Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
EBioMedicine ; 99: 104916, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101297

RESUMO

BACKGROUND: Earlier Omicron subvariants including BA.1, BA.2, and BA.5 emerged in waves, with a subvariant replacing the previous one every few months. More recently, the post-BA.2/5 subvariants have acquired convergent substitutions in spike that facilitated their escape from humoral immunity and gained ACE2 binding capacity. However, the intrinsic pathogenicity and replication fitness of the evaluated post-BA.2/5 subvariants are not fully understood. METHODS: We systemically investigated the replication fitness and intrinsic pathogenicity of representative post-BA.2/5 subvariants (BL.1, BQ.1, BQ.1.1, XBB.1, CH.1.1, and XBB.1.5) in weanling (3-4 weeks), adult (8-10 weeks), and aged (10-12 months) mice. In addition, to better model Omicron replication in the human nasal epithelium, we further investigated the replication capacity of the post-BA.2/5 subvariants in human primary nasal epithelial cells. FINDINGS: We found that the evaluated post-BA.2/5 subvariants are consistently attenuated in mouse lungs but not in nasal turbinates when compared with their ancestral subvariants BA.2/5. Further investigations in primary human nasal epithelial cells revealed a gained replication fitness of XBB.1 and XBB.1.5 when compared to BA.2 and BA.5.2. INTERPRETATION: Our study revealed that the post-BA.2/5 subvariants are attenuated in lungs while increased in replication fitness in the nasal epithelium, indicating rapid adaptation of the circulating Omicron subvariants in the human populations. FUNDING: The full list of funding can be found at the Acknowledgements section.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , Animais , Camundongos , Virulência , Células Epiteliais , Mucosa Nasal
2.
IEEE/ACM Trans Comput Biol Bioinform ; 20(6): 3669-3680, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37665713

RESUMO

The rational design of vaccines and antibody-based therapeutics against newly emerging viruses relies on B cell epitopes mainly. To predict the B cell epitopes of a novel virus, several algorithms have been developed. While most existing algorithms are trained on a dataset in which B cell epitopes are classified as 'Positive' or 'Negative'. However, we found that training on such data contaminates the target pattern of specific viruses, leading to inaccurate predictions in some cases. In this paper, we introduce a novel framework for predicting linear B cell epitopes of novel viruses by exclusively using highly similar viruses for training data. We employed kernel regression based on seropositive rates, which are the percentages of seropositive samples among the population, to predict the potential epitopes. To assess our method, we conducted simulations and utilized two real-world datasets. Our method significantly outperformed other existing methods on the testing data of four viruses with seropositive rates. Also, our strategy showed a better prediction in a larger dataset from the IEDB. Thus, a novel framework providing better linear B cell prediction of newly emerging viruses is established, which will benefit the rational design of vaccines and antibody-based therapeutics in the future.


Assuntos
Vacinas , Vírus , Epitopos de Linfócito B , Algoritmos
3.
Cell Host Microbe ; 31(8): 1301-1316.e8, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37527659

RESUMO

Current COVID-19 vaccines are highly effective against symptomatic disease, but repeated booster doses using vaccines based on the ancestral strain offer limited additional protection against SARS-CoV-2 variants of concern (VOCs). To address this, we used antigenic distance to in silico select optimized booster vaccine seed strains effective against both current and future VOCs. Our model suggests that a SARS-CoV-1-based booster vaccine has the potential to cover a broader range of VOCs. Candidate vaccines including the spike protein from ancestral SARS-CoV-2, Delta, Omicron (BA.1), SARS-CoV-1, or MERS-CoV were experimentally evaluated in mice following two doses of the BNT162b2 vaccine. The SARS-CoV-1-based booster vaccine outperformed other candidates in terms of neutralizing antibody breadth and duration, as well as protective activity against Omicron (BA.2) challenge. This study suggests a unique strategy for selecting booster vaccines based on antigenic distance, which may be useful in designing future booster vaccines as new SARS-CoV-2 variants emerge.


Assuntos
COVID-19 , Animais , Humanos , Camundongos , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas contra COVID-19 , Vacina BNT162 , Anticorpos Neutralizantes , Anticorpos Antivirais
4.
EBioMedicine ; 95: 104753, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37579626

RESUMO

BACKGROUND: Among the Omicron sublineages that have emerged, BA.1, BA.2, BA.5, and their related sublineages have resulted in the largest number of infections. While recent studies demonstrated that all Omicron sublineages robustly escape neutralizing antibody response, it remains unclear on whether these Omicron sublineages share any pattern of evolutionary trajectory on their replication efficiency and intrinsic pathogenicity along the respiratory tract. METHODS: We compared the virological features, replication capacity of dominant Omicron sublineages BA.1, BA.2 and BA.5 in the human nasal epithelium, and characterized their pathogenicity in K18-hACE2, A129, young C57BL/6, and aged C57BL/6 mice. FINDINGS: We found that BA.5 replicated most robustly, followed by BA.2 and BA.1, in the differentiated human nasal epithelium. Consistently, BA.5 infection resulted in higher viral gene copies, infectious viral titres and more abundant viral antigen expression in the nasal turbinates of the infected K18-hACE2 transgenic mice. In contrast, the Omicron sublineages are continuously attenuated in lungs of infected K18-hACE2 and C57BL/6 mice, leading to decreased pathogenicity. Nevertheless, lung manifestations remain severe in Omicron sublineages-infected A129 and aged C57BL/6 mice. INTERPRETATION: Our results suggested that the Omicron sublineages might be gaining intrinsic replication fitness in the upper respiratory tract, therefore highlighting the importance of global surveillance of the emergence of hyper-transmissive Omicron sublineages. On the contrary, replication and intrinsic pathogenicity of Omicron is suggested to be further attenuated in the lower respiratory tract. Effective vaccination and other precautions should be in place to prevent severe infections in the immunocompromised populations at risk. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Assuntos
COVID-19 , Camundongos , Animais , Humanos , Idoso , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Virulência , Anticorpos Neutralizantes , Camundongos Transgênicos , Anticorpos Antivirais
5.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37279464

RESUMO

Major histocompatibility complex (MHC)-peptide binding is a critical step in enabling a peptide to serve as an antigen for T-cell recognition. Accurate prediction of this binding can facilitate various applications in immunotherapy. While many existing methods offer good predictive power for the binding affinity of a peptide to a specific MHC, few models attempt to infer the binding threshold that distinguishes binding sequences. These models often rely on experience-based ad hoc criteria, such as 500 or 1000nM. However, different MHCs may have different binding thresholds. As such, there is a need for an automatic, data-driven method to determine an accurate binding threshold. In this study, we proposed a Bayesian model that jointly infers core locations (binding sites), the binding affinity and the binding threshold. Our model provided the posterior distribution of the binding threshold, enabling accurate determination of an appropriate threshold for each MHC. To evaluate the performance of our method under different scenarios, we conducted simulation studies with varying dominant levels of motif distributions and proportions of random sequences. These simulation studies showed desirable estimation accuracy and robustness of our model. Additionally, when applied to real data, our results outperformed commonly used thresholds.


Assuntos
Algoritmos , Peptídeos , Teorema de Bayes , Peptídeos/química , Ligação Proteica , Sítios de Ligação , Proteínas/metabolismo
6.
ACS Infect Dis ; 8(12): 2586-2593, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36357959

RESUMO

The ongoing coronavirus disease 2019 pandemic has raised concerns about the risk of re-infection. Non-neutralizing epitopes are one of the major reasons for antibody-dependent enhancement. Past studies on the ancestral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have revealed an infectivity-enhancing site on the ancestral SARS-CoV-2 spike protein. However, infection enhancement associated with the SARS-CoV-2 Omicron strain remains elusive. In this study, we examined the antibodies induced by a multiple epitope-based vaccine, which showed infection enhancement for the Omicron strain but not for the ancestral SARS-CoV-2 or Delta strain. By examining the antibodies induced by single epitope-based vaccines, we identified a conserved epitope, IDf (450-469), with neutralizing activity against ancestral SARS-CoV-2, Delta, and Omicron. Although neutralizing epitopes are present in the multiple epitope-based vaccine, other immunodominant non-neutralizing epitopes such as IDg (480-499) can shade their neutralizing activity, leading to infection enhancement of Omicron. Our study provides up-to-date epitope information on SARS-CoV-2 variants to help design better vaccines or antibody-based therapeutics against future variants.


Assuntos
COVID-19 , Vacinas , Humanos , Epitopos , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos , Epitopos Imunodominantes
7.
JCI Insight ; 7(11)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35446790

RESUMO

SARS-CoV-2 has been confirmed in over 450 million confirmed cases since 2019. Although several vaccines have been certified by the WHO and people are being vaccinated on a global scale, it has been reported that multiple SARS-CoV-2 variants can escape neutralization by antibodies, resulting in vaccine breakthrough infections. Bacillus Calmette-Guérin (BCG) is known to induce heterologous protection based on trained immune responses. Here, we investigated whether BCG-induced trained immunity protected against SARS-CoV-2 in the K18-hACE2 mouse model. Our data demonstrate that i.v. BCG (BCG-i.v.) vaccination induces robust trained innate immune responses and provides protection against WT SARS-CoV-2, as well as the B.1.617.1 and B.1.617.2 variants. Further studies suggest that myeloid cell differentiation and activation of the glycolysis pathway are associated with BCG-induced training immunity in K18-hACE2 mice. Overall, our study provides the experimental evidence that establishes a causal relationship between BCG-i.v. vaccination and protection against SARS-CoV-2 challenge.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Vacina BCG , COVID-19/prevenção & controle , Humanos , Melfalan , Camundongos , gama-Globulinas
8.
Front Immunol ; 13: 861050, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401572

RESUMO

It has been reported that multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) including Alpha, Beta, Gamma, and Delta can reduce neutralization by antibodies, resulting in vaccine breakthrough infections. Virus-antiserum neutralization assays are typically performed to monitor potential vaccine breakthrough strains. However, experiment-based methods took several weeks whether newly emerging variants can break through current vaccines or therapeutic antibodies. To address this, we sought to establish a computational model to predict the antigenicity of SARS-CoV-2 variants by sequence alone. In this study, we firstly identified the relationship between the antigenic difference transformed from the amino acid sequence and the antigenic distance from the neutralization titers. Based on this correlation, we obtained a computational model for the receptor-binding domain (RBD) of the spike protein to predict the fold decrease in virus-antiserum neutralization titers with high accuracy (~0.79). Our predicted results were comparable to experimental neutralization titers of variants, including Alpha, Beta, Delta, Gamma, Epsilon, Iota, Kappa, and Lambda, as well as SARS-CoV. Here, we predicted the fold of decrease of Omicron as 17.4-fold less susceptible to neutralization. We visualized all 1,521 SARS-CoV-2 lineages to indicate variants including Mu, B.1.630, B.1.633, B.1.649, and C.1.2, which can induce vaccine breakthrough infections in addition to reported VOCs Beta, Gamma, Delta, and Omicron. Our study offers a quick approach to predict the antigenicity of SARS-CoV-2 variants as soon as they emerge. Furthermore, this approach can facilitate future vaccine updates to cover all major variants. An online version can be accessed at http://jdlab.online.


Assuntos
Antígenos Virais , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Antígenos Virais/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Humanos , Soros Imunes , Testes de Neutralização , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
9.
Viruses ; 14(2)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35215983

RESUMO

Omicron was designated by the WHO as a VOC on 26 November 2021, only 4 days after its sequence was first submitted. However, the impact of Omicron on current antibodies and vaccines remains unknown and evaluations are still a few weeks away. We analysed the mutations in the Omicron variant against epitopes. In our database, 132 epitopes of the 120 antibodies are classified into five groups, namely NTD, RBD-1, RBD-2, RBD-3, and RBD-4. The Omicron mutations impact all epitopes in NTD, RBD-1, RBD-2, and RBD-3, with no antibody epitopes spared by these mutations. Only four out of 120 antibodies may confer full resistance to mutations in the Omicron spike, since all antibodies in these three groups contain one or more epitopes that are affected by these mutations. Of all antibodies under EUA, the neutralisation potential of Etesevimab, Bamlanivimab, Casirivimab, Imdevima, Cilgavimab, Tixagevimab, Sotrovimab, and Regdanvimab might be dampened to varying degrees. Our analysis suggests the impact of Omicron on current therapeutic antibodies by the Omicron spike mutations may also apply to current COVID-19 vaccines.


Assuntos
Anticorpos Monoclonais/análise , Anticorpos Antivirais/farmacologia , Simulação por Computador , Mutação/imunologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Monoclonais/classificação , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Neutralizantes/farmacologia , Bases de Dados Factuais , Epitopos/imunologia , Humanos , Imunoglobulina G/farmacologia , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus/imunologia
10.
EBioMedicine ; 73: 103643, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34689086

RESUMO

BACKGROUND: Wildtype mice are not susceptible to SARS-CoV-2 infection. Emerging SARS-CoV-2 variants, including B.1.1.7, B.1.351, P.1, and P.3, contain mutations in spike that has been suggested to associate with an increased recognition of mouse ACE2, raising the postulation that these SARS-CoV-2 variants may have evolved to expand species tropism to wildtype mouse and potentially other murines. Our study evaluated this possibility with substantial public health importance. METHODS: We investigated the capacity of wildtype (WT) SARS-CoV-2 and SARS-CoV-2 variants in infecting mice (Mus musculus) and rats (Rattus norvegicus) under in vitro and in vivo settings. Susceptibility to infection was evaluated with RT-qPCR, plaque assays, immunohistological stainings, and neutralization assays. FINDINGS: Our results reveal that B.1.1.7 and other N501Y-carrying variants but not WT SARS-CoV-2 can infect wildtype mice. High viral genome copies and high infectious virus particle titres are recovered from the nasal turbinate and lung of B.1.1.7-inocluated mice for 4-to-7 days post infection. In agreement with these observations, robust expression of viral nucleocapsid protein and histopathological changes are detected from the nasal turbinate and lung of B.1.1.7-inocluated mice but not that of the WT SARS-CoV-2-inoculated mice. Similarly, B.1.1.7 readily infects wildtype rats with production of infectious virus particles. INTERPRETATION: Our study provides direct evidence that the SARS-CoV-2 variant, B.1.1.7, as well as other N501Y-carrying variants including B.1.351 and P.3, has gained the capability to expand species tropism to murines and public health measures including stringent murine control should be implemented to facilitate the control of the ongoing pandemic. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Assuntos
COVID-19/patologia , SARS-CoV-2/fisiologia , Tropismo Viral , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/virologia , Feminino , Humanos , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Testes de Neutralização , Proteínas do Nucleocapsídeo/imunologia , Proteínas do Nucleocapsídeo/metabolismo , RNA Viral/análise , RNA Viral/metabolismo , Ratos , Ratos Sprague-Dawley , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Conchas Nasais/patologia , Conchas Nasais/virologia , Internalização do Vírus
11.
Int J Biol Sci ; 17(9): 2157-2166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239346

RESUMO

Adult mammalian hearts show limited capacity to proliferate after injury, while zebrafish are capable to completely regenerate injured hearts through the proliferation of spared cardiomyocytes. BMP and Notch signaling pathways have been implicated in cardiomyocyte proliferation during zebrafish heart regeneration. However, the molecular mechanism underneath this process as well as the interaction between these two pathways remains to be further explored. In this study we showed BMP signaling was activated after ventricle ablation and acted epistatic downstream of Notch signaling. Inhibition of both signaling pathways differentially influenced ventricle regeneration and cardiomyocyte proliferation, as revealed by time-lapse analysis using a cardiomyocyte-specific FUCCI (fluorescent ubiquitylation-based cell cycle indicator) system. Further experiments revealed that inhibition of BMP and Notch signaling led to cell-cycle arrest at different phases. Overall, our results shed light on the interaction between BMP and Notch signaling pathways and their functions in cardiomyocyte proliferation during cardiac regeneration.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Coração/fisiologia , Miócitos Cardíacos/citologia , Receptores Notch/metabolismo , Regeneração , Transdução de Sinais , Animais , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Miócitos Cardíacos/metabolismo , Ubiquitinação , Peixe-Zebra/fisiologia
13.
J Immunol Res ; 2021: 5531220, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34056008

RESUMO

The nucleocapsid protein (NP) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains immunogenic epitopes that can induce cytotoxic T lymphocyte (CTL) against viral infection. This makes the nucleocapsid protein a suitable candidate for developing a vaccine against SARS-CoV-2 infection. This article reports the intradermal delivery of NP antigen using dissolvable microneedle skin patches that could induce both significant B cell and T cell responses.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , SARS-CoV-2/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Linfócitos B/imunologia , Vacinas contra COVID-19/administração & dosagem , Proteínas do Nucleocapsídeo de Coronavírus/administração & dosagem , Ensaio de Imunoadsorção Enzimática , Injeções Intradérmicas/métodos , Camundongos , Camundongos Endogâmicos BALB C , Fosfoproteínas/administração & dosagem , Fosfoproteínas/imunologia
14.
Front Cell Dev Biol ; 9: 632372, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816481

RESUMO

Unlike mammals, zebrafish can regenerate injured hearts even in the adult stage. Cardiac regeneration requires the coordination of cardiomyocyte (CM) proliferation and migration. The TGF-ß/Smad3 signaling pathway has been implicated in cardiac regeneration, but the molecular mechanisms by which this pathway regulates CM proliferation and migration have not been fully illustrated. Here, we investigated the function of TGF-ß/Smad3 signaling in a zebrafish model of ventricular ablation. Multiple components of this pathway were upregulated/activated after injury. Utilizing a specific inhibitor of Smad3, we detected an increased ratio of unrecovered hearts. Transcriptomic analysis suggested that the TGF-ß/Smad3 signaling pathway could affect CM proliferation and migration. Further analysis demonstrated that the CM cell cycle was disrupted and the epithelial-mesenchymal transition (EMT)-like response was impaired, which limited cardiac regeneration. Altogether, our study reveals an important function of TGF-ß/Smad3 signaling in CM cell cycle progression and EMT process during zebrafish ventricle regeneration.

15.
Emerg Microbes Infect ; 10(1): 874-884, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33890550

RESUMO

The Coronavirus Disease 2019 (COVID-19) pandemic is unlikely to abate until sufficient herd immunity is built up by either natural infection or vaccination. We previously identified ten linear immunodominant sites on the SARS-CoV-2 spike protein of which four are located within the RBD. Therefore, we designed two linkerimmunodominant site (LIS) vaccine candidates which are composed of four immunodominant sites within the RBD (RBD-ID) or all the 10 immunodominant sites within the whole spike (S-ID). They were administered by subcutaneous injection and were tested for immunogenicity and in vivo protective efficacy in a hamster model for COVID-19. We showed that the S-ID vaccine induced significantly better neutralizing antibody response than RBD-ID and alum control. As expected, hamsters vaccinated by S-ID had significantly less body weight loss, lung viral load, and histopathological changes of pneumonia. The S-ID has the potential to be an effective vaccine for protection against COVID-19.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Epitopos Imunodominantes/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Cricetinae , Feminino , Células HEK293 , Humanos , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Vacinação
16.
Bioeng Transl Med ; 6(1): e10202, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33349797

RESUMO

The S1 subunit of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein contains an immunogenic receptor-binding domain (RBD), which is a promising candidate for the development of a potential vaccine. This study demonstrated that intradermal delivery of an S-RBD vaccine using a dissolvable microneedle skin patch can induce both significant B-cell and significant T-cell responses against S-RBD. Importantly, the outcomes were comparable to that of conventional bolus injection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA