Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Bone Miner Res ; 39(8): 1120-1131, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-38887013

RESUMO

Knee osteoarthritis (OA), characterized by multiple joint tissue degenerations, remains a significant clinical challenge. Recent evidence suggests that crosstalk within the osteochondral unit may drive OA progression. Although structural-biomechanical properties of bone and cartilage have been studied, potential interaction within the osteochondral unit in the context of OA has yet to be investigated. We performed comprehensive structural and biomechanical quantification of the cartilage, subchondral bone plate (SBP), and subchondral trabecular bone (STB) using 101 osteochondral cores collected from tibial plateaus of 12 control human cadavers (CT, 5 male/7 female) and 19 patients undergoing total knee replacement (OA, 6 male/13 female). For each sample, we quantified SBP microstructure, plate-and-rod morphological properties of the STB using individual trabecula segmentation, and morphological and compositional properties of the articular cartilage. We also performed indentation testing on each compartment of the osteochondral unit to extract the respective structural-mechanical properties. Cartilage thickness was lower in moderate and severe OA regions, while Osteoarthritis Research Society International score was higher only in severe OA regions. GAG content did not change in any OA region. Aggregate and shear moduli were lower only in severe OA regions, while permeability was lower only in moderate OA regions. In the SBP, thickness and tissue mineral density were higher in moderate and severe OA regions. Tissue modulus of STB was lower in moderate OA regions despite a thicker and more mineralized SBP; this deterioration was not observed in severe OA regions. Regression analysis revealed strong correlations between cartilage and STB properties in CT; these correlations were also found in moderate OA regions but were not observed in severe OA regions. In summary, our findings comprehensively characterize the human OA osteochondral unit. Importantly, uncoupling cartilage and subchondral bone structural-mechanical properties may be a hallmark of OA.


Knee osteoarthritis (OA) is a complex condition involving the degradation of joint tissues. To better understand OA progression, we investigated the interplay between different components of the joint. Our study focused on how cartilage, subchondral bone plate (SBP), and subchondral trabecular bone (STB) interact in human knee OA samples. We observed distinct changes in these tissues in moderate and severe OA regions compared with healthy joints. In moderate to severe OA, we found that cartilage thickness decreased, while the SBP thickened. Interestingly, the strength of the STB decreased only in moderate OA regions, not in severe OA. Moreover, our analysis revealed strong correlations between cartilage and STB properties in healthy joints and moderate OA regions. However, these correlations were absent in severe OA regions, indicating a disruption in the usual relationship between these tissues. Overall, our findings shed light on the structural and biomechanical changes occurring within the knee joint in OA. Understanding these changes may offer insights into potential therapeutic strategies for managing OA.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Humanos , Cartilagem Articular/patologia , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/fisiopatologia , Masculino , Feminino , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/fisiopatologia , Idoso , Fenômenos Biomecânicos , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Osso Esponjoso/patologia , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/fisiopatologia
2.
Biomol Biomed ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38801251

RESUMO

Chronic obstructive pulmonary disease (COPD) is a significant public health issue characterized by progressive and irreversible airflow limitation. The aim of this meta-analysis was to determine the association between changes in serum galectin-3 levels and COPD and to assess the relationship between serum galectin-3 levels and acute exacerbations of COPD (AECOPD). Relevant observational studies were retrieved from electronic databases, including PubMed, Web of Science, Embase, Wanfang, and China National Knowledge Infrastructure (CNKI). A random-effects model was used to combine the data, incorporating the influence of between-study heterogeneity. Twelve case-control studies were included. The pooled results showed a significantly higher serum level of galectin-3 in patients with COPD compared to controls (standardized mean difference [SMD] 0.60; 95% confidence interval [CI] 0.40 - 0.80; P < 0.001; I2 = 68%). Further meta-analysis suggested higher levels of serum galectin-3 in patients with AECOPD compared to those with stable COPD (SMD 0.33; 95% CI 0.20 - 0.46; P < 0.001; I2 = 0%). Subgroup analyses according to the mean age of the participants, the proportion of males, and study quality scores did not significantly change the results (P for subgroup differences all > 0.05). In conclusion, patients with COPD were found to have higher serum levels of galectin-3, with levels further elevated in patients with AECOPD compared to those with stable COPD.

3.
JBMR Plus ; 8(3): ziae007, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38505220

RESUMO

High-resolution peripheral quantitative computed tomography (HR-pQCT) has been used for in vivo 3D visualization of trabecular microstructure. Second-generation HR-pQCT (HR-pQCT II) has been shown to have good agreement with first generation HR-pQCT (HR-pQCT I). Advanced Individual Trabecula Segmentation (ITS) decomposes the trabecula network into individual plates and rods. ITS based on HR-pQCT I showed a strong correlation to ITS based on micro-computed tomography (µCT) and identified trabecular changes in metabolic bone diseases. ITS based on HR-pQCT II has new potential because of the enhanced resolution but has yet to be validated. The objective of this study was to assess the agreement between ITS based on HR-pQCT I, HR-pQCT II, and µCT to assess the capability of ITS on HR-pQCT images as a tool for studying bone structure. Freshly frozen tibia and radius bones were scanned in the distal region using HR-pQCT I at 82 µm, HR-pQCT II at 60.7 µm, and µCT at 37 µm. Images were registered, binarized, and ITS analysis was performed. Bone volume fraction (pBV/TV, rBV/TV), number density (pTb.N, rTb.N), thickness (pTb.Th, rTb.Th), and plate-to-rod (PR) ratio (pBV/rBV) of trabecular plates and rods were obtained. Paired Student's t-tests with post hoc Bonferroni analysis were used to examine the differences. Linear regression was used to determine the correlation coefficient. The HR-pQCT I parameters were different from the µCT measurements. The HR-pQCT II parameters were different from the µCT measurements except for rTb.N, and the HR-pQCT I parameters were different from the HR-pQCT II measurements except for pTb.Th. The strong correlation between HR-pQCT II and µCT microstructural analysis (R2 = 0.55-0.94) suggests that HR-pQCT II can be used to assess changes in plate and rod microstructure and that values from HR-pQCT I can be corrected.

4.
JBMR Plus ; 7(12): e10825, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38130761

RESUMO

Rapid and extensive sublesional bone loss after spinal cord injury (SCI) is a difficult medical problem that has been refractory to available interventions except the antiresorptive agent denosumab (DMAB). While DMAB has shown some efficacy in inhibiting bone loss, its concurrent inhibition of bone formation limits its use. Sialic acid-binding immunoglobulin-like lectin (Siglec)-15 is expressed on the cell surface of mature osteoclasts. Anti-Siglec-15 antibody (Ab) has been shown to inhibit osteoclast maturation and bone resorption while maintaining osteoblast activity, which is distinct from current antiresorptive agents that inhibit the activity of both osteoclasts and osteoblasts. The goal of the present study is to test a Siglec-15 Ab (NP159) as a new treatment option to prevent bone loss in an acute SCI model. To this end, 4-month-old male Wistar rats underwent complete spinal cord transection and were treated with either vehicle or NP159 at 20 mg/kg once every 2 weeks for 8 weeks. SCI results in significant decreases in bone mineral density (BMD, -18.7%), trabecular bone volume (-43.1%), trabecular connectivity (-59.7%), and bone stiffness (-76.3%) at the distal femur. Treatment with NP159 almost completely prevents the aforementioned deterioration of bone after SCI. Blood and histomorphometric analyses revealed that NP159 is able to greatly inhibit bone resorption while maintaining bone formation after acute SCI. In ex vivo cultures of bone marrow cells, NP159 reduces osteoclastogenesis while increasing osteoblastogenesis. In summary, treatment with NP159 almost fully prevents sublesional loss of BMD and metaphysis trabecular bone volume and preserves bone strength in a rat model of acute SCI. Because of its unique ability to reduce osteoclastogenesis and bone resorption while promoting osteoblastogenesis to maintain bone formation, Siglec-15 Ab may hold greater promise as a therapeutic agent, compared with the exclusively antiresorptive or anabolic agents that are currently used, in mitigating the striking bone loss that occurs after SCI or other conditions associated with severe immobilization. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA