Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 315
Filtrar
1.
J Biol Chem ; : 107648, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39121998

RESUMO

Most cancer cells exhibit high glycolysis rates under conditions of abundant oxygen. Maintaining a stable glycolytic rate is critical for cancer cell growth as it ensures sufficient conversion of glucose carbons to energy, biosynthesis, and redox balance. Here we deciphered the interaction between PKM2 and the thermodynamic properties of the glycolytic pathway. Knocking down or knocking out PKM2 induced a thermodynamic equilibration in the glycolytic pathway, characterized by the reciprocal changes of the Gibbs free energy (ΔG) of the reactions catalyzed by PFK1 and PK, leading to a less exergonic PFK1-catalyzed reaction and a more exergonic PK-catalyzed reaction. The changes of the ΔGs of the two reactions causes the accumulation of intermediates, including the substrate PEP (the substrate of PK), in the segment between PFK1 and PK. The increased concentration of PEP in turn increased PK activity in the glycolytic pathway. Thus, the interaction between PKM2 and the thermodynamic properties of the glycolytic pathway maintains the reciprocal relationship between PK concentration and its substrate PEP concentration, by which, PK activity in the glycolytic pathway can be stabilized and effectively counteracts the effect of PKM2 KD or KO on glycolytic rate. In line with our previous reports, this study further validates the roles of the thermodynamics of the glycolytic pathway in stabilizing glycolysis in cancer cells. Deciphering the interaction between glycolytic enzymes and the thermodynamics of the glycolytic pathway will promote a better understanding of the flux control of glycolysis in cancer cells.

2.
Small ; : e2403850, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011977

RESUMO

Boosting the biomimetic catalytic activity of nanozyme is important for its potential application. One common strategy to achieve this goal mainly focused on manipulating the electronic state of metal site through the first coordination shell to modulate the adsorption/desorption strength of related reactant, intermediate and/or product, but remained challenging. Taking Cu-based catecholase-mimicking nanozyme for example, this work herein reports a different strategy involving amino-induced modulation of electronic state through the second shell to raise the electron density of Cu site, which further triggers the repulsion effect between neighboring geminal Cu centers to increase the Cu─Cu distance. The resulting nanozyme with electron-rich Cu site (DT-Cu) presents a lower work function and an upshifted d-band center in comparison with its counterpart (i.e., relatively electron-deficient TA-Cu), which promotes the electron transfer and enhances the adsorption strengths of Cu site for O2, catechol and H2O2 intermediate. The longer Cu─Cu distance of DT-Cu accelerated the O─O bond dissociation of H2O2 intermediate. This expedites the oxygen reduction process during catecholase-like catalysis, which together with the enhanced O2/H2O2/catechol adsorption corporately boosts the catecholase-like activity of DT-Cu.

3.
J Environ Manage ; 366: 121713, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38986368

RESUMO

Spirulina platensis contains abundant nitrogen-containing organics, which might react with derivatives of cellulose/lignin during hydrothermal carbonization (HTC), probably affecting yield, property of hydrochar, and pore development in activation of hydrochar. This was investigated herein by conducting co-HTC of spirulina platensis with cellulose, lignin, and sawdust at 260 °C and subsequent activation of the resulting hydrochars with K2C2O4 at 800 °C. The results showed that cross-condensation of spirulina platensis-derived proteins with cellulose/lignin-derived ketones and phenolics did take place in the co-HTC, forming more π-conjugated heavier organics, retaining more nitrogen species in hydrochar, reducing yields of hydrochar, making the hydrochar more aromatic and increasing the thermal stability and resistivity towards activation. This enhanced the yield of activated carbon (AC) by 7 %-20 % and significantly increased specific surface area of the AC from activation of hydrochar of spirulina platensis + lignin to 2074.5 m2/g (859.3 m2/g from spirulina platensis only and 1170.1 m2/g from lignin only). Furthermore, more mesopores from activation of hydrochar of spirulina platensis + cellulose (47 %) and more micropores from activation of hydrochar of spirulina + sawdust (93 %) was generated. The AC from spirulina platensis + lignin with the developed pore structures generated sufficient sites for adsorption of tetracycline from aqueous phase and minimized steric hindrance for mass transfer with the abundant mesopores (43 %).


Assuntos
Celulose , Carvão Vegetal , Lignina , Spirulina , Spirulina/química , Lignina/química , Celulose/química , Carvão Vegetal/química , Populus/química , Carbono/química
4.
BMC Urol ; 24(1): 153, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068429

RESUMO

BACKGROUND: Renal calculi are one of the most frequent diseases in urology, and percutaneous nephrolithotomy (PCNL) being the gold standard for treating renal calculi larger than 2 cm. However, traditional rigid nephroscope cannot bend, presents significant limitations during PCNL. This study aims to develop a novel digital flexible nephroscope for PCNL and verify its safety and efficacy using 3D printed models and ex vivo porcine kidney models, providing new equipment for PCNL. METHODS: Based on the determined technical parameters, the novel digital flexible nephroscope was manufactured. First, 3D-printed model and ex vivo porcine kidney models were utilized to simulate the PCNL procedures. Then, the traditional rigid nephroscope and the novel digital flexible nephroscope were utilized to simulate the PCNL procedures on 10 ex vivo porcine kidneys for comparison. We observed and recorded the renal calyces visualized and accessed by both the traditional rigid nephroscope and the novel digital flexible nephroscope. RESULTS: In both the 3D printing and ex vivo porcine kidney models, the novel percutaneous digital flexible nephroscope smoothly entered the renal collecting system through the percutaneous renal tract. It freely changed angles to reach most target calyces, demonstrating significant advantages over the traditional rigid nephroscope. CONCLUSION: The successful development of the novel percutaneous digital flexible nephroscope allows it to be used either independently or as an adjunct in complex stone cases, providing more effective and safer surgical equipment for percutaneous nephrolithotomy.


Assuntos
Desenho de Equipamento , Impressão Tridimensional , Animais , Suínos , Nefrolitotomia Percutânea/métodos , Nefrolitotomia Percutânea/instrumentação , Cálculos Renais/cirurgia , Nefrostomia Percutânea/instrumentação , Nefrostomia Percutânea/métodos
6.
EBioMedicine ; 105: 105197, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876042

RESUMO

BACKGROUND: The need for new therapeutics for attention deficit hyperactivity disorder (ADHD) is evident. Brain, cerebrospinal fluid (CSF), and plasma protein biomarkers with causal genetic evidence could represent potential drug targets. However, a comprehensive screen of the proteome has not yet been conducted. METHODS: We employed a three-pronged approach using Mendelian Randomization (MR) and Bayesian colocalization analysis. Firstly, we studied 608 brains, 214 CSF, and 612 plasma proteins as potential causal mediators of ADHD using MR analysis. Secondly, we analysed the consistency of the discovered biomarkers across three distinct subtypes of ADHD: childhood, persistent, and late-diagnosed ADHD. Finally, we extended our analysis to examine the correlation between identified biomarkers and Tourette syndrome and pervasive autism spectrum disorder (ASD), conditions often linked with ADHD. To validate the MR findings, we conducted sensitivity analysis. Additionally, we performed cell type analysis on the human brain to identify risk genes that are notably enriched in various brain cell types. FINDINGS: After applying Bonferroni correction, we found that the risk of ADHD was increased by brain proteins GMPPB, NAA80, HYI, CISD2, and HYI, TIE1 in CSF and plasma. Proteins GMPPB, NAA80, ICA1L, CISD2, TIE1, and RMDN1 showed overlapped loci with ADHD risk through Bayesian colocalization. Overexpression of GMPPB protein was linked to an increase in the risk for all three ADHD subtypes. While ICA1L provided protection against both ASD and ADHD, CISD2 increased the probability of both disorders. Cell-specific studies revealed that GMPPB, NAA80, ICA1L, and CISD2 were predominantly present on the surface of excitatory-inhibitory neurons. INTERPRETATION: Our comprehensive MR investigation of the brain, CSF, and plasma proteomes revealed seven proteins with causal connections to ADHD. Particularly, GMPPB and TIE1 emerged as intriguing targets for potential ADHD therapy. FUNDING: This work was partly funded by the Key R & D Program of Zhejiang (T.L. 2022C03096); the National Natural Science Foundation of China Project (C.Z. 82001413); Postdoctoral Foundation of West China Hospital (C.Z. 2020HXBH163).


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Biomarcadores , Encéfalo , Análise da Randomização Mendeliana , Proteoma , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/líquido cefalorraquidiano , Transtorno do Deficit de Atenção com Hiperatividade/sangue , Proteoma/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Biomarcadores/líquido cefalorraquidiano , Teorema de Bayes , Proteínas Sanguíneas/metabolismo , Predisposição Genética para Doença
7.
Schizophr Bull ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869147

RESUMO

BACKGROUND AND HYPOTHESIS: Investigating the shared brain protein and genetic components of schizophrenia (SCZ) and bipolar I disorder (BD-I) presents a unique opportunity to understand the underlying pathophysiological processes and pinpoint potential drug targets. STUDY DESIGN: To identify overlapping susceptibility brain proteins in SCZ and BD-I, we carried out proteome-wide association studies (PWAS) and Mendelian Randomization (MR) by integrating human brain protein quantitative trait loci with large-scale genome-wide association studies for both disorders. We utilized transcriptome-wide association studies (TWAS) to determine the consistency of mRNA-protein dysregulation in both disorders. We applied pleiotropy-informed conditional false discovery rate (pleioFDR) analysis to identify common risk genetic loci for SCZ and BD-I. Additionally, we performed a cell-type-specific analysis in the human brain to detect risk genes notably enriched in distinct brain cell types. The impact of risk gene overexpression on dendritic arborization and axon length in neurons was also examined. STUDY RESULTS: Our PWAS identified 42 proteins associated with SCZ and 14 with BD-I, among which NEK4, HARS2, SUGP1, and DUS2 were common to both conditions. TWAS and MR analysis verified the significant risk gene NEK4 for both SCZ and BD-I. PleioFDR analysis further supported genetic risk loci associated with NEK4 for both conditions. The cell-type specificity analysis revealed that NEK4 is expressed on the surface of glutamatergic neurons, and its overexpression enhances dendritic arborization and axon length in cultured primary neurons. CONCLUSIONS: These findings underscore a shared genetic origin for SCZ and BD-I, offering novel insights for potential therapeutic target identification.

8.
Waste Manag ; 182: 142-163, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38653043

RESUMO

Owing to the diversity of biomasses and many variables in pyrolysis process, the property of biochar from varied biomass feedstock or even same biomass could differ significantly. Since the property of biochar governs the further application of biochar, this review paid particular attention to the correlation between the nature of biomass feedstock and the specifications of biochar in terms of yield, elemental composition, pH, functionalities, heating value, pore structures, morphologies, etc. The property of the biochar from the pyrolysis of cellulose, hemicellulose, lignin, woody biomass (pine, mallee, poplar, acacia, oak, eucalyptus and beech), bark of woody biomass, leaves of woody biomass, straw, algae, fruit peels, tea waste was compared and summarized. In addition, the differences of the biochar of these varied origins were also analyzed. The remaining questions, about the correlation of biomass nature with biochar characteristics, to be further investigated are analyzed in detail. The deduced information about the relationship of the nature of biochar and biomass feedstock as well as key pyrolysis parameters is of importance for further development of the methods for tailoring or production of the biochar of desirable properties. The results from this study could be interesting technically and commercially for the technology developer using biochar as the source of carbon in different applications.


Assuntos
Biomassa , Carvão Vegetal , Pirólise , Carvão Vegetal/química , Madeira/química , Celulose/química , Lignina/química , Polissacarídeos
9.
CNS Neurosci Ther ; 30(4): e14713, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38615362

RESUMO

AIMS: We aimed to evaluate the potential of a novel selective α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) potentiator, LT-102, in treating cognitive impairments associated with schizophrenia (CIAS) and elucidating its mechanism of action. METHODS: The activity of LT-102 was examined by Ca2+ influx assays and patch-clamp in rat primary hippocampal neurons. The structure of the complex was determined by X-ray crystallography. The selectivity of LT-102 was evaluated by hERG tail current recording and kinase-inhibition assays. The electrophysiological characterization of LT-102 was characterized by patch-clamp recording in mouse hippocampal slices. The expression and phosphorylation levels of proteins were examined by Western blotting. Cognitive function was assessed using the Morris water maze and novel object recognition tests. RESULTS: LT-102 is a novel and selective AMPAR potentiator with little agonistic effect, which binds to the allosteric site formed by the intradimer interface of AMPAR's GluA2 subunit. Treatment with LT-102 facilitated long-term potentiation in mouse hippocampal slices and reversed cognitive deficits in a phencyclidine-induced mouse model. Additionally, LT-102 treatment increased the protein level of brain-derived neurotrophic factor and the phosphorylation of GluA1 in primary neurons and hippocampal tissues. CONCLUSION: We conclude that LT-102 ameliorates cognitive impairments in a phencyclidine-induced model of schizophrenia by enhancing synaptic function, which could make it a potential therapeutic candidate for CIAS.


Assuntos
Disfunção Cognitiva , Propionatos , Esquizofrenia , Animais , Camundongos , Ratos , Fenciclidina , Esquizofrenia/complicações , Esquizofrenia/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Isoxazóis
10.
Small ; : e2401756, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686699

RESUMO

Fabrication of nanozyme with catecholase-like catalytic activity faces the great challenge of merging outstanding activity with low cost as well as simple, rapid, and low-energy-consumed production, restricting its industrial applications. Herein, an inexpensive yet robust nanozyme (i.e., DT-Cu) via simple one-step coordination between diaminotriazole (DT) and CuSO4 within 1 h in water at room temperature is constructed. The asymmetric dicopper site with CuN3O configuration for each copper as well as Cu─O bond length of ≈1.83 Å and Cu···Cu distance of ≈3.5 Å in DT-Cu resemble those in catechol oxidase (CO), which ensure its prominent intrinsic activity, outperforming most CO-mimicking nanozymes and artificial homogeneous catalysts. The use of inexpensive DT/CuSO4 in this one-pot strategy endows DT-Cu with only ≈20% cost of natural CO per activity unit. During catalysis, O2 experienced a 4e-dominated reduction process accompanied by the formation of 1O2 and H2O2 intermediates and the product of H2O. Benefiting from the low cost as well as the distinctive structure and superior intrinsic activity, DT-Cu presents potential applications ranging from biocatalysis to analytical detection of biomolecules such as epinephrine and beyond.

11.
Exp Ther Med ; 27(4): 153, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38476920

RESUMO

The case of a patient with type B3 thymomacomorbid with Chlamydia psittaci (C. psittaci) pneumonia exhibiting rare features is presented in the current report. The patient was admitted at the Second Affiliated Hospital of Jiaxing University (Jiaxing, China) with a history of direct contact with poultry. Clinical manifestations included fever, shivers, cough, fatigue and poor appetite. Chest computed tomography (CT) indicated right lung pneumonia, while metagenomics next-generation sequencing using bronchoalveolar lavage fluid confirmed infection with C. psittaci. Additionally, positron emission tomography-CT suggested the presence of thymoma. After surgery and treatment with doxycycline and imipenem cilastatin, the patient was discharged showing signs of improvement.

12.
Materials (Basel) ; 17(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38399089

RESUMO

Zn-ion hybrid supercapacitors (ZHCs) combining merits of battery-type and capacitive electrodes are considered to be a prospective candidate in energy storage systems. Tailor-made carbon cathodes with high zincophilicity and abundant physi/chemisorption sites are critical but it remains a great challenge to achieve both features by a sustainable means. Herein, a hydrogen-bonding interaction-guided self-assembly strategy is presented to prepare iodine-doped carbon nanocages without templates for boosting zinc-ion storage by nucleophilicity. The biomass ellagic acid contains extensional hydroxy and acyloxy groups with electron-donating ability, which interact with melamine and ammonium iodide to form organic supermolecules. The organic supermolecules further self-assemble into a nanocage-like structure with cavities under hydrothermal processes via hydrogen-bonding and π-π stacking. The carbon nanocages as ZHCs cathodes enable the high approachability of zincophilic sites and low ion migration resistance resulting from the interconnected conductive network and nanoscale architecture. The experimental analyses and theoretical simulations reveal the pivotal role of iodine dopants. The I5-/I3- doping anions in carbon cathodes have a nucleophilicity to preferentially adsorb the Zn2+ cation by the formation of C+-I5--Zn2+ and C+-I3--Zn2+. Of these, the C+-I3- shows stronger bonding with Zn2+ than C+-I5-. As a result, the iodine-doped carbon nanocages produced via this template-free strategy deliver a high capacity of 134.2 mAh/g at 1 A/g and a maximum energy and power density of 114.1 Wh/kg and 42.5 kW/kg.

13.
Angew Chem Int Ed Engl ; 63(12): e202319600, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38286751

RESUMO

Lithium (Li)-metal batteries are promising next-generation energy storage systems. One drawback of uncontrollable electrolyte degradation is the ability to form a fragile and nonuniform solid electrolyte interface (SEI). In this study, we propose the use of a fluorinated carbon nanotube (CNT) macrofilm (CMF) on Li metal as a hybrid anode, which can regulate the redox state at the anode/electrolyte interface. Due to the favorable reaction energy between the plated Li and fluorinated CNTs, the metal can be fluorinated directly to a LiF-rich SEI during the charging process, leading to a high Young's modulus (~2.0 GPa) and fast ionic transfer (~2.59×10-7  S cm-1 ). The obtained SEI can guide the homogeneous plating/stripping of Li during electrochemical processes while suppressing dendrite growth. In particular, the hybrid of endowed full cells with substantially enhanced cyclability allows for high capacity retention (~99.3 %) and remarkable rate capacity. This work can extend fluorination technology into a platform to control artificial SEI formation in Li-metal batteries, increasing the stability and long-term performance of the resulting material.

15.
J Colloid Interface Sci ; 659: 94-104, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38159493

RESUMO

The construction of heterointerface in photocatalyst is an efficient approach to boost the separation and utilization efficiency of charge carriers, which is challenging and crucial in photocatalysis. Here, the construction of melon-structured carbon nitride/N-doped WO3 (MCN/NWx) heterojunction photocatalyst was achieved by a method of prealcoholysis combined with thermal polymerization, where N-doping of WO3 was achieved in-situ in the formation of heterojunction. The promoted charge separation efficiency was realized through the charge transfer from the conduction band of N-doped WO3 to the valence band of the MCN. Density functional theory calculation results showed that the formation of the W-N heteroatom-interface led to the increase of density of states at the heterointerface and decrease of the band gap. The MCN/NWx nanocomposite featured a metallic band structure of the nanocomposite photocatalysts, resulting in the enhanced photocatalytic activity. The photocatalytic hydrogen evolution activity of the MCN/NW2 was enhanced about 2.5 times than that of MCN. This research provides a novel insight into the construction of a novel heteroatom-junction that boosts the separation efficiency of charge carriers, and thereby improves the photocatalytic activity.

16.
Opt Express ; 31(24): 39717-39726, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38041287

RESUMO

Green micro-light emitting diodes (micro-LEDs) is one of the three primary color light sources as full-color display, which serves as a key research object in the field of micro-LED display. As the micro-LED size decreases, the surface-area-to-volume ratio of the device increases, leading to more serious damage on the sidewall by inductively coupled plasma (ICP) etching. The passivation process of SiO2 provides an effective method to reduce sidewall damage caused by ICP etching. In this work, green rectangular micro-LEDs with passivation layer thickness of 0∼600 nm was designed using the finite-difference time-domain (FDTD) simulation. In order to verify the simulation results, the micro-LED array was fabricated by parallel laser micro-lens array (MLA) lithography in high speed and large area. The effect of the SiO2 passivation layer thickness on the performance of the green micro-LED was analyzed, which shows that the passivation layer thickness-light extraction efficiency curve fluctuates periodically. For the sample with 90 nm thickness of SiO2 passivation layer, there exists a small leakage current and higher operating current density, and the maximum external quantum efficiency (EQE) is 2.8 times higher than micro-LED without SiO2 passivation layer.

17.
JCEM Case Rep ; 1(3): luad042, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37908566

RESUMO

Denosumab is a widely used medication for the treatment of osteoporosis. It has been observed in recent years that abruptly stopping denosumab leads to an increase in bone turnover markers, a decrease in bone mineral density, and a higher incidence of vertebral fractures. We present the case of a 53-year-old woman with few comorbidities and no prior fragility fractures who experienced 4 spontaneous and severely debilitating vertebral fractures 5-months post denosumab discontinuation. At the time of her fractures, she was found to have markedly elevated bone turnover markers, despite bone mineral density that was not significantly changed from measurements done while on denosumab treatment. She went on to be treated with an alternative antiresorptive agent, risedronate, and had substantial declines in her bone turnover markers, along with clinical improvement in her back pain. She experienced no further fractures while on treatment. Abrupt discontinuation of denosumab without starting an alternative antiresorptive agent can lead to spontaneous vertebral fractures. These fractures can occur in young patients with no prior history of fragility fractures and can be severely debilitating. An alternative antiresorptive agent should be started in the case of denosumab discontinuation.

18.
Bioresour Technol ; 389: 129810, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37805088

RESUMO

Microalgae present a viable mechanism for purifying aquatic environments through the absorption of organic pollutants. In this paper, Chlorella protothecoides was cultured in a tetracycline environment, and biochar was added during the cultivation process. Compared with conventionally cultured Chlorella protothecoides, the addition of biochar for cultivation under a tetracycline environment increased the biomass of Chlorella protothecoides by 13.26 %. Moreover, the adsorption of tetracycline by biochar alone was not complete, but when mixed with Chlorella protothecoides, tetracycline was completely removed, which proved the biosorption of Chlorella protothecoides for low concentrations of tetracycline. Finally, the cultured Chlorella protothecoides was used further to prepare electrode materials, and it was found that the specific capacitance of the material reached 233.15F/g at a current density of 1 A/g. In this study, the use of biochar and Chlorella protothecoides to jointly adsorb tetracycline is of great significance for environmental protection and microalgae cultivation.


Assuntos
Chlorella , Adsorção , Carvão Vegetal , Tetraciclina
19.
ACS Appl Mater Interfaces ; 15(41): 48296-48303, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37812387

RESUMO

In-situ exsolution type perovskites as solid oxide fuel cell (SOFCs) anode materials have received widespread attention because of their excellent catalytic activity. In this study, excessive NiO is introduced to the Sr2V0.4Fe0.9Mo0.7O6-δ (SVFMO) perovskite with the B-site excess design, and in-situ growth of FeNi3 alloy nanoparticles is induced in the reducing atmosphere to form the Sr2V0.4Fe0.9Mo0.7O6-δ-Ni0.4 (SVFMO-Ni0.4) composite anode. Here, with H2 or CH4 as SOFCs fuel gas, the formation of FeNi3 nanoparticles further enhances the catalytic ability. Compared with SVFMO, the maximum power density (Pmax) of Sr2V0.4Fe0.9Mo0.7O6-δ-Ni0.4 (SVFMO-Ni0.4) increases from 538 to 828 mW cm-2 at 850 °C with hydrogen as the fuel gas, and the total polarization resistance (RP) decreases from 0.23 to 0.17 Ω cm2. In addition, the long-term operational stability of the SVFMO-Ni0.4 anode shows no apparent performance degradation for more than 300 h. Compared with SVFMO, the Pmax of SVFMO-Ni0.4 increases from 138 to 464 mW cm-2 with methane as fuel gas, and the RP decreases from 1.21 to 0.29 Ω cm2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA