The simultaneous detection of the orbital angular momentum (OAM) and wavelength offers new opportunities for optical multiplexing. However, because of the dispersion of lens functions for Fourier transformation, the mode conversions at distinct wavelengths cannot be achieved in the same plane. Here we propose an ultracompact achromatic complementary metal oxide semiconductor (CMOS)-integrated OAM mode detector. Specifically, a spatial multiplexed scheme, randomly interleaving the phase distributions for distributing the superposed OAM modes into preset positions at distinct wavelengths, is presented. In addition, such a nanoprinted achromatic OAM detector featuring a microscale size and a short focal length can be integrated onto a CMOS chip. Consequently, the four-bit incident light beams at three discrete wavelengths (633, 532, and 488 nm) can be distinguished with a high degree of accuracy evaluated by the average standardized Euclidean distance of ∼0.75 between the analytical and target results. Our results showcase a miniaturized platform for achieving high-capacity information processing.

3.
Environ Sci Technol ; 58(24): 10415-10444, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38848315

RESUMO

Persulfate (PS)-based advanced oxidation processes (AOPs) for pollutant removal have attracted extensive interest, but some controversies about the identification of reactive species were usually observed. This critical review aims to comprehensively introduce basic concepts and rectify cognitive biases and appeals to pay more attention to experimental details in PS-AOPs, so as to accurately explore reaction mechanisms. The review scientifically summarizes the character, generation, and identification of different reactive species. It then highlights the complexities about the analysis of electron paramagnetic resonance, the uncertainties about the use of probes and scavengers, and the necessities about the determination of scavenger concentration. The importance of the choice of buffer solution, operating mode, terminator, and filter membrane is also emphasized. Finally, we discuss current challenges and future perspectives to alleviate the misinterpretations toward reactive species and reaction mechanisms in PS-AOPs.


Assuntos
Oxirredução , Sulfatos/química
4.
Science ; 384(6699): 987-994, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38815009

RESUMO

Human skin sensing of mechanical stimuli originates from transduction of mechanoreceptors that converts external forces into electrical signals. Although imitating the spatial distribution of those mechanoreceptors can enable developments of electronic skins capable of decoupled sensing of normal/shear forces and strains, it remains elusive. We report a three-dimensionally (3D) architected electronic skin (denoted as 3DAE-Skin) with force and strain sensing components arranged in a 3D layout that mimics that of Merkel cells and Ruffini endings in human skin. This 3DAE-Skin shows excellent decoupled sensing performances of normal force, shear force, and strain and enables development of a tactile system for simultaneous modulus/curvature measurements of an object through touch. Demonstrations include rapid modulus measurements of fruits, bread, and cake with various shapes and degrees of freshness.


Assuntos
Mecanorreceptores , Pele Artificial , Tato , Dispositivos Eletrônicos Vestíveis , Humanos , Mecanorreceptores/fisiologia , Células de Merkel/fisiologia , Pele/inervação , Fenômenos Fisiológicos da Pele
5.
Environ Sci Technol ; 58(17): 7672-7682, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38639327

RESUMO

The development of efficient technologies for the synergistic catalytic elimination of NOx and chlorinated volatile organic compounds (CVOCs) remains challenging. Chlorine species from CVOCs are prone to catalyst poisoning, which increases the degradation temperature of CVOCs and fails to balance the selective catalytic reduction of NOx with the NH3 (NH3-SCR) performance. Herein, synergistic catalytic elimination of NOx and chlorobenzene has been originally demonstrated by using phosphotungstic acid (HPW) as a dechlorination agent to collaborate with CeO2. The conversion of chlorobenzene was over 80% at 270 °C, and the NOx conversion and N2 selectivity reached over 95% at 270-420 °C. HPW not only allowed chlorine species to leave as inorganic chlorine but also enhanced the BroÌ·nsted acidity of CeO2. The NH4+ produced in the NH3-SCR process can effectively promote the dechlorination of chlorobenzene at low temperatures. HPW remained structurally stable in the synergistic reaction, resulting in good water resistance and long-term stability. This work provides a cheaper and more environmentally friendly strategy to address chlorine poisoning in the synergistic reaction and offers new guidance for multipollutant control.


Assuntos
Clorobenzenos , Catálise , Clorobenzenos/química , Compostos Orgânicos Voláteis/química , Cloro/química , Cério/química , Halogenação
6.
Biomark Med ; 18(5): 169-179, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38440866

RESUMO

Objective: This study aimed to assess the value of PLK4 as a biomarker in papillary thyroid carcinoma (PTC). Methods: This study reviewed 230 PTC patients receiving surgical resections. PLK4 was detected in tumor tissues and samples of normal thyroid gland tissues by immunohistochemistry. Results: PLK4 was elevated in tumor tissues versus normal thyroid gland tissues (p < 0.001). Tumor PLK4 was linked with extrathyroidal invasion (p = 0.036), higher pathological tumor stage (p = 0.030), node stage (p = 0.045) and tumor/node/metastasis stage (p = 0.022) in PTC patients. Tumor PLK4 immunohistochemistry score >3 was linked with shortened disease-free survival (p = 0.026) and overall survival (p = 0.028) and independently predicted poorer disease-free survival (hazard ratio: 2.797; p = 0.040). Conclusion: Tumor PLK4 reflects extrathyroidal invasion, higher tumor stage and shortened survival in PTC.


Assuntos
Carcinoma Papilar , Carcinoma , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/cirurgia , Neoplasias da Glândula Tireoide/patologia , Carcinoma/patologia , Carcinoma/cirurgia , Carcinoma Papilar/diagnóstico , Carcinoma Papilar/cirurgia , Prognóstico , Proteínas Serina-Treonina Quinases/genética
7.
PLoS One ; 19(3): e0298173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427668

RESUMO

Adeno-associated viral transduction allows the introduction of nucleic fragments into cells and is widely used to modulate gene expressions in vitro and in vivo. It enables the study of genetic functions and disease mechanisms and, more recently, serves as a tool for gene repair. To achieve optimal transduction performance for a given cell type, selecting an appropriate serotype and the number of virus particles per cell, also known as the multiplicity of infection, is critical. Fluorescent proteins are one of the common reporter genes to visualize successfully transduced cells and assess transduction efficiencies. Traditional methods of measuring fluorescence-positive cells are endpoint analysis by flow cytometry or manual counting with a fluorescence microscope. However, the flow cytometry analysis does not allow further measurement in a test run, and manual counting by microscopy is time-consuming. Here, we present a method that repeatedly evaluates transduction efficiencies by adding the DNA-stain Hoechst 33342 during the transduction process combined with a microscope or live-cell imager and microplate image analysis software. The method achieves fast, high-throughput, reproducible, and real-time post-transduction analysis and allows for optimizing transduction parameters and screening for a proper approach.


Assuntos
Benzimidazóis , Núcleo Celular , Corantes , Dependovirus/genética , Microscopia de Fluorescência
8.
J Hazard Mater ; 468: 133722, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367433

RESUMO

The synergistic removal of NOx and chlorinated volatile organic compounds (CVOCs) has become the hot topic in the field of environmental catalysis. However, due to the trade-off effects between catalytic reduction of NOx and catalytic oxidation of CVOCs, it is indispensable to achieve well-matched redox property and acidity. Herein, synergistic catalytic removal of NOx and chlorobenzene (CB, as the model of CVOCs) has been originally demonstrated over a Co-doped SmMn2O5 mullite catalyst. Two kinds of Mn-Mn sites existed in Mn-O-Mn-Mn and Co-O-Mn-Mn sites were constructed, which owned gradient redox ability. It has been demonstrated that the cooperation of different active sites can achieve the balanced redox and acidic property of the SmMn2O5 catalyst. It is interesting that the d band center of Mn-Mn sites in two different sites was decreased by the introduction of Co, which inhibited the nitrate species deposition and significantly improved the N2 selectivity. The Co-O-Mn-Mn sites were beneficial to the oxidation of CB and it cooperates with Mn-O-Mn-Mn to promote the synergistic catalytic performance. This work paves the way for synergistic removal of NOx and CVOCs over cooperative active sites in catalysts.

9.
Light Sci Appl ; 13(1): 49, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355566

RESUMO

Machine learning with optical neural networks has featured unique advantages of the information processing including high speed, ultrawide bandwidths and low energy consumption because the optical dimensions (time, space, wavelength, and polarization) could be utilized to increase the degree of freedom. However, due to the lack of the capability to extract the information features in the orbital angular momentum (OAM) domain, the theoretically unlimited OAM states have never been exploited to represent the signal of the input/output nodes in the neural network model. Here, we demonstrate OAM-mediated machine learning with an all-optical convolutional neural network (CNN) based on Laguerre-Gaussian (LG) beam modes with diverse diffraction losses. The proposed CNN architecture is composed of a trainable OAM mode-dispersion impulse as a convolutional kernel for feature extraction, and deep-learning diffractive layers as a classifier. The resultant OAM mode-dispersion selectivity can be applied in information mode-feature encoding, leading to an accuracy as high as 97.2% for MNIST database through detecting the energy weighting coefficients of the encoded OAM modes, as well as a resistance to eavesdropping in point-to-point free-space transmission. Moreover, through extending the target encoded modes into multiplexed OAM states, we realize all-optical dimension reduction for anomaly detection with an accuracy of 85%. Our work provides a deep insight to the mechanism of machine learning with spatial modes basis, which can be further utilized to improve the performances of various machine-vision tasks by constructing the unsupervised learning-based auto-encoder.

10.
Environ Sci Technol ; 57(50): 21470-21482, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38050842

RESUMO

NOx and CH3SH as two typical air pollutants widely coexist in various energy and industrial processes; hence, it is urgent to develop highly efficient catalysts to synergistically eliminate NOx and CH3SH. However, the catalytic system for synergistically eliminating NOx and CH3SH is seldom investigated to date. Meanwhile, the deactivation effects of CH3SH on catalysts and the formation mechanism of toxic byproducts emitted from the synergistic catalytic elimination reaction are still vague. Herein, selective synergistic catalytic elimination (SSCE) of NOx and CH3SH via engineering deep oxidation sites over Cu-modified Nb-Fe composite oxides supported on TiO2 catalyst against toxic CO and HCN byproducts formation has been originally demonstrated. Various spectroscopic and microscopic characterizations demonstrate that the sufficient chemisorbed oxygen species induced by the persistent electron transfer from Nb-Fe composite oxides to copper oxides can deeply oxidize HCOOH to CO2 for avoiding highly toxic byproducts formation. This work is of significance in designing superior catalysts employed in more complex working conditions and sheds light on the progress in the SSCE of NOx and sulfur-containing volatile organic compounds.


Assuntos
Poluentes Atmosféricos , Óxidos , Oxirredução , Óxidos/análise , Óxidos/química , Oxigênio , Transporte de Elétrons , Catálise , Amônia/química
11.
PLoS One ; 18(12): e0296124, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38128042

RESUMO

PURPOSE: The outflow pathway, especially trabecular meshwork (TM), plays an essential role in glaucoma, and the availability of TM cells is crucial for in vitro research. So far, the isolation of TM cells from mice has been anything but manageable due to the small size of the eye. Direct isolation using a stereomicroscope and forceps requires a high grade of dexterity. Indirect isolation is based on the phagocytic properties of TM cells and involves injecting magnetic microspheres into the anterior chamber of live mice followed by isolation. Therefore, a simpler, less expensive, and nonexperimental strategy for isolating mouse TM cells would be desirable. METHODS: After enucleation, the eyes were cut in half anterior-to-posteriorly. The lens and posterior segment were removed. Iris and the attached ciliary body were gently pulled backward and disconnected from the remaining tissue to expose the TM. By incising through the cornea anteriorly and posteriorly of the TM, the cornea/TM stripe could be isolated. The cornea/TM stripe was cultured with the pigmented side down in a 6-well. The outgrowing pigmented cells were analyzed by immunocytochemistry and mRNA expression for previously described TM cell markers. The phagocytic properties of the cells were additionally confirmed using fluorescent microspheres. RESULTS: Pigmented phagocytic cells were the first to grow out of the cornea/TM strips after approximately 4-7 days. Cells were positive for Collagen IV, Fibronectin1, Vimentin, and Actin alpha 2 and could phagocytize fluorescent microbeads. Cross-linked actin networks were visible after 9 days of exposure to TGFB2 (transforming growth factor-beta 2). Additionally, treatment with 500 nM Dexamethasone for one week increased myocilin expression, as previously reported for TM cells. In addition, we proved that this method can also be used in albino mice, which lack pigmentation of the trabecular meshwork. CONCLUSIONS: The isolated cells show phagocytic properties and specific expression of markers reported in TM cells. Therefore, our dissection-based method is inexpensive and reproducible for isolating TM cells in mice.


Assuntos
Glaucoma , Malha Trabecular , Camundongos , Animais , Malha Trabecular/metabolismo , Actinas/metabolismo , Glaucoma/cirurgia , Glaucoma/metabolismo , Córnea/metabolismo , Células Cultivadas
12.
Environ Sci Technol ; 57(38): 14472-14481, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37695840

RESUMO

Catalyst deactivation caused by alkali metal poisoning has long been a key bottleneck in the application of selective catalytic reduction of NOx with NH3 (NH3-SCR), limiting the service life of the catalyst and increasing the cost of environmental protection. Despite great efforts, continuous accumulation of alkali metal deposition makes the resistance capacity of 2 wt % K2O difficult to enhance via merely loading acid sites on the surface, resulting in rapid deactivation and frequent replacement of the NH3-SCR catalyst. To further improve the resistance of alkali metals, encapsulating alkali metals into the bulk phase could be a promising strategy. The bottleneck of 2 wt % K2O tolerance has been solved by virtue of ultrahigh potassium storage capacity in the amorphous FePO4 bulk phase. Amorphous FePO4 as a support of the NH3-SCR catalyst exhibited a self-adaptive alkali-tolerance mechanism, where potassium ions spontaneously migrated into the bulk phase of amorphous FePO4 and were anchored by PO43- with the generation of Fe2O3 at the NH3-SCR reaction temperature. This ingenious potassium storage mechanism could boost the K2O resistance capacity to 6 wt % while maintaining approximately 81% NOx conversion. Besides, amorphous FePO4 also exhibited excellent resistance to individual and coexistence of alkali (K2O and Na2O), alkali earth (CaO), and heavy metals (PbO and CdO), providing long durability for CePO4/FePO4 catalysts in flue gas with multipollutants. The cheap and accessible amorphous FePO4 paves the way for the development and implementation of poisoning-resistant NOx abatement.


Assuntos
Álcalis , Potássio , Catálise , Temperatura
13.
Front Psychiatry ; 14: 1184188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492068

RESUMO

Background: Depression is widespread global problem that not only severely impacts individuals' physical and mental health but also imposes a heavy disease burden on nations and societies. The role of inflammation in the pathogenesis and pathophysiology of depression has received much attention, but the precise relationship between the two remains unclear. This study aims to investigate the correlation between depression and inflammation using a network medicine approach. Methods: We utilized a degree-preserving approach to identify the large connected component (LCC) of all depression-related proteins in the human interactome. The LCC was deemed as the disease module for depression. To measure the association between depression and other diseases, we calculated the overlap between these disease protein modules using the Sab algorithm. A smaller Sab value indicates a stronger association between diseases. Building on the results of this analysis, we further explored the correlation between inflammation and depression by conducting enrichment and pathway analyses of critical targets. Finally, we used a network proximity approach to calculate drug-disease proximity to predict the efficacy of drugs for the treatment of depression. We calculated and ranked the distances between depression disease modules and 6,100 drugs. The top-ranked drugs were selected to explore their potential for treating depression based on the hypothesis that their antidepressant effects are related to reducing inflammation. Results: In the human interactome, all depression-related proteins are clustered into a large connected component (LCC) consisting of 202 proteins and multiple small subgraphs. This indicates that depression-related proteins tend to form clusters within the same network. We used the 202 LCC proteins as the key disease module for depression. Next, we investigated the potential relationships between depression and 299 other diseases. Our analysis identified over 18 diseases that exhibited significant overlap with the depression module. Where SAB = -0.075 for the vascular disease and depressive disorders module, SAB = -0.070 for the gastrointestinal disease and depressive disorders module, and SAB = -0.062 for the endocrine system disease and depressive disorders module. The distance between them SAB < 0 implies that the pathogenesis of depression is likely to be related to the pathogenesis of its co-morbidities of depression and that potential therapeutic approaches may be derived from the disease treatment libraries of these co-morbidities. Further, considering that the inflammation is ubiquitous in some disease, we calculate the overlap between the collected inflammation module (236 proteins) and the depression module (202 proteins), finding that they are closely related (Sdi = -0.358) in the human protein interaction network. After enrichment and pathway analysis of key genes, we identified the HIF-1 signaling pathway, PI3K-Akt signaling pathway, Th17 cell differentiation, hepatitis B, and inflammatory bowel disease as key to the inflammatory response in depression. Finally, we calculated the Z-score to determine the proximity of 6,100 drugs to the depression disease module. Among the top three drugs identified by drug-disease proximity analysis were Perphenazine, Clomipramine, and Amitriptyline, all of which had a greater number of targets in the network associated with the depression disease module. Notably, these drugs have been shown to exert both anti-inflammatory and antidepressant effects, suggesting that they may modulate depression through an anti-inflammatory mechanism. These findings demonstrate a correlation between depression and inflammation at the network medicine level, which has important implications for future elucidation of the etiology of depression and improved treatment outcomes. Conclusion: Neuroimmune signaling pathways play an important role in the pathogenesis of depression, and many classes of antidepressants exhibiting anti-inflammatory properties. The pathogenesis of depression is closely related to inflammation.

14.
Langmuir ; 39(25): 8889-8899, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37314863

RESUMO

Unraveling the dynamics of the active sites upon CeO2-based catalysts in selective catalytic reduction of nitrogen oxides by ammonia (NH3-SCR) is challenging. In this work, we prepared tungsten-acidified and sulfated CeO2 catalysts and used operando spectroscopy to reveal the dynamics of acid sites and redox sites on catalysts during NH3-SCR reaction. We found that both Lewis and Brønsted acid sites are needed to participate in the catalytic reaction. Notably, Brønsted acid sites are the main active sites after a tungsten-acidified or sulfated treatment, and the change of Brønsted acid sites significantly affects the NOx removal. Moreover, acid functionalization promotes the cerium species cycle between Ce4+ and Ce3+ for the NOx reduction. This work is critical to deeply understanding the natural properties of active sites, and it also provides new insights into the mechanism for NH3-SCR over CeO2-based catalysts.

15.
Chemosphere ; 336: 139245, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37330068

RESUMO

Drawing on the robust activation activity and affinity that transition metal ions and MoS2 exhibit towards peroxymonosulfate (PMS), 1T/2H hybrid molybdenum disulfide doped with Fe3+ (Fe3+/N-MoS2) was synthesized to activate PMS for the treatment of organic wastewater. The ultrathin sheet morphology and 1T/2H hybrid nature of Fe3+/N-MoS2 were confirmed by characterization. The (Fe3+/N-MoS2 + PMS) system demonstrated excellent performance in the degradation of carbamazepine (CBZ) above 90% within 10 min even under high salinity conditions. By electron paramagnetic resonance and active species scavenging experiments, it was inferred that SO4•─ palyed a dominant role in the treatment process. The strong synergistic interactions between 1T/2H MoS2 and Fe3+ efficiently promoted PMS activation and generated active species. Additionally, the (Fe3+/N-MoS2 + PMS) system was found to be capable of high activity for CBZ removal in high salinity natural water, and Fe3+/N-MoS2 exhibited high stability during recycle tests. This new strategy of Fe3+ doped 1T/2H hybrid MoS2 for more efficient PMS activation provides valuable insights for the removal of pollutants from high salinity wastewater.


Assuntos
Molibdênio , Águas Residuárias , Salinidade , Peróxidos , Carbamazepina
16.
J Cancer Res Clin Oncol ; 149(12): 10181-10188, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37266664

RESUMO

BACKGROUND: The aim of this study was to clarify the improvement of the overall survival (OS) over time in young non-metastatic nasopharyngeal carcinoma (NPC) survivors by conditional survival (CS) analysis and to construct a CS-nomogram for updating individualized real-time prognosis. METHODS: The study included 3409 young non-metastatic NPC patients from the Surveillance, Epidemiology, and End Results (SEER) database (2004-2019). OS was estimated using the Kaplan-Meier method. CS was calculated based on CS(y|x) = OS(y + x)/OS(x), defined as the probability that a patient would survive for another y years after surviving for x years since diagnosis. We identified predictors using the least absolute shrinkage and selection operator (LASSO) regression and developed the CS-nomogram using multivariate Cox regression and the CS formula. RESULTS: CS analysis showed a continuous increase in 10-year OS for young non-metastatic NPC from the initial 60.4% to 65.0%, 70.2%, 74.2%, 78.2%, 82.6%, 86.9%, 91.1%, 96.2% and 97.0% (surviving 1-9 years after diagnosis, respectively). After screening by LASSO regression, age, race, marital status, histological type, T- and N-status were used as predictors to construct the CS-nomogram. The model accurately estimated the real-time prognosis of survivors during follow-up with a stable time-dependent area under the curve (AUC). CONCLUSIONS: CS analysis based on SEER database calibrated the real-time prognosis of young non-metastatic NPC survivors, revealing a dynamic improvement during follow-up time. We developed a novel CS-nomogram to update survival data for real-time optimization of monitoring strategies, medical resource allocation, and patient counseling. However, it was important to note that the model still needed external data validation and continuous improvement.


Assuntos
Neoplasias Nasofaríngeas , Nomogramas , Humanos , Estadiamento de Neoplasias , Neoplasias Nasofaríngeas/patologia , Modelos de Riscos Proporcionais , Prognóstico , Programa de SEER
17.
Langmuir ; 39(21): 7434-7443, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37200447

RESUMO

Mn-based catalysts are promising for selective catalytic reduction (SCR) of NOx with NH3 at low temperatures due to their excellent redox capacity. However, the N2 selectivity of Mn-based catalysts is an urgent problem for practical application owing to excessive oxidizability. To solve this issue, we report a Mn-based catalyst using amorphous ZrTiOx as the support (Mn/ZrTi-A) with both excellent low-temperature NOx conversion and N2 selectivity. It is found that the amorphous structure of ZrTiOx modulates the metal-support interaction for anchoring the highly dispersed active MnOx species and constructs a uniquely bridged Mn3+ bonded with the support through oxygen linked to Ti4+ and Zr4+, respectively, which regulates the optimal oxidizability of the MnOx species. As a result, Mn/ZrTi-A is not conducive to the formation of ammonium nitrate that readily decomposes to N2O, thus further increasing N2 selectivity. This work investigates the role of an amorphous support in promoting the N2 selectivity of a manganese-based catalyst and sheds light on the design of efficient low-temperature deNOx catalysts.

18.
Adv Healthc Mater ; 12(20): e2300230, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36934382

RESUMO

Automated high-throughput live cell imaging (LCI) enables investigation of substance effects on cells in vitro. Usually, cell number is analyzed by phase-contrast imaging, which is reliable only for a few cell types. Therefore, an accurate cell counting method, such as staining the nuclei with Hoechst 33342 before LCI, will be desirable. However, since the mid-1980s, the dogma exists that Hoechst can only be used for endpoint analyses because of its cytotoxic properties and the potentially phototoxic effects of the excitation light. Since microscopic camera sensitivity has significantly improved, this study investigates whether this dogma is still justified. Therefore, exposure parameters are optimized using a 4× objective, and the minimum required Hoechst concentration is evaluated, allowing LCI at 30-min intervals over 5 days. Remarkably, a Hoechst concentration of only 57 × 10-9 m significantly inhibits proliferation and thus impairs cell viability. However, Hoechst concentrations between 7 × 10-9  and 28 × 10-9 m can be determined, which are neither cytotoxic nor impacting cell viability, proliferation, or signaling pathways. The method can be adapted to regular inverted fluorescence microscopes and allows, for example, to determine the cytotoxicity of a substance or the transduction efficiency, with the advantage that the analysis can be repeated at any desired time point.


Assuntos
Benzimidazóis , Núcleo Celular , Benzimidazóis/farmacologia , Microscopia de Fluorescência , Corantes Fluorescentes
19.
Environ Sci Technol ; 57(4): 1797-1806, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36637390

RESUMO

Low-temperature catalytic degradation of volatile organic compounds (VOCs) by enhancing the activity of non-precious metal catalysts has always been the focus of attention. The mineralization of aromatic VOCs requires the participation of a large number of oxygen atoms, so the activation of oxygen species is crucial in the degradation reaction. Herein, we originally adjust the Ce-O bond strength in CeZr oxide catalysts by cobalt doping to promote the activation of oxygen species, thus improving the toluene degradation performance while maintaining high stability. Subsequent characterizations and theoretical calculations demonstrate that the weakening of the Ce-O bond strength increases the oxygen vacancy content, promotes the activation of oxygen species, and enhances the redox ability of the catalysts. This strategy also promotes the activation of toluene and accelerates the depletion of intermediate species. This study will contribute a strategy to enhance the activation ability of oxygen species in non-noble metal oxide catalysts, thereby enhancing the degradation performance of VOCs.


Assuntos
Óxidos , Tolueno , Óxidos/química , Tolueno/química , Oxirredução , Catálise , Oxigênio
20.
Dig Dis Sci ; 68(1): 128-137, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35590046

RESUMO

BACKGROUND: Radioresistance is a major obstacle for clinical treatment of gastric cancer (GC). has_circ_0003506 (circ_0003506) was reported as an oncogenic factor in GC, but its effect on radioresistant GC is unclear. AIMS: This study aimed to explore the role of circ_0003506 in radioresistance and regulatory mechanism. METHODS: The expression detection was performed by real-time polymerase chain reaction. Cell survival was analyzed by colony formation assay. Cell proliferation was measured by Cell Counting Kit-8 assay and colony formation assay. Cell migration and invasion were examined using transwell assay. Cell apoptosis was assessed by flow cytometry. The target binding was confirmed via dual-luciferase reporter assay. The protein level was determined through western blot. Animal assay was performed for the functional exploration of circ_0003506 on radiosensitivity in vivo. RESULTS: Circ_0003506 was upregulated in radioresistant GC cells. Downregulation of circ_0003506 inhibited radioresistance to repress proliferation, migration and invasion but increase apoptosis in radioresistant GC cells. Circ_0003506 was a sponge of miR-1256. The effects of si-circ_0003506 on radioresistant GC cells were reverted by miR-1256 inhibitor. MiR-1256 suppressed tumor progression in radioresistant GC cells by downregulating bone morphogenetic protein type 2 receptor. Circ_0003506 regulated the level of bone morphogenetic protein type 2 receptor by targeting miR-1256. Downregulating circ_0003506 increased radiosensitivity of GC in vivo via regulating miR-1256 and bone morphogenetic protein type 2 receptor. CONCLUSION: Knockdown of circ_0003506 suppressed radioresistance in GC through the regulation of miR-1256/bone morphogenetic protein type 2 receptor axis. Circ_0003506 might be a therapeutic target in radiotherapy of GC.


Assuntos
MicroRNAs , Neoplasias Gástricas , Animais , Neoplasias Gástricas/genética , Neoplasias Gástricas/radioterapia , Ciclo Celular , Proliferação de Células , Apoptose , Movimento Celular , MicroRNAs/genética , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA