Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Biol Med ; 172: 108208, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484696

RESUMO

Ovarian cancer, a major gynecological malignancy, often remains undetected until advanced stages, necessitating more effective early screening methods. Existing biomarker based on differential genes often suffers from variations in clinical practice. To overcome the limitations of absolute gene expression values including batch effects and biological heterogeneity, we introduced a pairwise biosignature leveraging intra-sample differentially ranked genes (DRGs) and machine learning for ovarian cancer detection across diverse cohorts. We analyzed ten cohorts comprising 872 samples with 796 ovarian cancer and 76 normal. Our method, DRGpair, involves three stages: intra-sample ranking differential analysis, reversed gene pair analysis, and iterative LASSO regression. We identified four DRG pairs, demonstrating superior diagnostic performance compared to current state-of-the-art biomarkers and differentially expressed genes in seven independent cohorts. This rank-based approach not only reduced computational complexity but also enhanced the specificity and effectiveness of biomarkers, revealing DRGs as promising candidates for ovarian cancer detection and offering a scalable model adaptable to varying cohort characteristics.


Assuntos
Biomarcadores Tumorais , Neoplasias Ovarianas , Humanos , Feminino , Biomarcadores Tumorais/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA