Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 1447, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664263

RESUMO

Identifying the genetic factors that underlie complex traits is central to understanding the mechanistic underpinnings of evolution. Cave-dwelling Astyanax mexicanus populations are well adapted to subterranean life and many populations appear to have evolved troglomorphic traits independently, while the surface-dwelling populations can be used as a proxy for the ancestral form. Here we present a high-resolution, chromosome-level surface fish genome, enabling the first genome-wide comparison between surface fish and cavefish populations. Using this resource, we performed quantitative trait locus (QTL) mapping analyses and found new candidate genes for eye loss such as dusp26. We used CRISPR gene editing in A. mexicanus to confirm the essential role of a gene within an eye size QTL, rx3, in eye formation. We also generated the first genome-wide evaluation of deletion variability across cavefish populations to gain insight into this potential source of cave adaptation. The surface fish genome reference now provides a more complete resource for comparative, functional and genetic studies of drastic trait differences within a species.


Assuntos
Adaptação Fisiológica/genética , Characidae/embriologia , Characidae/genética , Olho/embriologia , Herança Multifatorial/genética , Animais , Evolução Biológica , Cavernas , Mapeamento Cromossômico , Evolução Molecular , Edição de Genes , Genoma/genética , Proteínas de Homeodomínio/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Locos de Características Quantitativas/genética
2.
Sci Rep ; 10(1): 4049, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132579

RESUMO

The ability to prevent blood loss in response to injury is a conserved function of all vertebrates. Complete deficiency of the central clotting enzyme prothrombin has never been observed in humans and is incompatible with postnatal life in mice, thus limiting the ability to study its role in vivo. Zebrafish are able to tolerate severe hemostatic deficiencies that are lethal in mammals. We have generated a targeted genetic deletion in the kringle 1 domain of zebrafish prothrombin. Homozygous mutant embryos develop normally into the mid-juvenile stage but demonstrate complete mortality by 2 months of age primarily due to internal hemorrhage. Mutants are unable to form occlusive venous and arterial thrombi in response to endothelial injury, a defect that was phenocopied using direct oral anticoagulants. Human prothrombin engineered with the equivalent mutation exhibits a severe reduction in secretion, thrombin generation, and fibrinogen cleavage. Together, these data demonstrate the conserved function of thrombin in zebrafish and provide insight into the role of kringle 1 in prothrombin maturation and activity. Understanding how zebrafish are able to develop normally and survive into early adulthood without thrombin activity will provide important insight into its pleiotropic functions as well as the management of patients with bleeding disorders.


Assuntos
Mutação , Protrombina , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Camundongos , Domínios Proteicos , Protrombina/genética , Protrombina/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
J Thromb Haemost ; 17(4): 607-617, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30663848

RESUMO

Essentials Loss of fibrinogen in zebrafish has been previously shown to result in adult onset hemorrhage Hemostatic defects were discovered in early fga-/- embryos but well tolerated until adulthood Afibrinogenemia and thrombocytopenia results in synthetic lethality in zebrafish. Testing human FGA variants of uncertain significance in zebrafish identified causative mutations SUMMARY: Background Mutations in the alpha chain of fibrinogen (FGA), such as deficiencies in other fibrinogen subunits, lead to rare inherited autosomal recessive hemostatic disorders. These range from asymptomatic to catastrophic life-threatening bleeds and the molecular basis of inherited fibrinogen deficiencies is only partially understood. Zinc finger nucleases have been used to produce mutations in zebrafish fga, resulting in overt adult-onset hemorrhage and reduced survival. Objectives To determine the age of onset of hemostatic defects in afibrinogenemic zebrafish and model human fibrinogen deficiencies. Methods TALEN genome editing (transcription activator-like effector nucleases) was used to generate a zebrafish fga mutant. Hemostatic defects were assessed through survival, gross anatomical and histological observation and laser-induced endothelial injury. Human FGA variants with unknown pathologies were engineered into the orthologous positions in zebrafish fga. Results Loss of Fga decreased survival and resulted in synthetic lethality when combined with thrombocytopenia. Zebrafish fga mutants exhibit a severe hemostatic defect by 3 days of life, but without visible hemorrhage. Induced thrombus formation through venous endothelial injury was completely absent in mutant embryos and larvae. This hemostatic defect was restored by microinjection of wild-type fga cDNA plasmid or purified human fibrinogen. This system was used to determine whether unknown human variants were pathological by engineering them into fga. Conclusions These studies confirm that loss of fibrinogen in zebrafish results in the absence of hemostasis from the embryonic period through adulthood. When combined with thrombocytopenia, zebrafish exhibit synthetic lethality, demonstrating that thrombocytes are necessary for survival in response to hemorrhage.


Assuntos
Afibrinogenemia/sangue , Afibrinogenemia/metabolismo , Fibrinogênio/metabolismo , Hemorragia/sangue , Hemostasia , Trombocitopenia/sangue , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Fibrinogênio/genética , Hemorragia/genética , Hemostasia/genética , Humanos , Subunidade p45 do Fator de Transcrição NF-E2/genética , Subunidade p45 do Fator de Transcrição NF-E2/metabolismo , Mutações Sintéticas Letais , Trombocitopenia/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
4.
Cell Rep ; 25(8): 1997-2007.e7, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30462998

RESUMO

Although Astyanax mexicanus surface fish regenerate their hearts after injury, their Pachón cave-dwelling counterparts cannot and, instead, form a permanent fibrotic scar, similar to the human heart. Myocardial proliferation peaks at similar levels in both surface fish and Pachón 1 week after injury. However, in Pachón, this peak coincides with a strong scarring and immune response, and ultimately, cavefish cardiomyocytes fail to replace the scar. We identified lrrc10 to be upregulated in surface fish compared with Pachón after injury. Similar to cavefish, knockout of lrrc10 in zebrafish impairs heart regeneration without affecting wound cardiomyocyte proliferation. Furthermore, using quantitative trait locus (QTL) analysis, we have linked the degree of heart regeneration to three loci in the genome, identifying candidate genes fundamental to the difference between scarring and regeneration. Our study provides evidence that successful heart regeneration entails a delicate interplay between cardiomyocyte proliferation and scarring.


Assuntos
Characidae/fisiologia , Coração/fisiologia , Regeneração/fisiologia , Animais , Proliferação de Células , Characidae/genética , Cinética , Mutação/genética , Miocárdio/citologia , Miócitos Cardíacos/citologia , Locos de Características Quantitativas/genética , Regulação para Cima , Cicatrização , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/metabolismo
5.
Blood ; 130(5): 666-676, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28576875

RESUMO

Deficiency of factor X (F10) in humans is a rare bleeding disorder with a heterogeneous phenotype and limited therapeutic options. Targeted disruption of F10 and other common pathway factors in mice results in embryonic/neonatal lethality with rapid resorption of homozygous mutants, hampering additional studies. Several of these mutants also display yolk sac vascular defects, suggesting a role for thrombin signaling in vessel development. The zebrafish is a vertebrate model that demonstrates conservation of the mammalian hemostatic and vascular systems. We have leveraged these advantages for in-depth study of the role of the coagulation cascade in the developmental regulation of hemostasis and vasculogenesis. In this article, we show that ablation of zebrafish f10 by using genome editing with transcription activator-like effector nucleases results in a major embryonic hemostatic defect. However, widespread hemorrhage and subsequent lethality does not occur until later stages, with absence of any detectable defect in vascular development. We also use f10-/- zebrafish to confirm 5 novel human F10 variants as causative mutations in affected patients, providing a rapid and reliable in vivo model for testing the severity of F10 variants. These findings as well as the prolonged survival of f10-/- mutants will enable us to expand our understanding of the molecular mechanisms of hemostasis, including a platform for screening variants of uncertain significance in patients with F10 deficiency and other coagulation disorders. Further study as to how fish tolerate what is an early lethal mutation in mammals could facilitate improvement of diagnostics and therapeutics for affected patients with bleeding disorders.


Assuntos
Coagulação Sanguínea/genética , Fator X , Edição de Genes , Mutação , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Fator X/genética , Fator X/metabolismo , Deficiência do Fator X/embriologia , Deficiência do Fator X/genética , Humanos , Camundongos , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
PLoS One ; 10(7): e0134299, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26225764

RESUMO

DNA damage-binding protein 1 (DDB1) is a large subunit of the heterodimeric DDB complex that recognizes DNA lesions and initiates the nucleotide excision repair process. DDB1 is also a component of the CUL4 E3 ligase complex involved in a broad spectrum of cellular processes by targeted ubiquitination of key regulators. Functions of DDB1 in development have been addressed in several model organisms, however, are not fully understood so far. Here we report an ENU induced mutant ddb1 allele (ddb1m863) identified in zebrafish (Danio rerio), and analyze its effects on development. Zebrafish ddb1 is expressed broadly, both maternally and zygotically, with enhanced expression in proliferation zones. The (ddb1m863 mutant allele affects the splice acceptor site of exon 20, causing a splicing defect that results in truncation of the 1140 amino acid protein after residue 800, lacking part of the ß-propeller domain BPC and the C-terminal helical domain CTD. ddb1m863 zygotic mutant embryos have a pleiotropic phenotype, including smaller and abnormally shaped brain, head skeleton, eyes, jaw, and branchial arches, as well as reduced dopaminergic neuron groups. However, early forming tissues develop normally in zygotic ddb1m863 mutant embryos, which may be due to maternal rescue. In ddb1m863 mutant embryos, pcna-expressing proliferating cell populations were reduced, concurrent with increased apoptosis. We also observed a concomitant strong up-regulation of transcripts of the tumor suppressor p53 (tp53) and the cell cycle inhibitor cdkn1a (p21a/bCIP1/WAF1) in proliferating tissues. In addition, transcription of cyclin genes ccna2 and ccnd1 was deregulated in ddb1m863 mutants. Reduction of p53 activity by anti-sense morpholinos alleviated the apoptotic phenotype in ddb1m863 mutants. These results imply that Ddb1 may be involved in maintaining proper cell cycle progression and viability of dividing cells during development through transcriptional mechanisms regulating genes involved in cell cycle control and cell survival.


Assuntos
Apoptose/genética , Ciclo Celular/genética , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Genes p53 , Transcrição Gênica , Peixe-Zebra/embriologia , Animais , Ativação Transcricional
7.
Blood ; 124(1): 142-50, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24782510

RESUMO

Pathologic blood clotting is a leading cause of morbidity and mortality in the developed world, underlying deep vein thrombosis, myocardial infarction, and stroke. Genetic predisposition to thrombosis is still poorly understood, and we hypothesize that there are many additional risk alleles and modifying factors remaining to be discovered. Mammalian models have contributed to our understanding of thrombosis, but are low throughput and costly. We have turned to the zebrafish, a tool for high-throughput genetic analysis. Using zinc finger nucleases, we show that disruption of the zebrafish antithrombin III (at3) locus results in spontaneous venous thrombosis in larvae. Although homozygous mutants survive into early adulthood, they eventually succumb to massive intracardiac thrombosis. Characterization of null fish revealed disseminated intravascular coagulation in larvae secondary to unopposed thrombin activity and fibrinogen consumption, which could be rescued by both human and zebrafish at3 complementary DNAs. Mutation of the human AT3-reactive center loop abolished the ability to rescue, but the heparin-binding site was dispensable. These results demonstrate overall conservation of AT3 function in zebrafish, but reveal developmental variances in the ability to tolerate excessive clot formation. The accessibility of early zebrafish development will provide unique methods for dissection of the underlying mechanisms of thrombosis.


Assuntos
Deficiência de Antitrombina III/genética , Antitrombina III/genética , Modelos Animais de Doenças , Coagulação Intravascular Disseminada/genética , Proteínas de Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Humanos , Hibridização In Situ , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA