Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biotechnol ; 392: 78-89, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945483

RESUMO

Ginsenoside, the principal active constituent of ginseng, exhibits enhanced bioavailability and medicinal efficacy in rare ginsenosides compared to major ginsenosides. Current research is focused on efficiently and selectively removing sugar groups attached to the major ginsenoside sugar chains to convert them into rare ginsenosides that meet the demands of medical industry and functional foods. The methods for preparing rare ginsenosides encompass chemical, microbial, and enzymatic approaches. Among these, the enzyme conversion method is highly favored by researchers due to its exceptional specificity and robust efficiency. This review summarizes the biological activities of different rare ginsenosides, explores the various glycosidases used in the biotransformation of different major ginsenosides as substrates, and elucidates their respective corresponding biotransformation pathways. These findings will provide valuable references for the development, utilization, and industrial production of ginsenosides.

2.
World J Microbiol Biotechnol ; 39(12): 344, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843698

RESUMO

Bifidobacterium is a major probiotic of intestinal gut flora and exerts many physiological activities, and it is widely applied in the fields of food and medicine. As an important part of Bifidobacterium, glycoside hydrolase plays a role in its physiological activity. With the continuous development and improvement of genetic engineering technology, research on this type of enzyme will play a crucial role in promoting the further development of Bifidobacterium in the field of probiotics. In this review, the preparation methods, enzymatic properties, and functions of glycoside hydrolase extracted from Bifidobacterium are described and summarized. The common method for preparing glycoside hydrolase derived from Bifidobacterium is heterologous expression in Escherichia coli BL21. The optimal pH range for these glycoside hydrolase enzymes is between 4.5 and 7.5; the optimal temperature is between 30 and 50 °C, which is close to the optimal growth condition of Bifidobacterium. Based on substrate specificity, these glycoside hydrolase could hydrolyze synthetic substrates and natural oligosaccharides, including a series of pNP artificial substrates, disaccharide, and trisaccharides, while they have little ability to hydrolyze polysaccharide substrates. This review will be expected to provide a basis for the development of Bifidobacterium as a probiotic element.


Assuntos
Bifidobacterium , Glicosídeo Hidrolases , Bifidobacterium/genética , Glicosídeo Hidrolases/metabolismo , Dissacarídeos , Oligossacarídeos/química , Especificidade por Substrato
3.
Carbohydr Polym ; 313: 120889, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182975

RESUMO

Commercially-supplied potato galactan (PG) is widely used as a model polysaccharide in various bioactivity studies. However, results using this galactan are not always consistent with the stated composition. Here, we assessed its composition by fractionating this commercial PG and purified its primary components: PG-A, PG-B and PG-Cp with weight-averaged molecular weights of 430, 93, and 11.3 kDa, respectively. PG-Cp consists of free ß-1,4-galactan chains, whereas PG-A and PG-B are type I rhamnogalacturonans with long ß-1,4-galactan side chains of up to 80 Gal residues and short ß-1,4-galactan side chains of 0 to 3 Gal residues that display a "trees in lawn" pattern. Structures of these polysaccharides correlate well with their activities in terms of galectin-3 binding and gut bacterial growth assays. Our study clarifies the confusion related to commercial PG, with purified fractions serving as better model polysaccharides in bioactivity investigations.


Assuntos
Galactanos , Solanum tuberosum , Galactanos/química , Solanum tuberosum/química , Pectinas/química , Polissacarídeos/química , Galectina 3/metabolismo
5.
Psychoradiology ; 3: kkad015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38666126

RESUMO

Background: Impulsivity and decision-making are key factors in addiction. However, little is known about how gender and time sensitivity affect impulsivity in internet gaming disorder (IGD). Objective: To investigate the gender difference of impulsive decision-making and relevant brain responses in IGD. Methods: We conducted a functional magnetic resonance imaging (fMRI) study with 123 participants, including 59 IGD individuals (26 females) and 64 matched recreational game users (RGUs, 23 females). Participants performed a delay-discounting task during fMRI scanning. We examined gender-by-group effects on behavioral and neural measures to explore the preference for immediate over delayed rewards and the associated brain activity. We also investigated the network correlations between addiction severity and behavioral and neural measures, and analyzed the mediating role of brain activity in the link between delay discounting parameters and IGD severity. Results: We found significant gender-by-group interactions. The imaging results revealed gender-by-group interactions in the dorsolateral prefrontal cortex, medial frontal gyrus, and inferior frontal gyrus (IFG). Post hoc analysis indicated that, for females, RGUs showed higher activity than IGD individuals in these brain regions, while for males IGD individuals exhibited higher activity than RGUs. The activation in the left IFG mediated the relation between Internet Addiction Test score and discount rate in females. In males, the activation in the right dlPFC mediated the relation between IAT score and time sensitivity. Discussion: Our findings imply that male IGD participants demonstrate impaired intertemporal decisions associated with neural dysfunction. Influencing factors for impulsive decision-making in IGD diverge between males (time sensitivity) and females (discount rate). These findings augment our comprehension of the neural underpinnings of gender differences in IGD and bear significant implications for devising effective intervention strategies for treating people with IGD.

6.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36558996

RESUMO

We extracted, purified, and characterized three neutral and three acidic polysaccharides from the roots, stems, and leaves of Aralia continentalis Kitigawa. The results of the analysis of monosaccharide composition indicated that the polysaccharides from the roots and stems were more similar to each other than they were to the polysaccharides from the leaves. The in vitro antioxidant results demonstrated that the acidic polysaccharides had stronger antioxidant activity than the neutral fractions. Therefore, we investigated the primary purified acidic polysaccharide fractions (WACP(R)-A-c, WACP(S)-A-c, and WACP(L)-A-d) by NMR and enzymatic analysis. The structural analytical results indicated that WACP(R)-A-c contained homogalacturonan (HG); WACP(S)-A-c contained HG and rhamnogalacturonan II (RG-II), and WACP(L)-A-d contained HG, RG-II, and rhamnogalacturonan I (RG-I) domains. Our findings offer insights into the screening of natural polysaccharide-based antioxidants and provide a theoretical basis for the application of A. continentalis.

7.
J Microbiol Biotechnol ; 32(8): 1064-1071, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-35879293

RESUMO

Arabinogalactans have diverse biological properties and can be used as pharmaceutical agents. Most arabinogalactans are composed of ß-(1→3)-galactan, so it is particularly important to identify ß-1,3-galactanases that can selectively degrade them. In this study, a novel exo-ß-1,3-galactanase, named PoGal3, was screened from Penicillium oxalicum sp. 68, and hetero-expressed in P. pastoris GS115 as a soluble protein. PoGal3 belongs to glycoside hydrolase family 43 (GH43) and has a 1,356-bp gene length that encodes 451 amino acids residues. To study the enzymatic properties and substrate selectivity of PoGal3, ß-1,3-galactan (AG-P-I) from larch wood arabinogalactan (LWAG) was prepared and characterized by HPLC and NMR. Using AG-P-I as substrate, purified PoGal3 exhibited an optimal pH of 5.0 and temperature of 40°C. We also discovered that Zn2+ had the strongest promoting effect on enzyme activity, increasing it by 28.6%. Substrate specificity suggests that PoGal3 functions as an exo-ß-1,3-galactanase, with its greatest catalytic activity observed on AG-P-I. Hydrolytic products of AG-P-I are mainly composed of galactose and ß-1,6-galactobiose. In addition, PoGal3 can catalyze hydrolysis of LWAG to produce galacto-oligomers. PoGal3 is the first enzyme identified as an exo-ß-1,3-galactanase that can be used in building glycan blocks of crucial glycoconjugates to assess their biological functions.


Assuntos
Glicosídeo Hidrolases , Penicillium , Clonagem Molecular , Galactanos , Especificidade por Substrato
8.
Artigo em Inglês | MEDLINE | ID: mdl-35627552

RESUMO

Previous studies have suggested that physical activity may decrease academic procrastination; however, few studies have explored the underlying mechanisms of how physical activity exerts an effect on academic procrastination. This study aimed to examine the mediating effects of self-control and self-efficacy in the relationship between physical activity and academic procrastination among Chinese university students. METHODS: A cross-sectional design was used in this study. The sample comprised 564 university students from a university in Zhejiang, China. The physical activity rating scale-3 (PARS-3), self-control scale (SCS), generalized self-efficacy scale (GSES), and procrastination assessment scale-students (PASS) were used to investigate university students' physical activity, self-control, self-efficacy, and academic procrastination respectively. The Percentile-Bootstrap technique was performed to examine the mediating effects of self-control and self-efficacy on the association between physical activity and academic procrastination. RESULTS: Physical activity significantly predicted higher levels of self-control and self-efficacy, as well as lower levels of academic procrastination. Self-control and self-efficacy were significant mediators between physical activity and academic procrastination. CONCLUSION: This study indicated that physical activity interventions targeting the improvement of self-control and self-efficacy may reduce academic procrastination in university students.


Assuntos
Procrastinação , Autocontrole , China , Estudos Transversais , Exercício Físico , Humanos , Autoeficácia , Estudantes , Universidades
9.
Front Microbiol ; 13: 860014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464910

RESUMO

Three ß-glucosidases from Bifidobacterium adolescentis ATCC15703, namely, BaBgl1A, BaBgl3A, and BaBgl3B, were overexpressed in Escherichia coli. The recombinant ß-glucosidases were sufficiently purified using Ni2+ affinity chromatography, and BaBgl1A exhibited the best purification efficiency with a purification factor of 2.3-fold and specific activity of 71.2 U/mg. Three recombinant ß-glucosidases acted on p-nitrophenyl-ß-glucopyranoside (pNPßGlc) at around pH 7.0 and 30-50°C. The results of the substrate specificity assay suggested that BaBgl1A acted exclusively as ß-1,2-glucosidase, while BaBgl3A and BaBgl3B acted mostly as ß-1,3-glucosidase and ß-1,4-glucosidase, respectively. The substrate specificity of the three recombinant enzymes was further studied using the ginsenosides Rb1 and Rd as substrates. The results of thin-layer chromatography and high-performance liquid chromatography analyses showed that BaBgl1A exhibited the highest bioconversion ability on Rb1 and Rd, where it hydrolyzed the outer C-3 glucose moieties of Rb1 and Rd into the rare ginsenosides Gypenoside XVII and F2; BaBgl3A exhibited medium bioconversion ability on Rb1, where it hydrolyzed both the outer C-3 and C-20 glucose moieties of Rb1 into Gyp XVII and Rd; and BaBgl3B was not active on Rb1 and Rd. These ß-glucosidases will act as new biocatalytic tools for transforming ginsenosides and preparing active glycosides and aglycone.

10.
Front Physiol ; 12: 784803, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880782

RESUMO

Heat shock proteins (HSPs) are a large class of highly conserved chaperons, which play important roles in response to elevated temperature and other environmental stressors. In the present study, 5 HSP90 genes and 17 HSP70 genes were systematically characterized in spotted seabass (Lateolabrax maculatus). The evolutionary footprint of HSP genes was revealed via the analysis of phylogeny, chromosome location, and gene copy numbers. In addition, the gene structure features and the putative distribution of heat shock elements (HSEs) and hypoxia response elements (HREs) in the promoter regions were analyzed. The protein-protein interaction (PPI) network analyses results indicated the potential transcriptional regulation between the heat shock factor 1 (HSF1) and HSPs and a wide range of interactions among HSPs. Furthermore, quantitative (q)PCR was performed to detect the expression profiles of HSP90 and HSP70 genes in gill, liver, and muscle tissues after heat stress, meanwhile, the expression patterns in gills under alkalinity and hypoxia stresses were determined by analyzing RNA-Seq datasets. Results showed that after heat stress, most of the examined HSP genes were significantly upregulated in a tissue-specific and time-dependent manners, and hsp90aa1.1, hsp90aa1.2, hsp70.1, and hsp70.2 were the most intense responsive genes in all three tissues. In response to alkalinity stress, 11 out of 13 significantly regulated HSP genes exhibited suppressed expression patterns. Alternatively, among the 12 hypoxia-responsive-expressed HSP genes, 7 genes showed induced expressions, while hsp90aa1.2, hsp70.1, and hsp70.2 had more significant upregulated changes after hypoxic challenge. Our findings provide the essential basis for further functional studies of HSP genes in response to abiotic stresses in spotted seabass.

11.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830294

RESUMO

The NAC (NAM, ATAF and CUC) gene family plays a crucial role in the transcriptional regulation of various biological processes and has been identified and characterized in multiple plant species. However, genome-wide identification of this gene family has not been implemented in Juglans mandshurica, and specific functions of these genes in the development of fruits remain unknown. In this study, we performed genome-wide identification and functional analysis of the NAC gene family during fruit development and identified a total of 114 JmNAC genes in the J. mandshurica genome. Chromosomal location analysis revealed that JmNAC genes were unevenly distributed in 16 chromosomes; the highest numbers were found in chromosomes 2 and 4. Furthermore, according to the homologues of JmNAC genes in Arabidopsis thaliana, a phylogenetic tree was constructed, and the results demonstrated 114 JmNAC genes, which were divided into eight subgroups. Four JmNAC gene pairs were identified as the result of tandem duplicates. Tissue-specific analysis of JmNAC genes during different developmental stages revealed that 39 and 25 JmNAC genes exhibited upregulation during the mature stage in walnut exocarp and embryos, indicating that they may serve key functions in fruit development. Furthermore, 12 upregulated JmNAC genes were common in fruit ripening stage in walnut exocarp and embryos, which demonstrated that these genes were positively correlated with fruit development in J. mandshurica. This study provides new insights into the regulatory functions of JmNAC genes during fruit development in J. mandshurica, thereby improving the understanding of characteristics and evolution of the JmNAC gene family.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/genética , Genes de Plantas , Juglans/crescimento & desenvolvimento , Juglans/genética , Família Multigênica , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Transcriptoma/genética , Cromossomos de Plantas/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Filogenia , Desenvolvimento Vegetal/genética , Regulação para Cima/genética
12.
Int J Mol Sci ; 22(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34639038

RESUMO

Chokecherry (Padus virginiana L.) is an important landscaping tree with high ornamental value because of its colorful purplish-red leaves (PRL). The quantifications of anthocyanins and the mechanisms of leaf color change in this species remain unknown. The potential biosynthetic and regulatory mechanisms and the accumulation patterns of anthocyanins in P. virginiana that determine three leaf colors were investigated by combined analysis of the transcriptome and the metabolome. The difference of chlorophyll, carotenoid and anthocyanin content correlated with the formation of P. virginiana leaf color. Using enrichment and correlation network analysis, we found that anthocyanin accumulation differed in different colored leaves and that the accumulation of malvidin 3-O-glucoside (violet) and pelargonidin 3-O-glucoside (orange-red) significantly correlated with the leaf color change from green to purple-red. The flavonoid biosynthesis genes (PAL, CHS and CHI) and their transcriptional regulators (MYB, HD-Zip and bHLH) exhibited specific increased expression during the purple-red periods. Two genes encoding enzymes in the anthocyanin biosynthetic pathway, UDP glucose-flavonoid 3-O-glucosyl-transferase (UFGT) and anthocyanidin 3-O-glucosyltransferase (BZ1), seem to be critical for suppressing the formation of the aforesaid anthocyanins. In PRL, the expression of the genes encoding for UGFT and BZ1 enzymes was substantially higher than in leaves of other colors and may be related with the purple-red color change. These results may facilitate genetic modification or selection for further improvement in ornamental qualities of P. virginiana.


Assuntos
Antocianinas/biossíntese , Pigmentação , Folhas de Planta/metabolismo , Prunus/fisiologia , Vias Biossintéticas , Clorofila/biossíntese , Cor , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metaboloma , Metabolômica/métodos , Pigmentação/genética , Folhas de Planta/genética , Transcriptoma
13.
Front Plant Sci ; 12: 620499, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249029

RESUMO

Various environmental stresses strongly influence plant development. Among these stresses is drought, which is a serious threat that can reduce agricultural productivity and obstruct plant growth. Although the mechanism of plants in response to drought has been studied extensively, the adaptive strategies of Amygdalus mira (Koehne) Yü et Lu grown in drought and rewatered habitats remain undefined. Amygdalus mira from the Tibetan Plateau has outstanding nutritional and medicinal values and can thrive in extreme drought. In this study, the physiological and proteomic responses in leaves of A. mira were investigated during drought and recovery period. The changes in plant growth, photosynthesis, enzymes, and non-enzymatic antioxidant under drought and rewatering were also analyzed in leaves. Compared with controls, A. mira showed stronger adaptive and resistant characteristics to drought. In addition, the proteomic technique was also used to study drought tolerance mechanisms in A. mira leaves. Differentially expressed proteins were identified using mass spectrometry. Accordingly, 103 proteins involved in 10 functional categories: cytoskeleton dynamics, energy metabolism, carbohydrate metabolism, photosynthesis, transcription and translation, transport, stress and defense, molecular chaperones, other materials metabolism, and unknown function were identified. These results showed that an increase of stress-defense-related proteins in leaves after drought treatment contributed to coping with drought. Importantly, A. mira developed an adaptive mechanism to scavenge reactive oxygen species (ROS), including enhancing antioxidant enzyme activities and non-enzymatic antioxidant contents, reducing energy, and adjusting the efficiency of gas exchanges. These results may help to understand the acclimation of A. mira to drought.

14.
J Biotechnol ; 327: 106-116, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33421510

RESUMO

Soil salinity is one of the major environmental factors, influencing agricultural productivity of crops. As a non-edible and ideal oilseed crop, castor (Ricinus communis L.) has great industrial value in biofuel, but molecular mechanisms of salt stress regulation are still unknown. In this study, the differentially expressed genes (DEGs) for differential salt tolerance in two castor cultivar (wild castor : Y, cultivated castor 'Tongbi 5': Z) were identified. 12 libraries were sampled for Illumina high-throughput sequencing to consider 132,426 nonredundant unigenes and 31,221 gene loci. Multiple phytohormones and transcription factors (TFs) were correlated with salt-tolerance and differently enriched in these two genotypes. The type 2C protein phosphatases (PP2C) homologs were all upregulated under salt stress. Importantly, IAA (1), DELLA (1) and Jasmonate zim domain (JAZ) (1) were also identified and found to be differentially expressed. Based on the co-expressed module by regulatory networks and heatmap analysis, ERF/AP2, WRKY and bHLH families were prominently participate in high salt stress response of wild and cultivated castor. Finally, these results highlight that the hub DEGs and families were more accumulated in cultivated castor than those in wild castor, providing novel insights into the salinity adaptive mechanisms and genetic improvement in castor.


Assuntos
Plântula , Transcriptoma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Humanos , Ricinus/genética , Estresse Salino
15.
Physiol Plant ; 172(1): 188-200, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33368302

RESUMO

Acid rain, which has negative impacts on the vegetation of ecological systems, is widespread in Northern and Southern China. However, relatively little is known about the effects of acid rain on the growth and yield of economically important tree species in China. To address this issue, we studied the responses of mulberry seedlings to simulated acid rain (SAR) at different pH values. At pH 4.5, SAR induced increased antioxidant activities, total antioxidant capacity, and the accumulation of reactive oxygen species (OFR) relative to controls. However, the growth of the seedlings under SAR treatments at pH 4.5 and pH 5.6 was greater than controls. No significant differences in photosynthesis and chlorophyll a fluorescence quenching parameters were observed between the SAR treatments at pH 4.5 and pH 5.6 and controls. However, the SAR treatment at pH 3.5 resulted in altered leaf surface characteristics and changes to chloroplast ultrastructure, together with an increase in membrane electrical conductivity and an accumulation of OFR and malondialdehyde. In contrast, leaf antioxidant enzyme activities were decreased, together with electron transport parameters and photosynthesis. Taken together, these results show that the effects of acid rain on the growth and leaf physiology of mulberry seedling are dependent on pH. Moreover, mulberry seedlings had a high tolerance to acid rain at pH 4.5.


Assuntos
Chuva Ácida , Morus , Antioxidantes , China , Clorofila , Clorofila A , Fotossíntese , Plântula
16.
Plant Physiol Biochem ; 157: 47-59, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33075710

RESUMO

Soil salinity and drought stress (DS) are the massive problem for worldwide agriculture. Both stresses together become more toxic to the plant growth and development. Silicon (Si) being the second most abundant element in the earth's crust, exerts beneficial effects on plants under both stress and non-stress conditions. However, limited information is available to substantiate the beneficial role of Si in delaying the premature leaf senescence and imparting tolerance of mustard (Brassica juncea L.) plants to salinity and DS. Therefore, the present study aimed to explore the role of Si (source K2SiO3) in chlorophyll (Chl) biosynthesis, nutrients uptake, relative water content (RWC), proline (Pro) metabolism, antioxidant system and delaying of premature leaf senescence in mustard plants under sodium chloride (NaCl) and DS conditions. Results of this study show that exogenous Si (1.7 mM) significantly delayed the salt plus DS-induced premature leaf senescence. This was further accompanied by the enhanced nutrients accumulation and activity of chlorophyll metabolizing enzymes [δ-aminolevulinic acid (δ-ALA) dehydratase and porphobilinogen deaminase] and levels of δ-ALA, and Chls a and b and also by decreased the Chl degradation and Chl degrading enzymes (Chlorophyllase, Chl-degrading peroxidase, pheophytinase) activity. Exogenous Si treatment induced redox homoeostasis in B. juncea L. plants, which is evident by a reduced generation of reactive oxygen species (ROS) resulting due to suppressed activity of their generating enzymes (glycolate oxidase and NADPH oxidase) and enhanced defence system. Furthermore, application of Si inhibited the activity of protease and triggered the activity of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) and plasma membrane H+-ATPase activity. In conclusion, all these results reveal that Si could help in the modulation of Chl metabolism, redox hemostasis, and the regulation of nutrients (nitrogen, phosphorus, Si and potassium) uptake in the mustard plants that lead to the postponement of premature leaf senescence under salinity plus DS.


Assuntos
Antioxidantes/fisiologia , Secas , Mostardeira/fisiologia , Salinidade , Silício/farmacologia , Estresse Fisiológico , Homeostase , Mostardeira/efeitos dos fármacos , Folhas de Planta/fisiologia , Plântula
17.
Plant Physiol Biochem ; 154: 530-537, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32912486

RESUMO

Populus species are fast growing with high N requirements; an optimum level of fertilization is necessary for high seedling quality and subsequent plantation productivity. In this study, the morphological and physiological responses of two poplar clones (XH and BL3) to exponential and conventional N dosages were investigated, with a specific focus on leaf traits, the photorespiratory N cycle, and the interconversion of amino acids within leaves. Results show that shoot height and leaf number exponentially increased with plant growth. Leaf area, chlorophyll concentration, and net photosynthetic rate significantly increased for both clones during N fertilization, with a significant difference only in leaf area of clone XH between exponential and conventional dosages. Leaf concentrations of free amino acids and soluble sugars were not different but soluble proteins and fatty acids were significantly different for clone XH between N dosages; the amino acids glutamate, alanine, and aspartic acid concentrations increased in exponentially fertilized seedlings compared to controls. Amino acids, including the composition concentration and activity of glutamic-oxalacetic and -pyruvic transaminase, and soluble sugars were significantly higher for clone BL3 in fertilized seedlings. Photorespiration (glycine and glycolate oxidase) and glutathione redox (oxidized glutathione) were affected by fertilization. The activities of key enzymes (glycolate oxidase, catalase, and γ-glutamate cysteine ligase) involved in photorespiration and glutathione metabolism were lower for clone XH with exponential fertilization. Phenylalanine catabolism was influenced by fertilization and the interaction, clone × fertilization, showing accumulation of phenylalanine and tyrosine but decreases in phenylalanine ammonialyase activity and flavonoid concentrations in leaves of fertilized seedlings. The results indicate that leaf area and the interconversion of amino acids through deamidation/transamination are key regulatory hubs in poplar acclimation to soil N availability.


Assuntos
Fertilizantes , Nitrogênio/metabolismo , Populus/crescimento & desenvolvimento , Aminoácidos/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Plântula
18.
Front Plant Sci ; 11: 1271, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983189

RESUMO

Nitrogen fertilization is common for poplar trees to improve growth and productivity. The utilization of N by poplar largely depends on fertilizer application patterns; however, the underlying regulatory hubs are not fully understood. In this study, N utilization and potentially physiological regulations of two poplar clones (XQH and BC5) were assessed through two related experiments (i: five levels of N supply and ii: conventional and exponential N additions). Poplar growth (leaf area) and N utilization significantly increased under fertilized compared to unfertilized conditions, whereas photosynthetic N utilization efficiency significantly decreased under low N supplies. Growth characteristics were better in the XQH than in the BC5 clone under the same N supplies, indicating higher N utilization efficiency. Leaf absorbed light energy, and thermal dissipation fraction was significantly different for XQH clone between conventional and exponential N additions. Leaf concentrations of putrescine (Put) and acetylated Put were significantly higher in exponential than in conventional N addition. Photorespiration significantly increased in leaves of XQH clone under exponential compared to conventional N addition. Our results indicate that an interaction of the clone and N supply pattern significantly occurs in poplar growth; leaf expansion and the storage N allocations are the central hubs in the regulation of poplar N utilization.

19.
Plant Physiol Biochem ; 156: 278-290, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32987258

RESUMO

Hydrogen sulfide (H2S) and nitric oxide (NO) have been known to affect vast number of processes in plants under abiotic stresses. Also, calcium (Ca) works as a second messenger in plants, which underpins the abiotic stress-induced damage. However, the sequence of action of these signaling molecules against cadmium (Cd)-induced cellular oxidative damage remains unidentified. Therefore, we studied the synergistic actions and/or relationship of signaling molecules and Ca-dependent activation of tolerance mechanisms in Vigna radiata seedlings under Cd stress. The present study shows that exogenous Ca supplemented to Cd-stressed V. radiata seedlings reduced Cd accumulation and improved the activity of nitrate reductase, and L/D-cysteine desulfhydrase (LCD/DCD) that resulted in improved synthesis of NO and H2S content. Application of Ca also elevated the level of cysteine (Cys) by upregulating the activity of Cys-synthesizing enzymes serine acetyltransferase and O-acetylserine(thiol)lyase in Cd-stressed seedlings. Maintenance of Cys pool under Cd stress contributed to improved H2S content which together with Ca and NO improved antioxidant enzymes and components of ascorbate-glutathione (AsA-GSH) cycle. All these collectively regulated the activity of NADPH oxidase and glycolate oxidase, resulting in the inhibition of Cd-induced generation of reactive oxygen species. The elevated level of Cys also assisted the Cd-stressed seedlings in maintaining GSH pool which retained normal functioning of AsA-GSH cycle and led to enhanced content of phytochelatins coupled with reduced Cd content. The positive effect of these events manifested in an enhanced rate of photosynthesis, carbohydrate accumulation, and growth attributes of the plants. On the contrary, addition of NO scavenger cPTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide], H2S scavenger HT (Hypotaurine) and Ca-chelator EGTA (Ethylene glycol-bis(b-aminoethylether)-N,N,N',N'-tetraacetic acid) again developed a condition similar to stress and positive effect of the signaling molecules was abolished. The findings of the study postulate that Ca in association with NO and H2S mitigates Cd-induced impairment and enhances the tolerance of the V. radiata plants against Cd stress. The results of the study also substantiate that Ca acts both upstream as well as downstream of NO signals whereas, H2S acts downstream of Ca and NO during Cd-stress responses of the plants.


Assuntos
Cádmio/toxicidade , Cálcio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Vigna/metabolismo , Antioxidantes/metabolismo , Metabolismo dos Carboidratos , Glutationa/metabolismo , Estresse Oxidativo , Fotossíntese
20.
Mar Biotechnol (NY) ; 22(4): 526-538, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32424479

RESUMO

Possessing powerful adaptive capacity and a pleasant taste, spotted sea bass (Lateolabrax maculatus) has a broad natural distribution and is one of the most popular mariculture fish in China. However, the genetic improvement program for this fish is still in its infancy. Growth is the most economically important trait and is controlled by quantitative trait loci (QTL); thus, the identification of QTLs and genetic markers for growth-related traits is an essential step for the establishment of marker-assisted selection (MAS) breeding programs. In this study, we report the first high-density linkage map of spotted sea bass constructed by sequencing 333 F1 generation individuals in a full-sib family using 2b-RAD technology. A total of 6883 SNP markers were anchored onto 24 linkage groups, spanning 2189.96 cM with an average marker interval of 0.33 cM. Twenty-four growth-related QTLs, including 13 QTLs for body weight and 11 QTLs for body length, were successfully detected, with phenotypic variance explained (PVE) ranging from 5.1 to 8.6%. Thirty potential candidate growth-related genes surrounding the associated SNPs were involved in cell adhesion, cell proliferation, cytoskeleton reorganization, calcium channels, and neuromodulation. Notably, the fgfr4 gene was detected in the most significant QTL; this gene plays a pivotal role in myogenesis and bone growth. The results of this study may facilitate marker-assisted selection for breeding populations and establish the foundation for further genomic and genetic studies investigating spotted sea bass.


Assuntos
Bass/crescimento & desenvolvimento , Bass/genética , Ligação Genética , Locos de Características Quantitativas , Animais , Aquicultura , Feminino , Marcadores Genéticos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA