RESUMO
Vanadium dioxide (VO2) is an excellent phase transition material widely used in various applications, and thus inevitably enters the environment via different routes and encounters various organisms. Nonetheless, limited information is available on the environmental hazards of VO2. In this study, we investigated the impact of two commercial VO2 particles, nanosized S-VO2 and micro-sized M-VO2 on the white rot fungus Phanerochaete chrysosporium. The growth of P. chrysosporium is significantly affected by VO2 particles, with S-VO2 displaying a higher inhibitory effect on weight gain. In addition, VO2 at high concentrations inhibits the formation of fungal fibrous hyphae and disrupts the integrity of fungus cells as evidenced by the cell membrane damage and the loss of cytoplasm. Notably, at 200 µg/mL, S-VO2 completely alters the morphology of P. chrysosporium, while the M-VO2 treatment does not affect the mycelium formation of P. chrysosporium. Additionally, VO2 particles inhibit the laccase activity secreted by P. chrysosporium, and thus prevent the dye decoloration and sawdust decomposition by P. chrysosporium. The mechanism underlying this toxicity is related to the dissolution of VO2 and the oxidative stress induced by VO2. Overall, our findings suggest that VO2 nanoparticles pose significant environmental hazards and risks to white rot fungi.
RESUMO
BACKGROUND: As a recognized win-win-win approach to international debt relief, Debt-to-Health(D2H)has successfully translated debt repayments into investments in health-related projects. Although D2H has experienced modifications and periodic suspension, it has been playing an increasingly important role in resource mobilization in public health, particularly for low-and middle-income countries deep in debt. MAIN TEXT: D2H, as a practical health financing instrument, is not fully evidenced and gauged by academic literature though. We employed a five-step scoping review methodology. After posing questions, we conducted comprehensive literature searches across three databases and one official website to identify relevant studies.We also supplemented our research with expert interviews. Through this review and interviews, we were able to define the concept and structure of D2H, identify stakeholders, and assess its current shortcomings. Finally, we proposed relevant countermeasures and suggestions. CONCLUSION: This paper examines the D2H project's implementation structure and influencing variables, as well as the current research plan's limitations, with a focus on the role health funding institutions have played during the project's whole life. Simultaneously, it examines the interdependencies between debtor nations, creditor nations, and health financing establishments, establishing the groundwork for augmenting and revamping D2H within the ever-changing worldwide context of health development assistance.
Assuntos
Saúde Global , Financiamento da Assistência à Saúde , Humanos , Países em DesenvolvimentoRESUMO
The biodegradation of antibiotics in aquatic environment is consistently impeded by the widespread presence of heavy metals, necessitating urgent measures to mitigate or eliminate this environmental stress. This work investigated the degradation of sulfamethoxazole (SMX) by the white-rot fungus Phanerochaete chrysosporium (WRF) under heavy metal cadmium ion (Cd2+) stress, with a focus on the protective effects of reduced graphene oxide (RGO). The pseudo-first-order rate constant and removal efficiency of 5 mg/L SMX in 48 h by WRF decrease from 0.208 h-1 and 55.6% to 0.08 h-1 and 28.6% at 16 mg/L of Cd2+, while these values recover to 0.297 h-1 and 72.8% by supplementing RGO. The results demonstrate that RGO, possessing excellent biocompatibility, effectively safeguard the mycelial structure of WRF against Cd2+ stress and provide protection against oxidative damage to WRF. Simultaneously, the production of manganese peroxidase (MnP) by WRF decreases to 38.285 U/L in the presence of 24 mg/L Cd2+, whereas it recovers to 328.51 U/L upon the supplement of RGO. RGO can induce oxidative stress in WRF, thereby stimulating the secretion of laccase (Lac) and MnP to enhance the SMX degradation. The mechanism discovered in this study provides a new strategy to mitigate heavy metal stress encountered by WRF during antibiotic degradation.
Assuntos
Biodegradação Ambiental , Cádmio , Grafite , Phanerochaete , Sulfametoxazol , Phanerochaete/metabolismo , Sulfametoxazol/metabolismo , Cádmio/metabolismo , Poluentes Químicos da Água/metabolismoRESUMO
Emblica, also known as Phyllanthus emblica L., is a drug homologous food that is rich in polyphenols with various biological activities. However, its bitterness and astringency pose a significant challenge to its utilization in food products. In this study, we aimed to identify the optimal conditions for debittering Emblica. Our findings revealed that the best debittering conditions were: temperature = 50 °C, pH = 4, α-l-rhamnosidase concentration 200 U/g, and time = 5 h. High-performance liquid chromatography (HPLC) and molecular docking analysis revealed that enzymatic hydrolysis partially removed bitterness compounds. The results of antioxidant activity, xanthine oxidase, and α-glucosidase inhibitory activity assays confirmed that the Emblica fruit powder still exhibited good biological activity after enzymatic debitterization. Moreover, gastric fluids treatment might contribute to the above enhancing effect of enzymatic hydrolysates of Emblica. This study provided a theoretical basis for promoting the processing and utilization of Emblica fruit powder, as well as understanding its biological activity.
RESUMO
BACKGROUND: Disparities in the utilization of essential medical products are a key factor contributing to inequality in health outcomes. We aimed to analyze the trends and influencing factors in using Coronavirus disease 2019 (COVID-19) diagnostic tools and disparities in countries with different income levels. METHODS: We conducted a cross-sectional study using open and publicly available data sources. Data were mainly collected from the Foundation for Innovative New Diagnostics, "Our World in Data," and the Global Burden of Disease databases. Negative binomial regression model and generalized linear mixed model were employed to investigate into five sets of factors associated with the usage of diagnostics: severity of COVID-19, socioeconomic status, health status, medical service capacity, and rigidity of response. Dominance analysis was utilized to compare the relative importance of these factors. The Blinder-Oaxaca decomposition was used to decompose the difference in the usage of diagnostics between countries. RESULTS: The total COVID-19 testing rate ranged from 5.13 to 22,386.63 per 1000 people from March 2020 to October 2022 and the monthly testing rate declined dramatically from January 2022 to October 2022 (52.37/1000 vs 5.91/1000).. The total testing rate was primarily associated with socioeconomic status (37.84%), with every 1 standard deviation (SD) increase in Gross Domestic Product per capita and the proportion of people aged ≥ 70, the total testing rate increased by 88% and 31%. And so is the medical service capacity (33.66%), with every 1 SD increase in health workforce density, the number increased by 38%. The monthly testing rate was primarily associated with socioeconomic status (34.72%) and medical service capacity (28.67%), and the severity of COVID-19 (21.09%). The average difference in the total testing rates between high-income and low-income countries was 2726.59 per 1000 people, and 2493.43 (91.45%) of the differences could be explained through the five sets of factors. CONCLUSIONS: Redoubling the efforts, such as local manufacturing, regulatory reliance, and strengthening the community health workforce and laboratory capacity in low- and middle-income countries (LMICs) cannot be more significant for ensuring sustainable and equitable access to diagnostic tools during pandemic.
Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Pandemias , Teste para COVID-19 , Estudos Transversais , RendaRESUMO
The COVID-9 pandemic has exacerbated health inequities among countries in the Global South with limited access to essential medical products, leading to a higher infection and mortality rate, especially among vulnerable populations. Despite tremendous progress in global health financing, the estimated annual financing gap in developing countries is projected to reach US$371 billion per year by 2030. Therefore, developing market-shaping strategies is of great importance in ensuring adequate supply, affordable prices, and equitable access to essential medical products in low-and middle-income countries. We propose a strategic and appropriate market-shaping intervention framework for governments, international organizations, and NGOs to maximize access to essential medical products in developing countries. In the health field, we believe that market shaping strategy could be defined as a set of purposeful activities that market forces may intervene with to advance the development, production, supply, and distribution of global goods for health, making essential medical products more affordable, accessible, innovative, sustainable and quality assured. We argue that when designing a market-shaping strategy, policy or decision-makers must take full advantage of the key drivers to keep the market dynamic, interactive, and constantly evolving to meet the unmet medical needs. In addition, different forms of market-shaping interventions are determined by objectives and specific issues to be addressed. More comprehensive market shaping strategies, including the strategic use of market expansion, market disruption, market maintenance, and market contraction alone or together, deserve to be explored and key stakeholders are also expected to join forces to make the intervention more efficient and productive.
Assuntos
COVID-19 , Infecções por HIV , Humanos , Países em Desenvolvimento , Autoteste , Custos e Análise de CustoRESUMO
BACKGROUND: Children under five are the vulnerable population most at risk of being infected with Plasmodium parasites, especially in the Sahel region. Seasonal malaria chemoprevention (SMC) recommended by World Health Organization (WHO), has proven to be a highly effective intervention to prevent malaria. Given more deaths reported during the COVID-19 pandemic than in previous years due to the disruptions to essential medical services, it is, therefore, necessary to seek a more coordinated and integrated approach to increasing the pace, coverage and resilience of SMC. Towards this end, fully leverage the resources of major players in the global fight against malaria, such as China could accelerate the SMC process in Africa. METHODS: We searched PubMed, MEDLINE, Web of Science, and Embase for research articles and the Institutional Repository for Information Sharing of WHO for reports on SMC. We used gap analysis to investigate the challenges and gaps of SMC since COVID-19. Through the above methods to explore China's prospective contribution to SMC. RESULTS: A total of 68 research articles and reports were found. Through gap analysis, we found that despite the delays in the SMC campaign, 11.8 million children received SMC in 2020. However, there remained some challenges: (1) a shortage of fully covered monthly courses; (2) lack of adherence to the second and third doses of amodiaquine; (3) four courses of SMC are not sufficient to cover the entire malaria transmission season in areas where the peak transmission lasts longer; (4) additional interventions are needed to consolidate SMC efforts. China was certified malaria-free by WHO in 2021, and its experience and expertise in malaria elimination can be shared with high-burden countries. With the potential to join the multilateral cooperation in SMC, including the supply of quality-assured health commodities, know-how transfer and experience sharing, China is expected to contribute to the ongoing scale-up of SMC. CONCLUSIONS: A combination of necessary preventive and curative activities may prove beneficial both for targeted populations and for health system strengthening in the long run. More actions are entailed to promote the partnership and China can be one of the main contributors with various roles.
Assuntos
Antimaláricos , COVID-19 , Malária , Criança , Humanos , Lactente , Antimaláricos/uso terapêutico , Estações do Ano , Pandemias/prevenção & controle , Estudos Prospectivos , COVID-19/prevenção & controle , COVID-19/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Malária/tratamento farmacológico , África/epidemiologia , QuimioprevençãoRESUMO
In this study, we aimed to isolate and identify the bioactive compounds from 5-year pickled radish. The pickled radish was extracted with methanol or ethyl acetate. Sephadex LH-20, normal phase and reverse phase silica gel column chromatography were used for separation and purification, combined with thin layer chromatography (TLC), high performance liquid chromatography (HPLC), electrospray mass spectrometry (ESI-MS), nuclear magnetic resonance spectroscopy (NMR) technology for structural identification. The results showed that 6 compounds were separated and purified from methanol and ethyl acetate extracts of 5-year-old pickled radish. The structures were identified as 5-hydroxymethylfurfural, ß-sitosterol, ß-sitosterol-3-O-glucose glycosides, α-linolenic acid, 1-monopalmitin and chaenomic acid A. Using molecular docking, it was determined that ß-sitosterol and its derivative ß-sitosterol-3-O-glucose glycosides have high affinity for five antioxidant enzymes, and there were multiple hydrogen bonds between them. These results indicated that pickled radishes might be used as an important source of natural chemical substances.