Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Biol Chem ; 300(5): 107271, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588813

RESUMO

Lafora disease (LD) is an autosomal recessive myoclonus epilepsy with onset in the teenage years leading to death within a decade of onset. LD is characterized by the overaccumulation of hyperphosphorylated, poorly branched, insoluble, glycogen-like polymers called Lafora bodies. The disease is caused by mutations in either EPM2A, encoding laforin, a dual specificity phosphatase that dephosphorylates glycogen, or EMP2B, encoding malin, an E3-ubiquitin ligase. While glycogen is a widely accepted laforin substrate, substrates for malin have been difficult to identify partly due to the lack of malin antibodies able to detect malin in vivo. Here we describe a mouse model in which the malin gene is modified at the C-terminus to contain the c-myc tag sequence, making an expression of malin-myc readily detectable. Mass spectrometry analyses of immunoprecipitates using c-myc tag antibodies demonstrate that malin interacts with laforin and several glycogen-metabolizing enzymes. To investigate the role of laforin in these interactions we analyzed two additional mouse models: malin-myc/laforin knockout and malin-myc/LaforinCS, where laforin was either absent or the catalytic Cys was genomically mutated to Ser, respectively. The interaction of malin with partner proteins requires laforin but is not dependent on its catalytic activity or the presence of glycogen. Overall, the results demonstrate that laforin and malin form a complex in vivo, which stabilizes malin and enhances interaction with partner proteins to facilitate normal glycogen metabolism. They also provide insights into the development of LD and the rescue of the disease by the catalytically inactive phosphatase.


Assuntos
Doença de Lafora , Proteínas Tirosina Fosfatases não Receptoras , Ubiquitina-Proteína Ligases , Doença de Lafora/metabolismo , Doença de Lafora/genética , Doença de Lafora/patologia , Animais , Camundongos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética , Humanos , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/genética , Modelos Animais de Doenças , Glicogênio/metabolismo , Glicogênio/genética
2.
JCI Insight ; 9(5)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456501

RESUMO

Efficient clearance and degradation of apoptotic cardiomyocytes by macrophages (collectively termed efferocytosis) is critical for inflammation resolution and restoration of cardiac function after myocardial ischemia/reperfusion (I/R). Here, we define secreted and transmembrane protein 1a (Sectm1a), a cardiac macrophage-enriched gene, as a modulator of macrophage efferocytosis in I/R-injured hearts. Upon myocardial I/R, Sectm1a-KO mice exhibited impaired macrophage efferocytosis, leading to massive accumulation of apoptotic cardiomyocytes, cardiac inflammation, fibrosis, and consequently, exaggerated cardiac dysfunction. By contrast, therapeutic administration of recombinant SECTM1A protein significantly enhanced macrophage efferocytosis and improved cardiac function. Mechanistically, SECTM1A could elicit autocrine effects on the activation of glucocorticoid-induced TNF receptor (GITR) at the surface of macrophages, leading to the upregulation of liver X receptor α (LXRα) and its downstream efferocytosis-related genes and lysosomal enzyme genes. Our study suggests that Sectm1a-mediated activation of the Gitr/LXRα axis could be a promising approach to enhance macrophage efferocytosis for the treatment of myocardial I/R injury.


Assuntos
Traumatismo por Reperfusão Miocárdica , Fagocitose , Camundongos , Animais , Eferocitose , Apoptose , Macrófagos/metabolismo , Inflamação/metabolismo , Proteínas de Membrana/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Reperfusão
4.
Genes Dev ; 38(3-4): 115-130, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38383062

RESUMO

H3K9 trimethylation (H3K9me3) plays emerging roles in gene regulation, beyond its accumulation on pericentric constitutive heterochromatin. It remains a mystery why and how H3K9me3 undergoes dynamic regulation in male meiosis. Here, we identify a novel, critical regulator of H3K9 methylation and spermatogenic heterochromatin organization: the germline-specific protein ATF7IP2 (MCAF2). We show that in male meiosis, ATF7IP2 amasses on autosomal and X-pericentric heterochromatin, spreads through the entirety of the sex chromosomes, and accumulates on thousands of autosomal promoters and retrotransposon loci. On the sex chromosomes, which undergo meiotic sex chromosome inactivation (MSCI), the DNA damage response pathway recruits ATF7IP2 to X-pericentric heterochromatin, where it facilitates the recruitment of SETDB1, a histone methyltransferase that catalyzes H3K9me3. In the absence of ATF7IP2, male germ cells are arrested in meiotic prophase I. Analyses of ATF7IP2-deficient meiosis reveal the protein's essential roles in the maintenance of MSCI, suppression of retrotransposons, and global up-regulation of autosomal genes. We propose that ATF7IP2 is a downstream effector of the DDR pathway in meiosis that coordinates the organization of heterochromatin and gene regulation through the spatial regulation of SETDB1-mediated H3K9me3 deposition.


Assuntos
Heterocromatina , Histonas , Células Germinativas/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Meiose/genética , Metilação , Masculino
5.
Nat Commun ; 15(1): 1152, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346980

RESUMO

The common human SNP rs3820282 is associated with multiple phenotypes including gestational length and likelihood of endometriosis and cancer, presenting a paradigmatic pleiotropic variant. Deleterious pleiotropic mutations cause the co-occurrence of disorders either within individuals, or across population. When adverse and advantageous effects are combined, pleiotropy can maintain high population frequencies of deleterious alleles. To reveal the causal molecular mechanisms of this pleiotropic SNP, we introduced this substitution into the mouse genome by CRISPR/Cas 9. Previous work showed that rs3820282 introduces a high-affinity estrogen receptor alpha-binding site at the Wnt4 locus. Here, we show that this mutation upregulates Wnt4 transcription in endometrial stroma, following the preovulatory estrogen peak. Effects on uterine transcription include downregulation of epithelial proliferation and induction of progesterone-regulated pro-implantation genes. We propose that these changes increase uterine permissiveness to embryo invasion, whereas they decrease resistance to invasion by cancer and endometriotic foci in other estrogen-responsive tissues.


Assuntos
Endometriose , Neoplasias , Gravidez , Feminino , Humanos , Animais , Camundongos , Endometriose/genética , Endometriose/metabolismo , Alelos , Endométrio/metabolismo , Estrogênios/metabolismo , Neoplasias/genética , Proteína Wnt4/genética
6.
Ocul Surf ; 32: 39-47, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38218582

RESUMO

PURPOSE: To design a novel efficacious scAAV-Gusb viral vector for treating Mucopolysaccharidosis Type VII (MPS VII) caused by a mutation in the ß-Glu gene (Gusb allele). METHODS: ß-Glu expression of single-stranded AAV-Gusb (ssAAV-Gusb) and self-complementary AAV (scAAV-Gusb) vectors are tested with cultured murine Gusb fibroblasts. The scAAV-Gusb vector was chosen in further studies to prolong the life span and treat corneal pathology of Gusb mice via intrahepatic injection of neonates and intrastromal injection in adults, respectively. Corneal pathology was studied using HRT2 in vivo confocal microscope and histochemistry in mice corneas. RESULTS: Both ssAAV-Gusb and scAAV-Gusb vectors expressed murine ß-Glu in cultured Gusb fibroblasts. The scAAV-Gusb vector had higher transduction efficiency than the ssAAV-Gusb vector. To prolong the life span of Gusb mice, neonates (3 days old) were administered with scAAV-Gusb virus via intrahepatic injection. The treatment improves the survival rate of Gusb mice, prolonging the median survival rate from 22.5 weeks (untreated) to 50 weeks (treated). Thereafter, we determined the efficacy of the scAAV-Gusb virus in ameliorating corneal cloudiness observed in aged Gusb mice. Both corneal cloudiness and stroma thickness decreased, and there was the presence of ß-Glu enzyme activity in the Gusb corneas receiving scAAV-Gusb virus associated with morphology change of amoeboid stromal cells in untreated to characteristic dendritic keratocytes morphology after 4-12 weeks of scAAV-Gusb virus injection. CONCLUSION: Intrahepatic injection of scAAV-Gusb is efficacious in prolonging the life span of Gusb mice, and intrastromal injection can ameliorate corneal phenotypes. Both strategies can be adapted for treating other MPS.


Assuntos
Dependovirus , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos , Mucopolissacaridose VII , Animais , Camundongos , Terapia Genética/métodos , Dependovirus/genética , Mucopolissacaridose VII/terapia , Mucopolissacaridose VII/genética , Fibroblastos , Opacidade da Córnea/terapia , Células Cultivadas , Microscopia Confocal , Córnea/patologia , Camundongos Endogâmicos C57BL
7.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37645929

RESUMO

Background: Mesenchymal nephron progenitors (mNPs) give rise to all nephron tubules in the mammalian kidney. Since premature depletion of these cells leads to low nephron numbers, high blood pressure, and various renal diseases, it is critical to understand how mNPs are maintained. While Fgf, Bmp, and Wnt signaling pathways are known to be required for the maintenance of these cells, it is unclear if any other signaling pathways also play roles. Methods: To test the potential role of Hedgehog signaling in mNPs, we conditionally deleted Shh from the collecting duct and Smo from the nephron lineage. To identify the genes regulated by Hedgehog signaling in mNPs, we performed RNA-seq analysis from mNPs with different Smo doses. To test if the upregulation of Notch signaling mimics loss of Hedgehog signaling, we performed Jag1 gain-of-function study in mNPs. Results: We found that loss of either Shh or Smo resulted in premature depletion of mNPs. Our transcriptional profiling data from Smo loss- and gain-of-function mutant mNPs suggested that Hedgehog signaling inhibited the activation of Notch signaling and upregulated the expression of Fox transcription factors such as Foxc1 and Foxp4. Consistent with these observations, we found that ectopic expression of Jag1 caused the premature depletion of mNPs as seen in the Smo mutant kidney. We also found that Foxc1 was capable of binding to mitotic condensed chromatin, a feature of a mitotic bookmarking factor. Conclusions: Our study demonstrates a previously unappreciated role of Hedgehog signaling in preventing premature depletion of mNPs by repressing Notch signaling and likely by activating the expression of Fox factors.

8.
Sci Rep ; 13(1): 21919, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38082035

RESUMO

MicroRNAs are an emerging class of synaptic regulators. These small noncoding RNAs post-transcriptionally regulate gene expression, thereby altering neuronal pathways and shaping cell-to-cell communication. Their ability to rapidly alter gene expression and target multiple pathways makes them interesting candidates in the study of synaptic plasticity. Here, we demonstrate that the proconvulsive microRNA miR-324-5p regulates excitatory synapse structure and function in the hippocampus of mice. Both Mir324 knockout (KO) and miR-324-5p antagomir treatment significantly reduce dendritic spine density in the hippocampal CA1 subregion, and Mir324 KO, but not miR-324-5p antagomir treatment, shift dendritic spine morphology, reducing the proportion of thin, "unstable" spines. Western blot and quantitative Real-Time PCR revealed changes in protein and mRNA levels for potassium channels, cytoskeletal components, and synaptic markers, including MAP2 and Kv4.2, which are important for long-term potentiation (LTP). In line with these findings, slice electrophysiology revealed that LTP is severely impaired in Mir324 KO mice, while neurotransmitter release probability remains unchanged. Overall, this study demonstrates that miR-324-5p regulates dendritic spine density, morphology, and plasticity in the hippocampus, potentially via multiple cytoskeletal and synaptic modulators.


Assuntos
Potenciação de Longa Duração , MicroRNAs , Camundongos , Animais , Potenciação de Longa Duração/fisiologia , Espinhas Dendríticas/metabolismo , Antagomirs/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal/genética , Sinapses/metabolismo , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo
9.
Cell Stem Cell ; 30(11): 1434-1451.e9, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37922878

RESUMO

Most organs have tissue-resident immune cells. Human organoids lack these immune cells, which limits their utility in modeling many normal and disease processes. Here, we describe that pluripotent stem cell-derived human colonic organoids (HCOs) co-develop a diverse population of immune cells, including hemogenic endothelium (HE)-like cells and erythromyeloid progenitors that undergo stereotypical steps in differentiation, resulting in the generation of functional macrophages. HCO macrophages acquired a transcriptional signature resembling human fetal small and large intestine tissue-resident macrophages. HCO macrophages modulate cytokine secretion in response to pro- and anti-inflammatory signals and were able to phagocytose and mount a robust response to pathogenic bacteria. When transplanted into mice, HCO macrophages were maintained within the colonic organoid tissue, established a close association with the colonic epithelium, and were not displaced by the host bone-marrow-derived macrophages. These studies suggest that HE in HCOs gives rise to multipotent hematopoietic progenitors and functional tissue-resident macrophages.


Assuntos
Células-Tronco Pluripotentes , Humanos , Camundongos , Animais , Células-Tronco Hematopoéticas , Colo , Organoides , Macrófagos
11.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873266

RESUMO

H3K9 tri-methylation (H3K9me3) plays emerging roles in gene regulation, beyond its accumulation on pericentric constitutive heterochromatin. It remains a mystery why and how H3K9me3 undergoes dynamic regulation in male meiosis. Here, we identify a novel, critical regulator of H3K9 methylation and spermatogenic heterochromatin organization: the germline-specific protein ATF7IP2 (MCAF2). We show that, in male meiosis, ATF7IP2 amasses on autosomal and X pericentric heterochromatin, spreads through the entirety of the sex chromosomes, and accumulates on thousands of autosomal promoters and retrotransposon loci. On the sex chromosomes, which undergo meiotic sex chromosome inactivation (MSCI), the DNA damage response pathway recruits ATF7IP2 to X pericentric heterochromatin, where it facilitates the recruitment of SETDB1, a histone methyltransferase that catalyzes H3K9me3. In the absence of ATF7IP2, male germ cells are arrested in meiotic prophase I. Analyses of ATF7IP2-deficient meiosis reveal the protein's essential roles in the maintenance of MSCI, suppression of retrotransposons, and global upregulation of autosomal genes. We propose that ATF7IP2 is a downstream effector of the DDR pathway in meiosis that coordinates the organization of heterochromatin and gene regulation through the spatial regulation of SETDB1-mediated H3K9me3 deposition.

12.
bioRxiv ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37873415

RESUMO

Lifelong kidney function relies on the complement of nephrons generated during mammalian development from a mesenchymal nephron progenitor cell (NPC) population. Low nephron endowment confers increased susceptibility to chronic kidney disease. We asked whether reduced nephron numbers in the popular Six2TGC transgenic mouse line 1 was due to disruption of a regulatory gene at the integration site or to ectopic expression of a gene(s) contained within the transgene. Targeted locus amplification identified integration of the Six2TGC transgene within an intron of Cntnap5a on chr1. We generated Hi-C datasets from NPCs isolated from the Six2TGC tg/+ mice, the Cited1 CreERT2/+ control mice, and the Six2TGC tg/+ ; Tsc1 +/Flox,2 mice that exhibited restored nephron number compared with Six2TGC tg/+ mice, and mapped the precise integration of Six2TGC and Cited1 CreERT2 transgenes to chr1 and chr14, respectively. No changes in topology, accessibility, or expression were observed within the 50-megabase region centered on Cntnap5a in Six2TGC tg/+ mice compared with control mice. By contrast, we identified an aberrant regulatory interaction between a Six2 distal enhancer and the Six3 promoter contained within the transgene. Increasing the Six2TGC tg to Six2 locus ratio or removing one Six2 allele in Six2TGC tg/+ mice, caused severe renal hypoplasia. Furthermore, CRISPR disruption of Six3 within the transgene ( Six2TGC Δ Six3CT ) restored nephron endowment to wildtype levels and abolished the stoichiometric effect. Data from genetic and biochemical studies together suggest that in Six2TGC, SIX3 interferes with SIX2 function in NPC renewal through its C-terminal domain. Significance: Using high-resolution chromatin conformation and accessibility datasets we mapped the integration site of two popular transgenes used in studies of nephron progenitor cells and kidney development. Aberrant enhancer-promoter interactions drive ectopic expression of Six3 in the Six2TGC tg line which was correlated with disruption of nephrogenesis. Disruption of Six3 within the transgene restored nephron numbers to control levels; further genetic and biochemical studies suggest that Six3 interferes with Six2 -mediated regulation of NPC renewal.

13.
J Mol Neurosci ; 73(9-10): 818-830, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37773316

RESUMO

Dendritic spines are small, dynamic protrusions along the dendrite that comprise more than 90% of excitatory connections in the brain, making them essential sites for neuronal communication. These synaptic sites change throughout the process of development, reducing in density and shifting morphology as synapses are refined. One important class of dendritic spine regulators is microRNA (miRNA), small-noncoding RNAs that post-transcriptionally regulate gene expression. Several studies suggest that miRNA-324-5p regulates dendritic spine formation. In addition, we have previously shown that miR-324-5p plays a role in seizure and long-term potentiation, both of which involve dendritic spine changes. In this study, we aimed to characterize the role of miRNA-324-5p in developmental spine regulation by assessing the effect of Mir324 knockout (KO) on dendritic spine density and expression of a subset of dendritic proteins at select developmental time points. We show that miR-324-5p expression is developmentally regulated and peaks at 4 weeks of age. We demonstrate that loss of miR-324-5p expression leads to differential changes in both target protein expression and spine density at different time points during development, disrupting the pattern of spine density changes and leading to a premature loss of dendritic spines in KO mice, which is compensated later. Our findings indicate that miR-324-5p plays a role in synaptic refinement across development. Additionally, our data illustrate the importance of context in the study of miRNA, as regulation by and/or of miRNA can vary dramatically across development and in disease.


Assuntos
Espinhas Dendríticas , MicroRNAs , Animais , Camundongos , Espinhas Dendríticas/metabolismo , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo
14.
Science ; 381(6664): 1324-1330, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37733857

RESUMO

Pregnancy confers partner-specific protection against complications in future pregnancy that parallel persistence of fetal microchimeric cells (FMcs) in mothers after parturition. We show that preexisting FMcs become displaced by new FMcs during pregnancy and that FMc tonic stimulation is essential for expansion of protective fetal-specific forkhead box P3 (FOXP3)-positive regulatory T cells (Treg cells). Maternal microchimeric cells and accumulation of Treg cells with noninherited maternal antigen (NIMA) specificity are similarly overturned in daughters after pregnancy, highlighting a fixed microchimeric cell niche. Whereas NIMA-specific tolerance is functionally erased by pregnancy, partner-specific resiliency against pregnancy complications persists in mothers despite paternity changes in intervening pregnancy. Persistent fetal tolerance reflects FOXP3 expression plasticity, which allows mothers to more durably remember their babies, whereas daughters forget their mothers with new pregnancy-imprinted immunological memories.


Assuntos
Quimerismo , Feto , Tolerância Imunológica , Memória Imunológica , Troca Materno-Fetal , Gravidez , Animais , Feminino , Camundongos , Gravidez/imunologia , Antígenos/imunologia , Plasticidade Celular , Feto/citologia , Feto/imunologia , Fatores de Transcrição Forkhead/imunologia , Troca Materno-Fetal/imunologia , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/imunologia
15.
Res Sq ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37609225

RESUMO

Dendritic spines are small, dynamic protrusions along the dendrite that comprise more than 90% of excitatory connections in the brain, making them essential sites for neuronal communication. These synaptic sites change throughout the process of development, reducing in density and shifting morphology as synapses are refined. One important class of dendritic spine regulators is microRNA (miRNA), small noncoding RNAs that post-transcriptionally regulate gene expression. Several studies suggest that miRNA-324-5p regulates dendritic spine formation. In addition, we have previously shown that miR-324-5p plays a role in seizure and long-term potentiation, both of which involve dendritic spine changes. In this study, we aimed to characterize the role of miRNA-324-5p in developmental spine regulation by assessing the effect of Mir324 knockout (KO) on dendritic spine density and expression of a subset of dendritic proteins at select developmental time points. We show that miR-324-5p expression is developmentally regulated and peaks at four weeks of age. We demonstrate that loss of miR-324-5p expression leads to differential changes in both target protein expression and spine density at different time points during development, disrupting the pattern of spine density changes and leading to a premature loss of dendritic spines in KO mice, which is compensated later. Our findings indicate that miR-324-5p plays a role in synaptic refinement across development. Additionally, our data illustrate the importance of context in the study of miRNA, as regulation by and/or of miRNA can vary dramatically across development and in disease.

16.
Dev Biol ; 503: 1-9, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37524195

RESUMO

The evolution of jaws has played a major role in the success of vertebrate expansion into a wide variety of ecological niches. A fundamental, yet unresolved, question in craniofacial biology is about the origin of the premaxilla, the most distal bone present in the upper jaw of all amniotes. Recent reports have suggested that the mammalian premaxilla is derived from embryonic maxillary prominences rather than the frontonasal ectomesenchyme as previously shown in studies of chicken embryos. However, whether mammalian embryonic frontonasal ectomesenchyme contributes to the premaxillary bone has not been investigated and a tool to trace the contributions of the frontonasal ectomesenchyme to facial structures in mammals is lacking. The expression of the Alx3 gene is activated highly specifically in the frontonasal ectomesenchyme, but not in the maxillary mesenchyme, from the beginning of facial morphogenesis in mice. Here, we report the generation and characterization of a novel Alx3CreERT2 knock-in mouse line that express tamoxifen-inducible Cre DNA recombinase from the Alx3 locus. Tamoxifen treatment of Alx3CreERT2/+;Rosa26mTmG/+ embryos at E7.5, E8.5, E9.5, and E10.5, each induced specific labeling of the embryonic medial nasal and lateral nasal mesenchyme but not the maxillary mesenchyme. Lineage tracing of Alx3CreERT2-labeled frontonasal mesenchyme from E9.5 to E16.5 clearly showed that the frontonasal mesenchyme cells give rise to the osteoblasts generating the premaxillary bone. Furthermore, we characterize a Dlx1-Cre BAC transgenic mouse line that expresses Cre activity in the embryonic maxillary but not the frontonasal mesenchyme and show that the Dlx1-Cre labeled embryonic maxillary mesenchyme cells contribute to the maxillary bone as well as the soft tissues lateral to both the premaxillary and maxillary bones but not to the premaxillary bone. These results clearly demonstrate the developmental origin of the premaxillary bone from embryonic frontonasal ectomesenchyme cells in mice and confirm the evolutionary homology of the premaxilla across amniotes.


Assuntos
Cabeça , Fatores de Transcrição , Embrião de Galinha , Camundongos , Animais , Fatores de Transcrição/genética , Face , Ossos Faciais , Camundongos Transgênicos , Mamíferos
17.
Nat Struct Mol Biol ; 30(8): 1077-1091, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37460896

RESUMO

Conventional dogma presumes that protamine-mediated DNA compaction in sperm is achieved by electrostatic interactions between DNA and the arginine-rich core of protamines. Phylogenetic analysis reveals several non-arginine residues conserved within, but not across species. The significance of these residues and their post-translational modifications are poorly understood. Here, we investigated the role of K49, a rodent-specific lysine residue in protamine 1 (P1) that is acetylated early in spermiogenesis and retained in sperm. In sperm, alanine substitution (P1(K49A)) decreases sperm motility and male fertility-defects that are not rescued by arginine substitution (P1(K49R)). In zygotes, P1(K49A) leads to premature male pronuclear decompaction, altered DNA replication, and embryonic arrest. In vitro, P1(K49A) decreases protamine-DNA binding and alters DNA compaction and decompaction kinetics. Hence, a single amino acid substitution outside the P1 arginine core is sufficient to profoundly alter protein function and developmental outcomes, suggesting that protamine non-arginine residues are essential for reproductive fitness.


Assuntos
Aminoácidos , Aptidão Genética , Animais , Masculino , Camundongos , Aminoácidos/metabolismo , Arginina/metabolismo , Cromatina/metabolismo , DNA/genética , DNA/metabolismo , Filogenia , Protaminas/química , Protaminas/genética , Protaminas/metabolismo , Sêmen/metabolismo , Motilidade dos Espermatozoides , Espermatozoides
18.
Ocul Surf ; 29: 432-443, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37355021

RESUMO

PURPOSE: Cystinosis is an autosomal recessive lysosomal storage disease (LSDs) caused by mutations in the gene encoding cystinosin (CTNS) that leads to cystine crystal accumulation in the lysosome that compromises cellular functions resulting in tissue damage and organ failure, especially in kidneys and eyes. However, the underlying molecular mechanism of its pathogenesis remains elusive. Two novel mice lines created via CRISPR are used to examine the pathogenesis of cystinosis in the kidney and cornea and the treatment efficacy of corneal pathology using self-complimentary Adeno-associated viral (scAAV-CTNS) vector. METHODS: The CRISPR technique generated two novel cystinotic mouse lines, Ctnsis1 (an insertional mutation) and Ctnsis2 (a nonsense mutation). Immune histochemistry, renal functions test and HRT2 in vivo confocal microscopy were used to evaluate the age-related renal pathogenesis and treatment efficacy of the scAAV-CTNS virus in corneal pathology. RESULTS: Both mutations lead to the production of truncated Ctns proteins. Ctnsis1 and Ctnsis 2 mice exhibit the characteristic of cystinotic corneal crystal phenotype at four-week-old. Treatment with the scAAV-CTNS viral vector decreased the corneal crystals in the treated mice cornea. Ctnsis 1 show renal abnormalities manifested by increased urine volume, reduced urine osmolality, and the loss of response to Desmopressin (dDAVP) at 22-month-old but Ctnsis2 don't manifest renal pathology up to 2 years of age. CONCLUSIONS: Both Ctnsis1 and Ctnsis2 mice exhibit phenotypes resembling human intermediate nephropathic and ocular cystinosis, respectively. scAAV-CTNS viral vectors reduce the corneal cystine crystals and have a great potential as a therapeutic strategy for treating patients suffering from cystinosis.


Assuntos
Cistinose , Humanos , Animais , Camundongos , Lactente , Cistinose/terapia , Cistinose/tratamento farmacológico , Cistina/genética , Cistina/metabolismo , Cistina/uso terapêutico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Córnea/patologia , Terapia Genética
19.
Nature ; 606(7915): 769-775, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35676476

RESUMO

Adaptive immune components are thought to exert non-overlapping roles in antimicrobial host defence, with antibodies targeting pathogens in the extracellular environment and T cells eliminating infection inside cells1,2. Reliance on antibodies for vertically transferred immunity from mothers to babies may explain neonatal susceptibility to intracellular infections3,4. Here we show that pregnancy-induced post-translational antibody modification enables protection against the prototypical intracellular pathogen Listeria monocytogenes. Infection susceptibility was reversed in neonatal mice born to preconceptually primed mothers possessing L. monocytogenes-specific IgG or after passive transfer of antibodies from primed pregnant, but not virgin, mice. Although maternal B cells were essential for producing IgGs that mediate vertically transferred protection, they were dispensable for antibody acquisition of protective function, which instead required sialic acid acetyl esterase5 to deacetylate terminal sialic acid residues on IgG variable-region N-linked glycans. Deacetylated L. monocytogenes-specific IgG protected neonates through the sialic acid receptor CD226,7, which suppressed IL-10 production by B cells leading to antibody-mediated protection. Consideration of the maternal-fetal dyad as a joined immunological unit reveals protective roles for antibodies against intracellular infection and fine-tuned adaptations to enhance host defence during pregnancy and early life.


Assuntos
Imunidade Materno-Adquirida , Imunoglobulina G , Espaço Intracelular , Listeria monocytogenes , Mães , Gravidez , Acetilesterase , Animais , Animais Recém-Nascidos , Linfócitos B , Feminino , Imunidade Materno-Adquirida/imunologia , Imunoglobulina G/imunologia , Interleucina-10/biossíntese , Espaço Intracelular/imunologia , Espaço Intracelular/microbiologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Listeriose/prevenção & controle , Camundongos , Ácido N-Acetilneuramínico/metabolismo , Gravidez/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico , Linfócitos T
20.
JHEP Rep ; 4(4): 100446, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35284810

RESUMO

Background & Aims: The truncating mutations in tight junction protein 2 (TJP2) cause progressive cholestasis, liver failure, and hepatocyte carcinogenesis. Due to the lack of effective model systems, there are no targeted medications for the liver pathology with TJP2 deficiency. We leveraged the technologies of patient-specific induced pluripotent stem cells (iPSC) and CRISPR genome-editing, and we aim to establish a disease model which recapitulates phenotypes of patients with TJP2 deficiency. Methods: We differentiated iPSC to hepatocyte-like cells (iHep) on the Transwell membrane in a polarized monolayer. Immunofluorescent staining of polarity markers was detected by a confocal microscope. The epithelial barrier function and bile acid transport of bile canaliculi were quantified between the two chambers of Transwell. The morphology of bile canaliculi was measured in iHep cultured in the Matrigel sandwich system using a fluorescent probe and live-confocal imaging. Results: The iHep differentiated from iPSC with TJP2 mutations exhibited intracellular inclusions of disrupted apical membrane structures, distorted canalicular networks, altered distribution of apical and basolateral markers/transporters. The directional bile acid transport of bile canaliculi was compromised in the mutant hepatocytes, resembling the disease phenotypes observed in the liver of patients. Conclusions: Our iPSC-derived in vitro hepatocyte system revealed canalicular membrane disruption in TJP2 deficient hepatocytes and demonstrated the ability to model cholestatic disease with TJP2 deficiency to serve as a platform for further pathophysiologic study and drug discovery. Lay summary: We investigated a genetic liver disease, progressive familial intrahepatic cholestasis (PFIC), which causes severe liver disease in newborns and infants due to a lack of gene called TJP2. By using cutting-edge stem cell technology and genome editing methods, we established a novel disease modeling system in cell culture experiments. Our experiments demonstrated that the lack of TJP2 induced abnormal cell polarity and disrupted bile acid transport. These findings will lead to the subsequent investigation to further understand disease mechanisms and develop an effective treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA