Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Biol Eng ; 18(1): 36, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845032

RESUMO

Exosomes are nanovesicles with multiple components used in several applications. Mesenchymal stem cells (MSCs) are well known for their great potential in clinical applications. MSC-derived exosomes (MSC-Exos) have been shown to mediate tissue regeneration in various diseases, including neurological, autoimmune, and inflammatory diseases, cancer, ischemic heart disease, lung injury, and liver fibrosis. They can modulate the immune response by interacting with immune effector cells in the presence of anti-inflammatory compounds and are involved in intercellular communication through various types of cargo. This review summarizes the MSC-Exos-mediated tissue regeneration in various diseases, including neurological, cardiovascular, liver, kidney, articular cartilage, and oral tissue applications. In addition, we discuss the challenges and prospects of MSC-Exos in tissue regeneration.

2.
BMC Cardiovasc Disord ; 24(1): 142, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443814

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are important regulatory factors in the normal developmental stages of the heart and kidney. However, it is currently unclear how miRNA is expressed in type 2 cardiorenal syndrome (CRS). This study aimed to detect the differential expression of miRNAs and to clarify the main enrichment pathways of differentially expressed miRNA target genes in type 2 CRS. METHODS: Five cases of healthy control (Group 1), eight of chronic heart failure (CHF, Group 2) and seven of type 2 CRS (Group 3) were enrolled, respectively. Total RNA was extracted from the peripheral blood of each group. To predict the miRNA target genes and biological signalling pathways closely related to type 2 CRS, the Agilent miRNA microarray platform was used for miRNA profiling and bioinformatics analysis of the isolated total RNA samples. RESULTS: After the microarray analysis was done to screen for differentially expressed circulating miRNAs among the three different groups of samples, the target genes and bioinformatic pathways of the differential miRNAs were predicted. A total of 38 differential miRNAs (15 up- and 23 down-regulated) were found in Group 3 compared with Group 1, and a total of 42 differential miRNAs (11 up- and 31 down-regulated) were found in Group 3 compared to Group 2. According to the Gene Ontology (GO) function and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis, the top 10 lists of molecular functions, cellular composition and biological processes, and the top 30 signalling pathways of predicted gene targets of the differentially expressed miRNAs were discriminated among the three groups. CONCLUSION: Between the patients with CHF and type 2 CRS, miRNAs were differentially expressed. Prediction of target genes of differentially expressed miRNAs and the use of GO function and KEGG pathway analysis may reveal the molecular mechanisms of CRS. Circulating miRNAs may contribute to the diagnosis of CRS, and further and larger studies are needed to enhance the robustness of our findings.


Assuntos
Síndrome Cardiorrenal , MicroRNA Circulante , MicroRNAs , Humanos , Síndrome Cardiorrenal/diagnóstico , Síndrome Cardiorrenal/genética , MicroRNAs/genética , Rim , Coração , Biologia Computacional
3.
Polymers (Basel) ; 16(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38399903

RESUMO

The performance of ethylene/1-octene copolymer primarily depends on the microstructure of the polymer chain. This study employed a new method to control the inter-distribution of hexyl chain branches directly on the backbone of the ethylene/1-octene copolymer. Three ethylene/1-octene copolymers with different inter-distributions of hexyl chain branches were synthesized using [Me2Si(C5Me4) (NtBu)] TiCl2 (Ti-CGC) by different feeding sequences in the semi-continuous polymerization reaction system. The three copolymers were named according to the feeding sequence of the materials: ethylene/1-octene/Ti-CGC (EOC), 1-octene/Ti-CGC/ethylene (OCE), and ethylene/Ti-CGC/1-octene (ECO), respectively. The structure and properties of the copolymers were characterized using HT-GPC, 13C-NMR, DSC, WAXD, DMA, MI, and Uniaxial Tension Test. The results showed that the feeding sequence greatly affected the comonomer distribution of the molecular chains, molecular weight, molecular weight distribution, and chemical composition of the copolymers, consequently influencing their thermal performance and mechanical properties. Thus, it is probable that one could obtain an ethylene/1-octene copolymer with designed properties by controlling the feeding sequence during the ethylene/1-octene semi-continuous copolymerization process.

4.
Kidney Blood Press Res ; 49(1): 100-113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38237563

RESUMO

INTRODUCTION: Apela has a wide range of biological effects on the cardiovascular system, but the changes and significance of endogenous Apela in patients with chronic heart failure (CHF) and acute deterioration of cardiac and renal function are unclear. METHODS: A total of 69 patients with stable CHF combined with well-preserved renal function were enrolled and followed for 12 months. The effects of Apela on human renal glomerular endothelial cells (hRGEC), human glomerular mesangial cells (hMC), and human renal tubular epithelial cells (HK-2) were observed. RESULTS: Serum Apela concentration was positively correlated with NYHA class (r = 0.711) and N-terminal pro-brain natriuretic peptide (NT-proBNP) concentration (r = 0.303) but negatively correlated with left ventricular ejection fraction (LVEF) (r = -0.374) and 6-min walk distance (r = -0.860) in patients with stable CHF. Twenty-one patients experiencing deterioration of renal and cardiac function were diagnosed with cardiorenal syndrome (CRS) during the follow-up period. In addition, the serum Apela, as well as the difference in Apela between stable and worsening phases (ΔApela), was correlated with the estimated glomerular filtration rate (eGFR) and ΔeGFR in patients with CRS. Apela significantly inhibited the upregulated expression of MCP-1 and TNF-α induced by angiotensin II (AngII) in hRGEC, hMC, and HK-2 cells. Apela inhibited the adhesion of THP-1 cells to hRGEC and promoted the tubular formation of hRGEC. Moreover, Apela enhanced the expression of MMP-9 in hMC but inhibited the upregulated expression of α-SMA and vimentin in HK-2 cells by AngII. CONCLUSION: This study suggests that the level of Apela can be used to diagnose heart failure and assess the severity of cardiac dysfunction in patients with stable CHF, and its dynamic changes can be used to evaluate the damage to renal function in patients with CRS. Apela plays multiple protective effects on renal cells, highlighting its clinical application prospect in the prevention and treatment of CRS.


Assuntos
Síndrome Cardiorrenal , Insuficiência Cardíaca , Humanos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Doença Crônica , Peptídeo Natriurético Encefálico/sangue , Taxa de Filtração Glomerular , Células Endoteliais/metabolismo , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/farmacologia , Relevância Clínica
5.
BMC Cancer ; 23(1): 573, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349676

RESUMO

BACKGROUND: The ubiquity-proteasome system is an indispensable mechanism for regulating intracellular protein degradation, thereby affecting human antigen processing, signal transduction, and cell cycle regulation. We used bioinformatics database to predict the expression and related roles of all members of the PSMD family in ovarian cancer. Our findings may provide a theoretical basis for early diagnosis, prognostic assessment, and targeted therapy of ovarian cancer. METHODS: GEPIA, cBioPortal, and Kaplan-Meier Plotter databases were used to analyze the mRNA expression levels, gene variation, and prognostic value of PSMD family members in ovarian cancer. PSMD8 was identified as the member with the best prognostic value. The TISIDB database was used to analyze the correlation between PSMD8 and immunity, and the role of PSMD8 in ovarian cancer tissue was verified by immunohistochemical experiments. The relationship of PSMD8 expression with clinicopathological parameters and survival outcomes of ovarian cancer patients was analyzed. The effects of PSMD8 on malignant biological behaviors of invasion, migration, and proliferation of ovarian cancer cells were studied by in vitro experiments. RESULTS: The expression levels of PSMD8/14 mRNA in ovarian cancer tissues were significantly higher than those in normal ovarian tissues, and the expression levels of PSMD2/3/4/5/8/11/12/14 mRNA were associated with prognosis. Up-regulation of PSMD4/8/14 mRNA expression was associated with poor OS, and the up-regulation of PSMD2/3/5/8 mRNA expression was associated with poor PFS in patients with ovarian serous carcinomas. Gene function and enrichment analysis showed that PSMD8 is mainly involved in biological processes such as energy metabolism, DNA replication, and protein synthesis. Immunohistochemical experiments showed that PSMD8 was mainly expressed in the cytoplasm and the expression level was correlated with FIGO stage. Patients with high PSMD8 expression had poor prognosis. Overexpression of PSMD8 significantly enhanced the proliferation, migration, and invasion abilities in ovarian cancer cells. CONCLUSION: We observed different degrees of abnormal expression of members of PSMD family in ovarian cancer. Among these, PSMD8 was significantly overexpressed in ovarian malignant tissue, and was associated with poor prognosis. PSMDs, especially PSMD8, can serve as potential diagnostic and prognostic biomarkers and therapeutic targets in ovarian cancer.


Assuntos
Neoplasias Ovarianas , Feminino , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Epitelial do Ovário , Biologia Computacional , Neoplasias Ovarianas/patologia , Prognóstico , RNA Mensageiro/genética
6.
BMC Cardiovasc Disord ; 23(1): 335, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391705

RESUMO

BACKGROUND: As it is unclear whether there is genetic susceptibility to cardiorenal syndrome (CRS), we conducted a genome-wide association study of dilated cardiomyopathy (DCM)-induced heart failure (HF) associated with renal insufficiency (RI) in a Chinese population to identify putative susceptibility variants and culprit genes. METHODS: A total of 99 Han Chinese patients with DCM-induced chronic HF were selected and divided into one of three groups, namely, HF with normal renal function (Group 1), HF with mild RI (Group 2) and HF with moderate to severe RI (Group 3). Genomic DNA was extracted from each subject for genotyping. RESULTS: According to Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, top 10 lists of molecular function, cell composition and biological process of differential target genes and 15 signalling pathways were discriminated among the three groups. Additionally, sequencing results identified 26 significantly different single-nucleotide polymorphisms (SNPs) in the 15 signalling pathways, including three SNPs (rs57938337, rs6683225 and rs6692782) in ryanodine receptor 2 (RYR2) and two SNPs (rs12439006 and rs16958069) in RYR3. The genotype and allele frequencies of the five SNPs in RYR2 and RYR3 were significantly differential between HF (Group 1) and CRS (Group 2 + 3) patients. CONCLUSION: Twenty-six significantly different SNP loci in 17 genes of the 15 KEGG pathways were found in the three patient groups. Among these variants, rs57938337, rs6683225 and rs6692782 in RYR2 and rs12439006 and rs16958069 in RYR3 are associated with RI in Han Chinese patients with heart failure, suggesting that these variants may be used to identify patients susceptible to CRS in the future.


Assuntos
Síndrome Cardiorrenal , Cardiomiopatia Dilatada , Insuficiência Cardíaca , Humanos , Estudo de Associação Genômica Ampla , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/genética , População do Leste Asiático , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/genética
7.
BMC Womens Health ; 23(1): 329, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344881

RESUMO

BACKGROUND: Li-Fraumeni syndrome (LFS) is a rare autosomal dominant disease with high penetrance caused by a germline variant of TP53 gene. We report the first case of endometrial cancer after yolk sac tumor with LFS. CASE PRESENTATION: The presented female patient underwent right adnexectomy at age 23 because of a yolk sac tumor of the ovary. At the age of 27, the patient was diagnosed with endometrial adenocarcinoma, received cytoreductive surgery and chemotherapy. Given that her personal cancer history along with a strong family history of cancer, her father passing away from lung cancer at age 48 and her grandmother dying of ovarian cancer at age 50, the patient was referred for genetic counseling and testing. Genetic screening revealed a heterozygous pathogenic TP53 c.844C > T, p.( R282 W) with NM_000546.5 variant, a class 5 (C5) variant. This is the first reported case of a yolk sac tumor accompanied by subsequent endometrial cancer that is associated with LFS. CONCLUSIONS: We reported a first case of an endometrial cancer after yolk sac tumor patient with a tumor family history of harboring the germline TP53 pathogenic variation which expanded types of tumor that can be presented in patients with LFS. This case highlights the importance of genetic testing for patients with malignant tumors, as well as patients with a family history of malignant tumors. And our case highlights the necessity of screening for gynecologic tumor in LFS patients.


Assuntos
Tumor do Seio Endodérmico , Neoplasias do Endométrio , Síndrome de Li-Fraumeni , Feminino , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Síndrome de Li-Fraumeni/complicações , Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/diagnóstico , Genes p53 , Tumor do Seio Endodérmico/complicações , Tumor do Seio Endodérmico/genética , Neoplasias do Endométrio/complicações , Neoplasias do Endométrio/genética , Mutação em Linhagem Germinativa , Predisposição Genética para Doença
8.
Oxid Med Cell Longev ; 2023: 1261039, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36743693

RESUMO

Background: The occurrence and development of ovarian cancer (OV) are significantly influenced by increased levels of oxidative stress (OS) byproducts and the lack of an antioxidant stress repair system. Hence, it is necessary to explore the markers related to OS in OV, which can aid in predicting the prognosis and immunotherapeutic response in patients with OV. Methods: The single-cell RNA-sequencing (scRNA-seq) dataset GSE146026 was retrieved from the Gene Expression Omnibus (GEO) database, and Bulk RNA-seq data were obtained from TCGA and GTEx databases. The Seurat R package and SingleR package were used to analyze scRNA-seq and to identify OS response-related clusters based on ROS markers. The "limma" R package was used to identify the differentially expressed genes (DEGs) between normal and ovarian samples. The risk model was constructed using the least absolute shrinkage and selection operator (LASSO) regression analysis. The immune cell infiltration, genomic mutation, and drug sensitivity of the model were analyzed using the CIBERSORT algorithm, the "maftools," and the "pRRophetic" R packages, respectively. Results: Based on scRNA-seq data, we identified 12 clusters; OS response-related genes had the strongest specificity for cluster 12. A total of 151 genes were identified from 2928 DEGs to be significantly correlated with OS response. Finally, nine prognostic genes were used to construct the risk score (RS) model. The risk score model was an independent prognostic factor for OV. The gene mutation frequency and tumor immune microenvironment in the high- and low-risk score groups were significantly different. The value of the risk score model in predicting immunotherapeutic outcomes was confirmed. Conclusions: OS response-related RS model could predict the prognosis and immune responses in patients with OV and provide new strategies for cancer treatment.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Sequência de Bases , Biomarcadores , Estresse Oxidativo/genética , RNA-Seq , Biomarcadores Tumorais/genética , Microambiente Tumoral
9.
Heart Lung ; 59: 8-15, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36669444

RESUMO

BACKGROUND: Pulmonary artery hypertension (PAH) is a common disease that seriously threatens human physical and mental health. Chronic obstructive pulmonary disease (COPD) is the main cause of secondary PAH. OBJECTIVES: This study observed the differential expression of the endogenous Apela/APJ system in COPD patients with or without PAH. METHODS: A total of 69 COPD patients were enrolled, including 31 patients with PAH (COPD+PAH). Lung tissue from healthy controls, COPD patients, and COPD patients with PAH was used for RT-PCR and histological examination. RESULTS: The serum level of endogenous Apela in COPD+PAH patients was significantly lower than those in the control and COPD groups. Correlation analysis showed that systolic pulmonary artery pressure in COPD+PAH patients was negatively correlated with the serum level of endogenous Apela (r = -0.3842, p < 0.05). The percentage of intima thickening and muscularization of pulmonary arterioles was increased in COPD+PAH patients, while the expression of Apela/APJ was decreased. Compared with the healthy controls and COPD patients, the expression of endothelial markers vWF and CD34 mRNA in the pulmonary arterioles in COPD+PAH patients decreased, while the expression of interstitial markers α-SMA and vimentin mRNA was up-regulated. CONCLUSION: The present study suggests that expression of the Apela/APJ system is decreased in PAH secondary to COPD. The pathological changes involved in PAH secondary to COPD include thickening of the intima and muscularization of the pulmonary arterioles, as well as endothelial-to-mesenchymal transition. Corrective action targeting the diminished Apela/APJ system may be a promising therapeutic strategy for PAH in the future.


Assuntos
Receptores de Apelina , Hipertensão , Hipertensão Arterial Pulmonar , Doença Pulmonar Obstrutiva Crônica , Humanos , Hipertensão/complicações , Pulmão , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/genética , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo
10.
J Asian Nat Prod Res ; 25(2): 125-131, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35465792

RESUMO

Two new cyclic lipopeptides, acuminatums E (1) and F (2), together with four known cyclic lipopeptides, acuminatums A-D (3-6) were isolated from the corn culture of endophytic Fusarium lateritium HU0053. Their structures were elucidated by spectroscopic and advanced Marfey's amino acid analysis. All compounds were found to exhibit antifungal activities against Penicillium digitatum. Acuminatum F (2), a new cyclic lipopeptide containing an unusual 3, 4-dihydroxy-phenylalanine unit exhibited the strongest antifungal activities with inhibition zone of 6.5 mm at the dose of 6.25 µg. Therefore, acuminatum F might be a potential environmental-friendly preservative for citrus fruits.


Assuntos
Antifúngicos , Fusarium , Antifúngicos/química , Fusarium/química , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Lipopeptídeos/metabolismo , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química
11.
Front Oncol ; 12: 1034737, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531002

RESUMO

Background: Monocyte chemoattractant protein-4 (MCP-4/CCL13) is a proinflammatory factor that is overexpressed in various malignant tumors and may play an important role in tumor progression and metastasis. However, its role and mechanism of action in ovarian cancer remains unknown. Methods: Immunohistochemistry (IHC) was performed to detect the expression of MCP-4 in ovarian cancer tissues, and the effect of MCP-4 on patient survival and prognosis was analyzed. Overexpression and suppression of MCP-4 in ovarian cancer cell lines were then established, and their effects on cell invasion, migration, and apoptosis were studied. ES-2 cell lines were employed to establish a peritoneal dissemination model in nude mice. Western blotting was performed to detect the expression of epithelial mesenchymal transition (EMT) markers and the p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway. Results: MCP-4 was highly expressed in ovarian cancer tissues and its expression level was related to the prognosis of patients with ovarian cancer. MCP-4 overexpression promoted the migration and invasion of ovarian cancer cells but inhibited apoptosis. MCP-4 overexpression increased the expression of MMP-2, MMP-9, N-cadherin, vimentin and Bcl2/Bax and decreased the expression of E-cadherin. MCP-4 overexpression increased the phosphorylation of the p38 MAPK pathway. The inhibition of MCP-4 expression indicated an opposite trend. In vivo experiments have also confirmed that MCP-4 overexpression can promote metastasis of ovarian cancer. Conclusion: MCP-4 promotes ovarian cancer progression through the p38 MAPK signaling pathway, and may be a potential biomarker and therapeutic target for ovarian cancer.

12.
Front Oncol ; 12: 936550, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860572

RESUMO

Background: Poly(ADP-ribose)polymerase (PARP) inhibitors are a class of molecular-targeted cancer drugs. Synthetic lethality is a phenomenon that renders homologous recombination repair defective cells more sensitive to PARP inhibitors. As a component of the cohesin complex, RAD21 regulates DNA damage repair. However, the biological roles of RAD21 in ovarian cancer and their underlying mechanisms remain unclear. Methods: An immunohistochemical assay was used to validate the expression of RAD21 in ovarian cancer and its correlation with prognosis. The effects of RAD21 were evaluated through Cell Counting Kit-8 (CCK8), wound-healing, and invasion assays in vitro and the tumor growth in vivo. Furthermore, CCK8 assay and immunofluorescence assay were used to detect the effect of RAD21 on cell sensitivity to PARP inhibitors and their mechanism. The pathway changes were detected by Western blotting. Results: RAD21 was markedly upregulated in ovarian cancer samples. High RAD21 expression was correlated with poor differentiation and poor prognosis in patients with ovarian cancer. Functionally, RAD21 overexpression promoted cancer cell proliferation, migration, and invasion. Moreover, RAD21 knockdown increased the sensitivity of ovarian cancer cells to three kinds of PARP inhibitors by affecting DNA damage repair. In vivo experiments indicated that RAD21 promoted tumor growth. Mechanistically, the overexpression of RAD21 led to increased phosphorylation levels of Akt and mTOR. Blocking the Akt/mTOR signaling pathway reversed RAD21 overexpression-induced cancer progression and drug resistance. Conclusions: RAD21 can serve as a valuable prognostic marker for ovarian cancer and has the potential as a therapeutic target that can expand the utility of PARP inhibitors.

13.
FASEB J ; 36(7): e22431, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35747913

RESUMO

Pulmonary artery hypertension (PAH) is a common disease that threatens human health. At present, no treatment can cure PAH, and the prognosis is poor. Therefore, it is important to determine new targets for PAH treatment. Recently, a novel endogenous ligand Apela (ELABELA/Toddler/ELA32) of apelin peptide jejunum (APJ) receptor was identified as a possible PAH target. This study explored the potential effect of Apela gene therapy on rats with PAH. An AAV-ELA32 recombinant expression vector was constructed by molecular cloning. Purified adeno-associated virus (AAV) was injected into monocrotaline (MCT)-induced PAH rats via tail vein 1 and 2 weeks after modeling. Apela gene therapy significantly reduced the increased right ventricular systolic pressure and N-terminal pro-brain natriuretic peptide (NT-proBNP) in PAH rats. The results of histopathology and immunofluorescence showed that Apela gene therapy not only reduced the rate of pulmonary arteriole muscularization and media thickening in PAH rats but also inhibited the endothelial-to-mesenchymal transition of the pulmonary arteriole. Western blotting showed that Apela gene therapy up-regulated the expression of KLF2/eNOs and BMPRII/SMAD4 in pulmonary arterioles of PAH rats. Overall, the results show that Apela gene therapy can inhibit pulmonary arteriolar vascular remodeling and reduce pulmonary artery pressure in PAH rats. These effects may be related to KLF2/eNOs and BMPRII/SMAD4 signaling pathways. The apelinergic system may be a potential new target for the prevention and treatment of PAH.


Assuntos
Hipertensão Pulmonar , Hormônios Peptídicos , Animais , Receptores de Apelina/metabolismo , Terapia Genética , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/terapia , Fatores de Transcrição Kruppel-Like/metabolismo , Monocrotalina , Hormônios Peptídicos/metabolismo , Artéria Pulmonar/metabolismo , Ratos
14.
Biochem Biophys Res Commun ; 619: 76-83, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-35749939

RESUMO

miRNAs are non-coding single-stranded RNA molecules with many functions. Several miRNAs have been found to be dysregulated in ovarian cancer; however, the role of miR-651-3p in ovarian cancer remains unknown. Here, the expression level of miR-651-3p in ovarian tissue samples was determined via qRT-PCR, and then miR-651-3p was overexpressed and downregulated to study the functional changes in ovarian cancer cells. Based on previous research and database predictions, we analyzed the binding and regulatory effects of miR-651-3p on zinc finger protein 703 (ZNF703). We additionally evaluated the effect of miR-651-3p on epithelial-mesenchymal transition (EMT) and mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways in ovarian cancer cells. We found that miR-651-3p was downregulated in ovarian cancer tissues. miR-651-3p expression was associated with inhibited proliferation, invasion, and migration of ovarian cancer cells and promoted cell cycle arrest. Additionally, miR-651-3p was found to target ZNF703 and affect EMT in ovarian cancer by activating the MEK/ERK signaling pathway. MiR-651-3p was downregulated in ovarian cancer, and suppressed the malignant biological behavior of ovarian cancer by inhibiting ZNF703 and the MEK/ERK pathway. Our findings on miR-651-3p provided new insights for the diagnosis and treatment of ovarian cancer.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases/genética , MicroRNAs/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo
15.
BMC Cancer ; 22(1): 690, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739489

RESUMO

BACKGROUND: Nucleolar and spindle-associated protein 1 (NUSAP1) was shown to be involved in cell cycle regulation in cancer. However, its prognostic value and underlying mechanism in ovarian cancer remain unclear. METHODS: Oncomine, TCGA, CCLE, and UALCAN databases were used to analyze the expression level of NUSAP1 in ovarian cancer. The Kaplan-Meier plotter database was used to evaluate its prognostic value. The results from these analyses were further validated using immunohistochemical assay. The potential molecular mechanism of NUSAP1 in ovarian cancer was assessed with respect to homologous recombination repair, mismatch repair, and immunology using different databases. RESULTS: Database analyses and experimental results demonstrated that NUSAP1 was highly expressed in ovarian cancer, its levels being correlated with the FIGO stage. High NUSAP1 expression was an independent risk factor affecting the prognosis of patients with epithelial ovarian cancer. Moreover, NUSAP1 was associated with cell cycle, DNA replication, homologous recombination, and p53 signaling pathway. A positive correlation was identified between the expression of NUSAP1 and BRCA1/2 in ovarian cancer. In addition, NUSAP1 was associated with the expression of DNA mismatch repair genes and immune cell infiltration. CONCLUSIONS: NUSAP1 may be a valuable prognostic marker, as well as a novel biomarker for evaluating the response to immunotherapy of patients with ovarian cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas Associadas aos Microtúbulos , Neoplasias Ovarianas , Feminino , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Neoplasias Ovarianas/genética , Prognóstico
16.
Int Immunopharmacol ; 107: 108726, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35338959

RESUMO

TMEFF1 is a newly discovered protein involved in the physiological functions of the central nervous system, embryonic development, and other biological processes. Our previous study revealed that TMEFF1 acts as a tumor-promoting gene in ovarian cancer. AHNAK, as a giant scaffolding protein, plays a role in the formation of the blood-brain barrier, cell architecture and the regulation of cardiac calcium channels. However, its role in ovarian cancer remains poorly researched. In this study, we detected the expression of AHNAK and TMEFF1 in 148 different ovarian cancer tissues, determined their relationship with pathological parameters and prognosis, clarified the interaction between the two proteins, and explored the related cancer-promoting mechanisms through immunohistochemistry, immunoprecipitation, immunofluorescence double staining, western blotting, and bioinformatics. The high expression of ANHAK and TMEFF1 in ovarian cancer indicated a higher degree of tumor malignancy and a worse prognosis. Furthermore, the expression of TMEFF1 and AHNAK was significantly positively correlated. The results also showed that AHNAK and TMEFF1 co-localized and interacted with each other in ovarian cancer tissues and cells. And knockdown of AHNAK promoted proliferation, migration and invasion of ovarian cancer cells in vitro. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that AHNAK and related genes were enriched during mitosis regulation, cytoskeleton formation, gene epigenetics, etc., whereas TMEFF1 and related genes are enriched during immune regulation and other processes. We also clarified the network of kinases, microRNA, and transcription factor targets, and the impact of genetic mutations on prognosis. Notably, AHNAK was regulated by the expression of TMEFF1 and can activate the MAPK pathways. Overall, high expression of AHNAK and TMEFF1 in ovarian cancer cells indicated a higher degree of tumor malignancy and a worse prognosis. Therefore, the interaction between AHNAK and TMEFF1 may become a potential anti-tumor target for ovarian cancer treatment.


Assuntos
Neoplasias Ovarianas , Biologia Computacional , Feminino , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/genética , Prognóstico
17.
J Cell Mol Med ; 25(23): 10916-10929, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34725902

RESUMO

Ovarian cancer, one of the malignant gynaecological tumours with the highest mortality rate among female reproductive system, is prone to metastasis, recurrence and chemotherapy resistance, causing a poor prognosis. Exosomes can regulate the epithelial-mesenchymal plasticity of tumour cells, remodel surrounding tumour microenvironment, and affect tumour cell proliferation, invasion and metastasis. However, the function and mechanism of exosomes in the intraperitoneal implantation of ovarian cancer remain unclear. In this study, exosomal annexin A2 (ANXA2) derived from ovarian cancer cells was co-cultured with human peritoneal mesothelial (HMrSV5) cells; functional experiments were conducted to explore the effects of exosomal ANXA2 on the biological behaviour of HMrSV5 and the related mechanisms. This study showed that ANXA2 in ovarian cancer cells can be transferred to HMrSV5 cells through exosomes, exosomal ANXA2 can not only promote the migration, invasion and apoptosis of HMrSV5 cells, but also regulates morphological changes and fibrosis of HMrSV5 cells. Furthermore, ANXA2 promotes the mesothelial-mesenchymal transition (MMT) and degradation of the extracellular matrix of HMrSV5 cells through PI3K/AKT/mTOR pathway, finally affects pre-metastasis microenvironment of ovarian cancer, which provides a new theoretical basis for the mechanism of intraperitoneal implantation and metastasis of ovarian cancer.


Assuntos
Anexina A2/genética , Transição Epitelial-Mesenquimal/genética , Epitélio/patologia , Exossomos/genética , Neoplasias Ovarianas/genética , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Ovarianas/patologia , Peritônio/patologia , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais/genética , Microambiente Tumoral/genética
18.
J Cancer ; 12(22): 6835-6850, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659572

RESUMO

Introduction: Keratin 80 (KRT80) is a type II epithelial keratin protein that plays an important role in cell differentiation and tumor progression. However, its role and mechanisms in ovarian cancer remain unclear. Methods: The effect of KRT80 on the survival and prognosis of patients with ovarian cancer was determined using immunohistochemistry. Cell lines overexpressing KRT80 and with KRT80 knockdown were established to study its effect on the malignant behavior of ovarian cancer cells. Western blotting was used to detect changes in related molecules, and in the MEK/ERK signal transduction pathway. ChIP assay was used to confirm that ETS1 regulates KRT80 at the transcriptional level. A double luciferase assay was used to confirm the target of miR-206. Results: The expression levels of KRT80 were high in ovarian cancer tissue, and were related to survival and prognosis. KRT80 expression is an independent prognostic factor in patients with ovarian cancer. KRT80 overexpression promotes the proliferation of ovarian cancer cells, the transition from G1 phase to S phase, invasion, and migration. KRT80 overexpression increased the expression of BCL2/BAX, CyclinD1, MMP2, MMP9, and N-cadherin, decreased the expression of E-cadherin, and increased the phosphorylation of MEK and ERK. ETS1 binds to the upstream promoter sequence of KRT80 and regulates KRT80 expression at the transcriptional level. ETS1 is a direct target of miR-206 in ovarian cancer cells. Conclusion: KRT80 regulated by miR-206/ETS1 promotes tumor progression via the MEK/ERK pathway in ovarian cancer, and KRT80 may have applications as a screening biomarker and potential therapeutic target for ovarian cancer.

19.
Cancer Cell Int ; 21(1): 516, 2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565373

RESUMO

BACKGROUND: The WNT gene family plays an important role in the occurrence and development of malignant tumors, but its involvement has not been systematically analyzed in uterine corpus endometrial carcinoma (UCEC). This study aimed to evaluate the prognostic value of the WNT gene family in UCEC. METHODS: Pan-cancer transcriptome data of the UCSC Xena database and Genotype-Tissue Expression (GTEx) normal tissue data were downloaded to analyze the expression and prognosis of 19 WNT family genes in UCEC. A cohort from The Cancer Genome Atlas-Uterine Corpus Endometrial Carcinoma (TCGA-UCEC) was used to analyze the expression of the WNT gene family in different immune subtypes and clinical subgroups. The STRING database was used to analyze the interaction of the WNT gene family and its biological function. Univariate Cox regression analysis and Lasso cox analysis were used to identify the genes associated with significant prognosis and to construct multi signature prognosis model. An immunohistochemical assay was used to verify the predictive ability of the model. Risk score and the related clinical features were used to construct a nomogram. RESULTS: The expression levels of WNT2, WNT3, WNT3A, WNT5A, WNT7A, and WNT10A were significantly different among different immune subtypes and correlated with TP53 mutation. According to the WNT family genes related to the prognosis of UCEC, UCEC was classified into two subtypes (C1, C2). The prognosis of subtype C1 was significantly better than that of subtype C2. A 2-gene signature (WNT2 and WNT10A) was constructed and the two significantly prognostic groups can be divided based on median Risk score. These results were verified using real-world data, and the nomogram constructed using clinical features and Risk score had good prognostic ability. CONCLUSIONS: The 2-gene signature including WNT2 and WNT10A can be used to predict the prognosis of patients with UCEC, which is important for clinical decision-making and individualized therapy for patients with UCEC.

20.
Mol Ther Oncolytics ; 22: 294-306, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34553020

RESUMO

Uterine corpus endometrial carcinoma locally infiltrates numerous immune cells and other tumor immune microenvironment components. These cells are involved in malignant tumor growth and proliferation and the process of resistance toward immunotherapies. Here, we aimed to develop a tumor immune microenvironment-related prognostic signature for high-risk grade III endometrial carcinoma based on The Cancer Genome Atlas. The signature was systematically correlated with immune infiltration characteristics of the tumor microenvironment. The seven-gene Riskscore signature was robust and performed well in training, testing, and Gene Expression Omnibus-independent cohorts. A nomogram comprising the gene signature accurately predicted patient prognosis, with our model performing better than other endometrial cancer-related signatures. Analysis of the IMvigor210 immunotherapy cohort revealed that subgroups with a low Riskscore had a better prognosis than subgroups with a high Riskscore. Subgroups with a low Riskscore exhibited immune cell infiltration and inflammatory profiles, whereas subgroups with a high Riskscore experienced progressive disease. The receiver operating characteristic curve indicated that risk score, neoantigen, and tumor mutation burden models together accurately predicted treatment response. Taken together, we developed a tumor microenvironment-based seven-gene prognostic stratification system to predict the prognosis of patients with high-risk endometrial cancer and guide more effective immunotherapy strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA