Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 8023, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271689

RESUMO

H2O2 photosynthesis represents an appealing approach for sustainable and decentralized H2O2 production. Unfortunately, current reactions are mostly carried out in laboratory-scale single-phase batch reactors, which have a limited H2O2 production rate (<100 µmol h-1) and cannot operate in an uninterrupted manner. Herein, we propose continuous H2O2 photosynthesis and extraction in a biphasic fluid system. A superhydrophobic covalent organic framework photocatalyst with perfluoroalkyl functionalization is rationally designed and prepared via the Schiff-base reaction. When applied in a home-built biphasic fluid photo-reactor, the superhydrophobicity of our photocatalyst allows its selective dispersion in the oil phase, while formed H2O2 is spontaneously extracted to the water phase. Through optimizing reaction parameters, we achieve continuous H2O2 photosynthesis and extraction with an unprecedented production rate of up to 968 µmol h-1 and tunable H2O2 concentrations from 2.2 to 38.1 mM. As-obtained H2O2 solution could satisfactorily meet the general demands of household disinfection and wastewater treatments.

2.
Natl Sci Rev ; 10(1): nwac171, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36684521

RESUMO

Two-dimensional covalent organic frameworks are promising for photocatalysis by virtue of their structural and functional diversity, but generally suffer from low activities relative to their inorganic competitors. To fulfill their full potential requires a rational tailoring of their structures at different scales as well as their surface properties. Herein, we demonstrate benzobisthiazole-based covalent organic frameworks as a superior photocatalyst for hydrogen production. The product features high crystallinity with ordered 2.5-nm-wide cylindrical mesopores and great water wettability. These structural advantages afford our polymeric photocatalyst with fast charge carrier dynamics as evidenced by a range of spectroscopic characterizations and excellent catalytic performances when suspended in solution or supported on melamine foams. Under visible-light irradiation, it enables efficient and stable hydrogen evolution with a production rate of 487 µmol h-1 (or a mass-specific rate of 48.7 mmol g-1 h-1)-far superior to the previous state of the art. We also demonstrate that hydrogen production can be stoichiometrically coupled with the oxidation conversion of biomass as exemplified by the conversion of furfuryl alcohol to 2-furaldehyde.

3.
Angew Chem Int Ed Engl ; 59(34): 14378-14382, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32485021

RESUMO

Photocatalytic hydrogenation of biomass-derived organic molecules transforms solar energy into high-energy-density chemical bonds. Reported herein is the preparation of a thiophene-containing covalent triazine polymer as a photocatalyst, with unique donor-acceptor units, for the metal-free photocatalytic hydrogenation of unsaturated organic molecules. Under visible-light illumination, the polymeric photocatalyst enables the transformation of maleic acid into succinic acid with a production rate of about 2 mmol g-1 h-1 , and furfural into furfuryl alcohol with a production rate of about 0.5 mmol g-1 h-1 . Great catalyst stability and recyclability are also measured. Given the structural diversity of polymeric photocatalysts and their readily tunable optical and electronic properties, metal-free photocatalytic hydrogenation represents a highly promising approach for solar energy conversion.

4.
Angew Chem Int Ed Engl ; 58(26): 8676-8680, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-30882957

RESUMO

Conjugated polymers have emerged as promising candidates for photocatalytic H2 production owing to their structural designability and functional diversity. However, the fast recombination of photoexcited electrons and holes limits their H2 production rates. We have now designed molecular heterostructures of covalent triazine frameworks to facilitate charge-carrier separation and promote photocatalytic H2 production. Benzothiadiazole and thiophene moieties were selectively incorporated into the covalent triazine frameworks as electron-withdrawing and electron-donating units, respectively, by a sequential polymerization strategy. The resulting hybrids exhibited much improved charge-carrier-separation efficiency as evidenced by photophysical and electrochemical characterization. An H2 evolution rate of 6.6 mmol g-1 h-1 was measured for the optimal sample under visible-light irradiation (λ>420 nm), which is far superior to that of most reported conjugated-polymer photocatalysts.

5.
Adv Mater ; 31(2): e1805484, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30393896

RESUMO

Li-CO2 batteries represent an attractive solution for electrochemical energy storage by utilizing atmospheric CO2 as the energy carrier. However, their practical viability critically depends on the development of efficient and low-cost cathode catalysts for the reversible formation and decomposition of Li2 CO3 . Here, the great potential of a structurally engineered polymer is demonstrated as the cathode catalyst for rechargeable Li-CO2 batteries. Conjugated cobalt polyphthalocyanine is prepared via a facile microwave heating method. Due to the crosslinked network, it is intrinsically elastic and has improved chemical, physical, and mechanical stability. Electrochemical measurements show that cobalt polyphthalocyanine facilitates the reversible formation and decomposition of Li2 CO3 , and therefore enables high-performance Li-CO2 batteries with large areal capacity and impressive cycling performance. In addition, the elastic and reprocessable property of the polymeric catalyst renders it possible to fabricate flexible batteries.

6.
Angew Chem Int Ed Engl ; 56(25): 7181-7185, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28429410

RESUMO

Conventional photoelectrochemical cells utilize solar energy to drive the chemical conversion of water or CO2 into useful chemical fuels. Such processes are confronted with general challenges, including the low intrinsic activities and inconvenient storage and transportation of their gaseous products. A photoelectrochemical approach is proposed to drive the reductive production of industrial building-block chemicals and demonstrate that succinic acid and glyoxylic acid can be readily synthesized on Si nanowire array photocathodes free of any cocatalyst and at room temperature. These photocathodes exhibit a positive onset potential, large saturation photocurrent density, high reaction selectivity, and excellent operation durability. They capitalize on the large photovoltage generated from the semiconductor/electrolyte junction to partially offset the required external bias, and thereby make this photoelectrosynthetic approach significantly more sustainable compared to traditional electrosynthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA