RESUMO
Human pluripotent stem cell-derived ß cells (hPSC-ß cells) show the potential to restore euglycemia. However, the immature functionality of hPSC-ß cells has limited their efficacy in application. Here, by deciphering the continuous maturation process of hPSC-ß cells post transplantation via single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq), we show that functional maturation of hPSC-ß cells is an orderly multistep process during which cells sequentially undergo metabolic adaption, removal of negative regulators of cell function, and establishment of a more specialized transcriptome and epigenome. Importantly, remodeling lipid metabolism, especially downregulating the metabolic activity of ceramides, the central hub of sphingolipid metabolism, is critical for ß cell maturation. Limiting intracellular accumulation of ceramides in hPSC-ß cells remarkably enhanced their function, as indicated by improvements in insulin processing and glucose-stimulated insulin secretion. In summary, our findings provide insights into the maturation of human pancreatic ß cells and highlight the importance of ceramide homeostasis in function acquisition.
Assuntos
Diferenciação Celular , Ceramidas , Homeostase , Células Secretoras de Insulina , Células-Tronco Pluripotentes , Humanos , Ceramidas/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , AnimaisRESUMO
The mechanistic target of rapamycin complex 2 (mTORC2) coordinates cell proliferation, survival, and metabolism with environmental inputs, yet how extracellular stimuli such as growth factors (GFs) activate mTORC2 remains enigmatic. Here we demonstrate that in human endothelial cells, activation of mTORC2 signaling by GFs is mediated by transmembrane cell adhesion protein CD146. Upon GF stimulation, the cytoplasmic tail of CD146 is phosphorylated, which permits its positively charged, juxtamembrane KKGK motif to interact with Rictor, the defining subunit of mTORC2. The formation of the CD146-Rictor/mTORC2 complex protects Rictor from ubiquitin-proteasome-mediated degradation, thereby specifically upregulating mTORC2 activity with no intervention of the PI3K and mTORC1 pathways. This CD146-mediated mTORC2 activation in response to GF stimulation promotes cell proliferation and survival. Therefore, our findings identify a molecular mechanism by which extracellular stimuli regulate mTORC2 activity, linking environmental cues with mTORC2 regulation.
Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Motivos de Aminoácidos , Antígeno CD146/química , Antígeno CD146/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Proteínas Mutantes/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ubiquitina/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologiaRESUMO
In order to reveal the inhibitory effects of cinnamaldehyde, citral, and eugenol on aflatoxin biosynthesis, the expression levels of 5 key aflatoxin biosynthetic genes were evaluated by real-time PCR. Aspergillus flavus growth and AFB1 production were completely inhibited by 0.80 mmol/L of cinnamaldehyde and 2.80 mmol/L of citral. However, at lower concentration, cinnamaldehyde (0.40 mmol/L), eugenol (0.80 mmol/L), and citral (0.56 mmol/L) significantly reduced AFB1 production with inhibition rate of 68.9%, 95.4%, and 41.8%, respectively, while no effect on fungal growth. Real-time PCR showed that the expressions of aflR, aflT, aflD, aflM, and aflP were down-regulated by cinnamaldehyde (0.40 mmol/L), eugenol (0.80 mmol/L), and citral (0.56 mmol/L). In the presence of cinnamaldehyde, AflM was highly down-regulated (average of 5963 folds), followed by aflP, aflR, aflD, and aflT with the average folds of 55, 18, 6.5, and 5.8, respectively. With 0.80 mmol/L of eugenol, aflP was highly down-regulated (average of 2061-folds), followed by aflM, aflR, aflD, and aflT with average of 138-, 15-, 5.2-, and 4.8-folds reduction, respectively. With 0.56 mmol/L of citral, aflT was completely inhibited, followed by aflM, aflP, aflR, and aflD with average of 257-, 29-, 3.5-, and 2.5-folds reduction, respectively. These results suggest that the reduction in AFB1 production by cinnamaldehyde, eugenol, and citral at low concentration may be due to the down-regulations of the transcription level of aflatoxin biosynthetic genes. Cinnamaldehyde and eugenol may be employed successfully as a good candidate in controlling of toxigenic fungi and subsequently contamination with aflatoxins in practice.
Assuntos
Acroleína/análogos & derivados , Aflatoxina B1/biossíntese , Aspergillus flavus/efeitos dos fármacos , Eugenol/farmacologia , Expressão Gênica/efeitos dos fármacos , Genes Fúngicos , Monoterpenos/farmacologia , Acroleína/farmacologia , Monoterpenos Acíclicos , Aflatoxinas , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Ochratoxin A (OTA) is a mycotoxin which is a common contaminant in grains during storage. Aspergillus ochraceus is the most common producer of OTA. Essential oils play a crucial role as a biocontrol in the reduction of fungal contamination. Essential oils namely natural cinnamaldehyde, cinnamon oil, synthetic cinnamaldehyde, Litsea citrate oil, citral, eugenol, peppermint, eucalyptus, anise and camphor oils, were tested for their efficacy against A. ochraceus growth and OTA production by fumigation and contact assays. Natural cinnamaldehyde proved to be the most effective against A. ochraceus when compared to other oils. Complete fungal growth inhibition was obtained at 150-250 µL/L with fumigation and 250-500 µL/L with contact assays for cinnamon oil, natural and synthetic cinnamaldehyde, L. citrate oil and citral. Essential oils had an impact on the ergosterol biosynthesis and OTA production. Complete inhibition of ergosterol biosynthesis was observed at ≥ 100 µg/mL of natural cinnamaldehyde and at 200 µg/mL of citral, but total inhibition was not observed at 200 µg/mL of eugenol. But, citral and eugenol could inhibit the OTA production at ≥ 75 µg/mL and ≥ 150 µg/mL respectively, while natural cinnamaldehyde couldn't fully inhibit OTA production at ≤ 200 µg/mL. The inhibition of OTA by natural cinnamaldehyde is mainly due to the reduction in fungal biomass. However, citral and eugenol could significant inhibit the OTA biosynthetic pathway. Also, we observed that cinnamaldehyde was converted to cinnamic alcohol by A. ochraceus, suggesting that the antimicrobial activity of cinnamaldehyde was mainly attributed to its carbonyl aldehyde group. The study concludes that natural cinnamaldehyde, citral and eugenol could be potential biocontrol agents against OTA contamination in storage grains.