Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Signal Behav ; 19(1): 2318514, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38375792

RESUMO

Chilling stress is an important environmental factor that affects rice (Oryza sativa L.) growth and yield, and the booting stage is the most sensitive stage of rice to chilling stress. In this study, we focused on OsRBCS3, a rice gene related to chilling tolerance at the booting stage, which encodes the key enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit in photosynthesis. The aim of this study was to elucidate the role and mechanism of OsRBCS3 in rice chilling tolerance at the booting stage. The expression levels of OsRBCS3 under chilling stress were compared in two japonica rice cultivars with different chilling tolerances: Kongyu131 (KY131) and Longjing11 (LJ11). A positive correlation was found between OsRBCS3 expression and chilling tolerance. Over-expression (OE) and knock-out (KO) lines of OsRBCS3 were constructed using over-expression and CRISPR/Cas9 technology, respectively, and their chilling tolerance was evaluated at the seedling and booting stages. The results showed that OE lines exhibited higher chilling tolerance than wild-type (WT) lines at both seedling and booting stages, while KO lines showed lower chilling tolerance than WT lines. Furthermore, the antioxidant enzyme activities, malondialdehyde (MDA) content and Rubisco activity of four rice lines under chilling stress were measured, and it was found that OE lines had stronger antioxidant and photosynthetic capacities, while KO lines had the opposite effects. This study validated that OsRBCS3 plays an important role in rice chilling tolerance at the booting stage, providing new molecular tools and a theoretical basis for rice chilling tolerance breeding.


Assuntos
Antioxidantes , Oryza , Antioxidantes/metabolismo , Oryza/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Plântula/metabolismo , Fotossíntese/genética , Temperatura Baixa
2.
Mol Cancer ; 22(1): 145, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660039

RESUMO

BACKGROUND: Immunotherapy has recently emerged as a treatment strategy which stimulates the human immune system to kill tumor cells. Tumor immunotherapy is based on immune editing, which enhances the antigenicity of tumor cells and increases the tumoricidal effect of immune cells. It also suppresses immunosuppressive molecules, activates or restores immune system function, enhances anti-tumor immune responses, and inhibits the growth f tumor cell. This offers the possibility of reducing mortality in triple-negative breast cancer (TNBC). MAIN BODY: Immunotherapy approaches for TNBC have been diversified in recent years, with breakthroughs in the treatment of this entity. Research on immune checkpoint inhibitors (ICIs) has made it possible to identify different molecular subtypes and formulate individualized immunotherapy schedules. This review highlights the unique tumor microenvironment of TNBC and integrates and analyzes the advances in ICI therapy. It also discusses strategies for the combination of ICIs with chemotherapy, radiation therapy, targeted therapy, and emerging treatment methods such as nanotechnology, ribonucleic acid vaccines, and gene therapy. Currently, numerous ongoing or completed clinical trials are exploring the utilization of immunotherapy in conjunction with existing treatment modalities for TNBC. The objective of these investigations is to assess the effectiveness of various combined immunotherapy approaches and determine the most effective treatment regimens for patients with TNBC. CONCLUSION: This review provides insights into the approaches used to overcome drug resistance in immunotherapy, and explores the directions of immunotherapy development in the treatment of TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/terapia , Imunoterapia , Ciclo Celular , Proliferação de Células , Terapia Genética , Microambiente Tumoral
4.
J Cancer ; 14(10): 1888-1903, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476189

RESUMO

FAM83 family members are a group of proteins that have been implicated in various solid tumors. In this updated review, we mainly focus on the cellular localization, molecular composition, and biological function of FAM83 family proteins in solid tumors. We discussed the factors that regulate abnormal protein expression and alterations in the functional activities of solid tumor cells (including non-coding microRNAs and protein modifiers) and potential mechanisms of tumorigenesis (including the MAPK, WNT, and TGF-ß signaling pathways). Further, we highlighted the application of FAM83 family proteins in the diagnoses and treatment of different cancers, such as breast, lung, liver, and ovarian cancers from two aspects: molecular marker diagnosis and tumor drug resistance. We described the overexpression of FAM83 genes in various human malignant tumor cells and its relationship with tumor proliferation, migration, invasion, transformation, and drug resistance. Moreover, we explored the prospects and challenges of using tumor treatments based on the FAM83 proteins. Overall, we provide a theoretical basis for harnessing FAM83 family proteins as novel targets in cancer treatment. We believe that this review opens up open new directions for solid tumor treatment in clinical practice.

5.
Front Pharmacol ; 14: 1152934, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153795

RESUMO

As traditional strategies for cancer treatment, some chemotherapy agents, such as doxorubicin, oxaliplatin, cyclophosphamide, bortezomib, and paclitaxel exert their anti-tumor effects by inducing immunogenic cell death (ICD) of tumor cells. ICD induces anti-tumor immunity through release of, or exposure to, damage-related molecular patterns (DAMPs), including high mobility group box 1 (HMGB1), calreticulin, adenosine triphosphate, and heat shock proteins. This leads to activation of tumor-specific immune responses, which can act in combination with the direct killing functions of chemotherapy drugs on cancer cells to further improve their curative effects. In this review, we highlight the molecular mechanisms underlying ICD, including those of several chemotherapeutic drugs in inducing DAMPs exposed during ICD to activate the immune system, as well as discussing the prospects for application and potential role of ICD in cancer immunotherapy, with the aim of providing valuable inspiration for future development of chemoimmunotherapy.

6.
Front Pharmacol ; 13: 1036140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467032

RESUMO

Ferroptosis is referred as a novel type of cell death discovered in recent years with the feature of the accumulation of iron-dependent lipid reactive oxygen species. Breast cancer is one of the most common malignant cancers in women. There is increasing evidence that ferroptosis can inhibit breast cancer cell growth, improve the sensitivity of chemotherapy and radiotherapy and inhibit distant metastases. Therefore, ferroptosis can be regarded a new target for tumor suppression and may expand the landscape of clinical treatment of breast cancer. This review highlights the ferroptosis mechanism and its potential role in breast cancer treatment to explore new therapeutic strategies of breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA