Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(10): 12637-12646, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38441047

RESUMO

Sulfhydryl-based polyimides were synthesized by the nucleophilic ring-opening reaction of thiolactone monomers (BPDA-T, ODPA-T, BTDA-T) with polyethylenimine (PEI), and they were coated on carbon nanotubes as host materials (BPTP@CNT, ODTP@CNT, and BTTP@CNT) of the sulfur cathode. BPTP@CNT/S, ODTP@CNT/S, and BTTP@CNT/S as cathode materials not only promote the covalent bonding of sulfur and polysulfide with sulfhydryl-based polyimides but also reduce the shuttle effect of soluble polysulfide in the redox process. Moreover, sulfhydryl-based polyimides can help improve the compatibility and interfacial contact between sulfur and conductive carbon while alleviating the volume expansion of the cathode. In addition, the conductive network of carbon nanotubes improves the electronic conductivity of the cathode materials. The BTTP@CNT/S cathode showed superior stability (the initial capacity was 902 mAh g-1 at 1C, and the capacity retention rate was 88.58% after 500 cycles) and the initial capacity could reach 718 mAh g-1 when the sulfur loading was 4.8 mg cm-2 (electrolyte/sulfur ratio: 10 µL mg-1), which fully proves the feasibility of the large-scale application of sulfhydryl-based polyimide materials.

2.
J Colloid Interface Sci ; 629(Pt B): 65-75, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36152581

RESUMO

The "shuttle effect" of lithium polysulfides (LiPSs) leads to loss of active materials and the deterioration of cycle stability, which seriously restricts the practical progress of lithium-sulfur (Li-S) batteries. The diffusion of soluble discharge intermediate is the root cause of the above problems. Herein, we synthesized a porous organic framework material (HUT-8) based on triazine network, the polar groups above the hollow structure can not only adsorb LiPSs through electron donating effect, but also anchored cobalt (II) ions provide a large number of binding sites for the in-situ growth of CoS2. This ensured maximized exposure of catalytic centre and improve their interactions with sulfur redox species under the confinement of mesopores, which can catalytically accelerate capture/diffusion of LiPSs and precipitation/decomposition of Li2S. Based on the synergistic effect of the composite materials, the CoS2-HUT-8/S cathode maintained a capacity of 583 mAh g-1 after 500 cycles at 1 C, and a minimum capacity fading rate of 0.046% per cycle. A freestanding CoS2-HUT-8/S cathode with sulfur loading of 5.2 mg cm-2 delivered a high areal capacity of 4.01 mAh cm-2 under a lean electrolyte, which would provide great potential for the practical progress of Li-S batteries.

3.
Nanotechnology ; 33(22)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35158345

RESUMO

The practical application of lithium-sulfur battery is seriously limited by the loss of active substances and the deterioration of cycle stability caused by the 'shuttle effect' of lithium polysulfides (LiPSs). In this work, graphene oxide (GO) coated covalent organic framework (COF) compound materials were synthesized as sulfur host material in spray-drying process. The polar groups on COF can efficiently adsorb LiPSs through lithiophilic interaction, which can reduce the 'shuttle effect' caused by soluble LiPSs. Besides, GO in the outer layer can wrap discrete sulfur to reduce the loss of active substances, which further improves the cycle stability of the cathode. The COF@GO/S cathode exhibits a high initial specific capacity of 848.4 mAh g-1and retains a capacity of 601.1 mAh g-1after 500 cycles at 1 C counting with a low capacity fading of 0.058% per cycle.

4.
Nanoscale ; 13(27): 12028-12037, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34231632

RESUMO

The commercialization of lithium-sulfur batteries is seriously affected by the shuttle behavior and slow conversion kinetics of polysulfides. Herein, a new porous organic polymer (POP) is synthesized and grown on reduced graphene oxide (rGO) in situ to improve battery performance, which serves as an efficient polysulfide adsorber and catalytic promoter for polysulfide conversion. The polar POP shows strong chemisorption to polysulfides, which is confirmed by a series of calculations and experimental results. As a popular conductive substrate, rGO offers an electron transport channel for sulfur and polysulfide conversion. Due to the synergistic functions of composite materials, the batteries with POP@rGO modified separators retain a high specific capacity of 697.3 mA h g-1 and a minimum capacity fading rate of 0.04% per cycle at 1C over 500 cycles. Besides, even at a high sulfur loading of 5 mg cm-2, a high area capacity of 4.27 mA h cm-2 can also be achieved, which shows that it has great potential in promoting the commercialization of lithium-sulfur batteries.

5.
Indian J Microbiol ; 60(2): 222-229, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32255855

RESUMO

Sweat secretion keeps feet and insoles humid and rich in nutrients, which are the conditions needed to maintain abundant microbial growth. Analyzing the diversity and function of microorganisms in the insole is of great significance in the development of functional insoles and prediction of human foot hygiene condition. In this study, pure culture method, MiSeq high-throughput sequencing technology, and PICRUSt gene function prediction were used to analyze the diversity and function of the bacterial community from insoles of healthy population of different sexes and age groups. Staphylococcus, Micrococcus, and Brevibacterium are present in all insole samples, and there is no significant difference between sexes of the same age group. However, a significant difference in insole microbial population was obtained among age groups. For community function, all six samples expressed similarity in the preliminary metabolism, but in samples from the elderly, many specific catabolic genes were associated with human disease and drug resistance. This study provides a reference for the development of multi-function insoles and other sanitary products for disease prediction in a healthy population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA