Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 484: 116825, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253083

RESUMO

Salivary adenoid cystic carcinoma (ACC) is a common type of salivary gland cancer, and the mechanisms underlying its progression still remain poorly understood without efficient therapies. NOTCH1, an evolutionally conserved cell-cell signaling pathway, is involved in the progression of ACC. In our study, we attempted to explore whether NOTCH1 suppression using the monoclonal anti-NOTCH1 antibody OMP-52 M51 could be of potential for ACC treatment. Here, we identified NOTCH1 elevation in human ACC tissues compared with the matched normal samples. Patients with metastasis expressed much higher NOTCH1. We then found that OMP-52 M51 markedly reduced the expression of NOTCH1 and its intracellular active form NICD1 (NOTCH1 intracellular domain). Importantly, OMP-52 M51 markedly reduced the proliferation, migration and invasion of ACC cells. RNA-Seq and in vitro studies further showed that OMP-52 M51 significantly induced ferroptosis in ACC cells, indicated by the increased cellular malondialdehyde (MDA), iron contents and lipid ROS production, and decreased glutathione (GSH) levels. Further, remarkable glutathione peroxidase 4 (GPX4) reduction was detected in ACC cells with OMP-52 M51 treatment. However, promoting NOTCH1 expression markedly abolished the function of OMP-52 M51 to induce ferroptosis. Intriguingly, low-dose OMP-52 M51 strongly facilitated the capacity of ferroptosis inducer erastin to trigger ferroptotic cell death, revealing that OMP-52 M51 could improve the sensitivity of ACC cells to ferroptosis. In vivo, OMP-52 M51 administration suppressed tumor growth and induced ferroptosis in the constructed ACC xenograft mouse model. Collectively, our findings demonstrated that NOTCH1 inhibition by OMP-52 M51 represses the proliferation and epithelial-mesenchymal transition (EMT) in ACCs, and promotes ferroptosis, revealing the potential therapeutical application of OMP-52 M51 in ACC.


Assuntos
Carcinoma Adenoide Cístico , Ferroptose , Neoplasias das Glândulas Salivares , Humanos , Animais , Camundongos , Carcinoma Adenoide Cístico/tratamento farmacológico , Carcinoma Adenoide Cístico/metabolismo , Carcinoma Adenoide Cístico/patologia , Neoplasias das Glândulas Salivares/tratamento farmacológico , Neoplasias das Glândulas Salivares/metabolismo , Neoplasias das Glândulas Salivares/patologia , Transdução de Sinais , Transição Epitelial-Mesenquimal , Receptor Notch1
3.
J Nanobiotechnology ; 21(1): 466, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049845

RESUMO

Xenogeneic extracellular matrices (xECM) for cell support have emerged as a potential strategy for addressing the scarcity of donor matrices for allotransplantation. However, the poor survival rate or failure of xECM-based organ transplantation is due to the negative impacts of high-level oxidative stress and inflammation on seed cell viability and stemness. Herein, we constructed xenogeneic bioengineered tooth roots (bio-roots) and used extracellular vesicles from human adipose-derived mesenchymal stem cells (hASC-EVs) to shield bio-roots from oxidative damage. Pretreatment with hASC-EVs reduced cell apoptosis, reactive oxygen species generation, mitochondrial changes, and DNA damage. Furthermore, hASC-EV treatment improved cell proliferation, antioxidant capacity, and odontogenic and osteogenic differentiation, while significantly suppressing oxidative damage by activating the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and nuclear factor erythroid 2 (NFE2)-related factor 2 (NRF2) nuclear translocation via p62-associated Kelch-like ECH-associated protein 1 (KEAP1) degradation. Inhibition of PI3K/Akt and Nrf2 knockdown reduced antioxidant capacity, indicating that the PI3K/Akt/NRF2 pathway partly mediates these effects. In subcutaneous grafting experiments using Sprague-Dawley rats, hASC-EV administration significantly enhanced the antioxidant effect of the bio-root, improved the regeneration efficiency of periodontal ligament-like tissue, and maximized xenograft function. Conclusively, therefore, hASC-EVs have the potential to be used as an immune modulator and antioxidant for treating oxidative stress-induced bio-root resorption and degradation, which may be utilized for the generation and restoration of other intricate tissues and organs.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Estresse Oxidativo , Animais , Humanos , Ratos , Antioxidantes/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Osteogênese , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
5.
Materials (Basel) ; 14(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34501177

RESUMO

Flexible electronic devices are widely used in the Internet of Things, smart home and wearable devices, especially in carriers with irregular curved surfaces. Light weight, flexible and corrosion-resistant carbon-based materials have been extensively investigated in RF electronics. However, the insufficient electrical conductivity limits their further application. In this work, a flexible and low-profile dual-band Vivaldi antenna based on highly conductive graphene-assembled films (GAF) is proposed for 5G Wi-Fi applications. The proposed GAF antenna with the profile of 0.548 mm comprises a split ring resonator and open circuit half wavelength resonator to implement the dual band-notched characteristic. The operating frequency of the flexible GAF antenna covers the Wi-Fi 6e band, 2.4-2.45 GHz and 5.15-7.1 GHz. Different conformal applications are simulated by attaching the antenna to the surface of cylinders with different radii. The measured results show that the working frequency bands and the radiation patterns of the GAF antenna are relatively stable, with a bending angle of 180°. For demonstration of practical application, the GAF antennas are conformed to a commercial router. The spectral power of the GAF antenna router is greater than the copper antenna router, which means a higher signal-to-noise ratio and a longer transmission range can be achieved. All results indicate that the proposed GAF antenna has broad application prospects in next generation Wi-Fi.

6.
ACS Appl Mater Interfaces ; 12(4): 4659-4672, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31898451

RESUMO

In this work, five PTB7-Th-based conjugated polymers (PTB7-Th, PTBSi20, PTBSi25, PTBSi33, and PTBSi100) with different contents of siloxane-terminated pentyl side chain were synthesized, and properties of corresponding blend films with narrow band gap nonfullerene IEICO-4F acceptor were extensively investigated. According to the contact angle testing, the PTB7-Th with 100% alkyl side chain and PTBSi100 100% siloxane-terminated side chain on the benzodithiophene unit showed surface energy values of 40.04 and 34.52 mJ/m2, respectively. The results demonstrate that relative to alkyl side chain in PTB7-Th, the siloxane-terminated side chain could effectively reduce the surface energy of a resulting polymer. Based on Flory-Huggins interaction parameter estimations, the miscibility between the polymer and IEICO-4F would vary in an order of PTB7-Th > PTBSi20 > PTBSi25 > PTBSi33 > PTBSi100, suggesting that siloxane-terminated side chain would afford a tunable driving force for phase separation. Transmission electron microscopy and Raman mapping could confirm large bulk domains inside the PTBSi100:IEICO-4F blend film. In polymer solar cells, the blend film of the PTBSi100 with the lowest miscibility to IEICO-4F showed an undesirable power conversion efficiency (PCE) of 8.52%, which was significantly lower than that of 11.23% for PTB7-Th, suggesting that too large phase separation driving force is not beneficial for the device performance. Side-chain random copolymers PTBSi20, PTBSi25, and PTBSi33 for fine tuning could display PCEs of 11.94, 12.61, and 11.80%, respectively, all higher than that of PTB7-Th. Our results not only reveal the big surface energy difference between the siloxane-terminated side chain and the common alkyl side chain but also provide a guideline for side chain engineering of conjugated polymer donors with tunable morphology and optimal matching with a nonfullerene acceptor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA